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VARIATIONAL INEQUALITIES OF ELLIPTIC AND PARABOLIC TYPE

Matthew Rudd and Klaus Schmitt*

Abstract. This pape constitutes a short survey of existence methods for
variational inequalities of parabolic type. After discussing severa illustrative
examples in detail, we discuss some of the common methods for proving exis-
tence of solutions to such problems: the translation method, Rothe’s method,
and the penalty method. As these methods rey on existence results for d-
liptic variational inequalities, we dso provide a summary of basic results and
techniques for static problems.

1. INTRODUCTION

The sudy of evolution problems where the date of the system is subject to some
st of constraints has a long higory and its beginnings are nearly simultaneous to
the early studies of variaional inequdities

Since such problems are, by ther very naure, nonlinear problems, methods
complementing the semigroup theoretic approach ([4], [11], [21], [33]), used for
the study of evolution eguations had to be devised. These methods are mainly
based on exigence reaults for datic variationd inequd ities and go back to theories
presented in [5], [6], [29], and have been discussed in detail in vari ous other places,
eg., [22], [39], [40].

While most of the sources dready mentioned present a theory of variational
inequdities usudly from some fixed point of view, we shdl here present a survey
of several different waysto arrive a an existence theory.

We begin in Section 2 by presenting some illustrative examples of parabolic
vaidaiond inequalities and establish some notati on to be used throughout this paper.
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We then present a brief survey and some examples of reaults about stetic dliptic
vaiational inequdities which will subsequently be used to derive existence results
for parabolic variationd inequalities. We then discuss three standard methods for
proving exigence of olutions to such problems: the transiation method (Section 4),
Rothe’s method (Section 5), and the penalty method (Section 6). For more materia
on parabolic variational inequdities, se [4], [17], [22], [29], [32], and [39].

2. ExaMPLES

This section presents several examples that motivate the study of parabolic vari-
ationd inequdities and indicate ther range of applicability. In Section 2.1, we
introduce the subject with a linear diffuson equation whose nonlinear boundary
conditions represent a semipermeable boundary. We then examine two problemsfor
the p—Lagplacian, a parabolic obstecle problem (Section 2.2) and a nonlinear evo-
Iution equation (Section 2.3). These three examples guide the way to the generd
formulation of parabalic variaiond inequdities discussed in Section 3.

2.1. Diffusion with a semipermeable membrane

We begin with a modd problem describing diffuson in a domain with a semi—
permeable boundary ([29], [32]). Let 2 ¢ R be an open bounded set wi th smooth
boundary T, let thefind time T' < oo be given, and consider the problem of finding
u = u(z,t) such that

ou

(2.1 i Au=f for (z,t)eQx(0,7),
(2.2 u(r,0) =ug(x) for z €,
ou ou
(2.3 u >0, 6720’ and ug_o for (z,t) e T'x (0,7),

where A is the Lapladian with respect to . With V = H(Q), we look for
we VY =L?0,T;V), the Banach gpace of functions v : [0, 7] — V with norm

(24 ol = ( / e dt)

Furthermore, werequirethat f(¢) € V* forae. ¢ € (0, 7)) and that theinitid datum
ug € H = Lz(Q).

The nonlinear boundary conditions (2.3) lead to this problem’s formulation as a
vaiational inequdity. In fact, if u solves (2.1)—«(2.3) and ¢ is an arbitrarily chosen

1/2
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point in (0,7"), then u(t) clearly belongs to the dosed convex s&t K C V' defined
by

(25) K={veV|v(z)>0 for zel}.

For any v € V with v(t) € K, multiplying both sides of (2.1) by v(t) — u(t) and
integrating over €2 produces the identity

(2.6) A(U'(t) — f(1) () —u(t) dz = K) Au(t)(v(t) —u(t)) dz,

where we now write «’ for the derivative du/dt, since we view u as a function of
time with vduesin V.
Usng the divergence theorem and the boundary conditions (2.3), we have

K)Au(t)(’u(t) —u(t)) +Vu(t) - V(v(t) —ul(t)) dz
_ / wit) ~u) 22 4w > o
T
from which we see that

28) [) Au(t)(o(t) —u(t)) dz > — A Vu(t) - V(o(t) — u(t)) de.

Combining (2.8) with (2.6), we see that « belongs to X and satisfies the parabolic
variational inequality

2.7)

/ () —ut)) + Vu(t) - V(v(t) - u(t)) de

(29)
/f u(t))de, Vv e K, ae. te (0,T),
where /C denotes the collection of functions v € V such tha v(t) € K for ae
€(0,7).
Although this cone /C might appear to omit some of the boundary conditions
posed in (2.3), we will see that these two problems are indeed equivalent. To this
end, suppose that v € IC solves (2.9), and let

v(t) =ut)+eC

for t € (0,7), € #0, and an abitrary test function ¢ € C5°(£2). Asthis function
v beongs to 1, we may substitute it into (2.9) to obtain the inequdity

: A (W ()¢ + Vult) - VE — F(5)0) dz > 0,
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which is actudly the equation

A (W (£)C + Vu(t) - VC — F(H)C) da = 0,

gnce e may bepodtiveor negative. Inthesense of digributions, u therefore satisies
the heat equation (2.1) in Q x (0,7).

It remains to verify theboundary conditions that are not included in the definition
of K. Observe tha the rdaions

/ Y (t) + Vu(t) - Vuo(t)) de

(2.10)
/f t)dz, Ywe K, a.e. t €(0,T)
and
/ (u(t)C) + Vu(t) - V(u(t)C)) da
(2.10)

/f Q) dx, V¢ € C®(Q), ae. te (0,T),
follow from (2.9) by firg choosing v = w+w, for w € K, in (2.9) and then choosing

w(t) = u(t)(1+£¢), € C™® (), |¢(z)] 1in(29).
Using equation (2.1), we rewrite (2.10) as

A (o (Yo (t) + Vu(t) - V(t)) de
> /Q (e () — Aut)) w(t)dz, Yw € K, ace. t € (0,T),
which is simply
2.12) /Q (V(t) - Vu(t) + wb)Au(t)) de >0, Yw € K, ae. t € (0,T).
We now apply the divergence theorem to (2.12) to find thet

/w()ag()da>0 Yw e K, a.e. te[0,T],
r

(4

ou
61/—0 on I'x(0,7)

A similar argument verifies the remaining condition; we replace f(t) in (2.11)
with o/ (t) — Au(t) to obtain for a.e. t € (0,7)

(2.13) Kz (Valt) - V(u(®)0) + u(t)cAu(t)) dz = 0, ¥¢ € C(),
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to which the divergence theorem applies to deduce that

/ u(t)(au—(t)da =0, V¢ € C*(Q), a.e. t €(0,T).
r ov
This means precisdy tha

ou
u8—V_0 on T'x(0,7).
The boundary conditions (2.3) thus hold, so the original diffusion problem may
ether be formulated as the boundary vadue problem (2.1), (2.2), (2.3) or as the
parabolic variationd inequality (2.9).

2.2. A nonlinear obstacle problem

In many problems the diffuson coefficient will not be congant but rather will
depend upon the dependent variable in some manner. A dass of problems that has
received much attention in recent years is obtained by replacing the Laplacian term
in the integral (2.9) with a term corresponding to the p—-Laplacian. To do so, we
eV = Wol’p (Q) for p > 1, and we use W~14(Q2) to denote the dud of V, where
p and ¢ are conjugate exponents, 1/p + 1/q = 1. Letting (-,-) denote the pairing
between these paces we define the operator

Ay Wy P(Q) - W(Q)
by

(2.14) (Apu, v) = / |VulP~2Vu - Vo dz
Q

for u, v € Wy*(€). The operator A, is defined by the p—Laplacian A,
(2.15) Ap(u) = =V - (|VuP2Vu).

As in the previous section, V' denotes the space L?(0,7;V), and K is the s&t of
functions v € V such tha v(t) € K for ae t € (0,T), where K C V isaclosed
convex et to be pecified be ow.

With this setup, we consder the problem of finding € K with the prescribed
initid value

(2.16) w(0) =up € L*(Q)
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and such that the inequality

o1 / (u(t) — u(t)) + [Vu(t) P-2Vu(t) - V(u(t) — u(t)) dz
| / F&) @) - ult)) dx

holds for ae ¢ € (0,7") and for dl v € K, where
(2.18) K={veVj>uy}

foragiveny € Whr(Q) sdisfyingyy 0 onT. Thedosed convex set K represents
an imposed constraint determined by the obstacle 1. The exi gence resultsto follow
guarantee a solution v € K of the parabolic obstacle problem (2.17) for the p—
Laplacian; we devote the remainder of this section to a description of the solution.

From the definition of the condraint et IC, we see that, & any time ¢ € (0,7),
u(t) partitions €2 into the two ets

(1) = {z € Qu(z,t) > ¢(x)}
and
Q(t) = {z € Qu(z, t) = ¢(2)}.

For ¢ # 0 and any test function ¢ € C§°(Q27(¢)), we follow the argument given
earlier and substitute v(t) = u(t) + ¢ into (2.17) to obtain

(2.19) A L) + [Vt P2V ult) - VE — f(8)¢dz = 0,
which means that the equation
(2.20) % —Aju=f

holdsin the sense of digributions, where A, isthe p—Laplacian defined above (2.15).
The solution « of the parabolic variaiond inequdity (2.17) therefore satidfies the
partial differential equation (2.20) on

U '@
te(0,7)
and eguals the obstacle ) on

= U 20

t€(0,T)
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We emphasize, however, that the boundary of Q°, the fiee boundary for this prob-
lem, is unknown a priori. In contrast to the example in Section 2.1, this problem
cannot be recast as a dasscd boundary vaue problem. This example indicates the
role of varidiond inequalities in the gudy of free boundary problems arising from
constraints

2.3. A nonlinear evolution equation

Usng the indicator functional ¢ of the constraint set K defined by (2.18), we
can formulae the obgacd e problem of the previous section as a parabolic variational
inequdity over the entire space V. Spedificdly, u € V 0lves inequality (2.17) if
and only if it solves the inequality

(1) (v(t) —u(t)) + [Va(t) P2 Vu(t) - V(o(t) - u(t)) de

Q
+or(v(t) — dx(u(t)) = [)f(t)(v(t) — u(t)) dx,
VoeV, ae. te (0,T),

2.21)

where ¢ : V — RU {+oo} isdefined by

{0, 1 12K

As K is convex and dosed, the functiond ¢x is convex and lower semicon-
tinuous ([7], [15]). It isthen naturd to consider replacing ¢k in (2.21) with more
general convex lower semicontinuous functionals To explore this idea, we define
the functional ¢: V — RU {400} by

223 o) =t [ i ds

where we choose the exponent « in accordance with the convexity requirement and
with the Rellich-Kondrachov theorem ([1], [7]):

o forp <N, a € (1,p%), where p* = {2, isthe Sobolev conjugate of p;
o forp >N, ae (1,00).

The functiond ¢ is lower semicontinuous by Faou’s lemma and, for a > 1, is
Fréchet differentiable, with derivative D¢ : V' — V* given by

(2.29) (Do(u),v) :/ lu|*2uvdz for w,veV,
Q
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where (-, -) denotes the pairing between V' and itsdud V™.
By the exigence results in the following sections, there exists a solution v € V
of the corresponding variaiond inequd ity

u' () (v(t) — u(®) + [Vu() P72Vu(t) - V(u(t) —u(t)) do

Q
+o(v(t) — o(u(t) = Lf(t)(v(t) — u(t)) de,
VveV, ae te(0,T).

(2.25)

As this holds for dl v € V, we may substitute v(t) = u(t) + ¢, for e > 0, into
(2.25) to find that u(t) satisfies

e [ W)+ |Vut) P2 Vult) - V¢ — f(t)C do
Q
+o(u(t) +e¢) — P(u(t)) =0, V¢ € G5 ().
Since ¢ is Freche differentiable, we have
P(u(t) + eC) — d(u(t)) = (De(u(t)),¢) + o([leC]))-
Substituting this into (2.26) and dividing through by ¢ yidds

(2.26)

[ s+ wuorvat - ve - focds

(2.27)
+(Dp(u(t)),C) + O(H;‘E—CH) >0, V¢ e CN).

Letting e tend to 0 and then repeeting the argument for e < 0 (which reverses
inequalities), we obtain
(2.29) [ WO+ Vu@ V() - Ve - f(t)C da

+(Do(u(t)),¢) =0, V(¢ € C5().

Recalling (2.24), it follows that « is a solution of the nonlinear evolution equation

Ou _
ot
with initid and boundary conditions

(2.29) V- (|[VulP2Vu) + [u[*2u=f in Qx(0,T),

(2.30) u(z,0) =ug(x) and

(2.31) u(z,t)=0 for zel.
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In case a = 1, the above eguati on (2.29) will need to bereplaced by the problem
ou

(2.32) 5V (|VuP~2Vu) +0(jul) > f in Qx(0,7),
where
1, if u>0
ol =1 [-1,1], if u=0
-1, if u<O,

(see subsequent discussion for such problems).
More general slow-fast inequdity diffuson problems with differential operators

of the fom

% —div (A(|Vu|2)Vu) + 0d(u),

with A afast (or dow) growing function, arise naturdly in many applications, as
wdl. (See Section 3, where a staic problem of this type is discussed.)

Another interesting set of applications of parabolic variationd inequalities in-
volving the p-Laplacian (or other nonlinear diffusion operators of the type just
mentioned), i.e, equation (2.21), is the choice of the indicator functional ¢k, where
the dlosed convex st K is given by

K={ueWyP(Q):|Vu| 1, ae. zeQ}.

Such problems, particularly for large values of p, serve as gpproximate modds for
the formation of sandpiles e eg,, [2], [16], [36].

These examples show that, by choosing different functionds ¢, the formulati on
(2.25) captures awide variety of problems. The next section exploits this observa
tion.

3. THE GENERAL PrROBLEM

The progresson of examples in Sections 2.1, 2.2, and 2.3 indicates a general
formulaion of parabolic variaiond inequdities tha encompasses many different
problems. Given a reflexive Banach space V and T' < oo, we let V denote the

space
3.1) V=L, T5V),
whose dud is the space

(3.2) V* = L0, T; V*).
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This identification of V* isonly possible because the underlying space V isreflexive
([8], [12]). These are standard function spaces in the treatment of evolution prob-
lems ([8], [11], [29], [39]). We require further that V' be continuously embedded
in some Hilbert pace H, so that duality yields the pivot space structures

(3.3 Vs H=V* ad Vs H—V,

whereH = LS(1,T;H). Two consequences of (3.3) will be important for us ([39]);
firg, the embedding

34) We={veV | eV, ThH)

holds, which shows that initial datain the Hilbert space H are gppropriate for the
problems that we discuss Moreover, for functionsv € W, we have

(35 G’ =2 [ vt e

In addition to these spaces, we have an operator A : V. — V* tha satidies
certain monotonicity and continuity conditions corresponding to the operators that
arise in dliptic variational inequdities. To make the notation less cumbersome, we
henceforth let a(-, -) denote the form correponding to A, i.e,

a(u,v):= (Au,v), for wu,v eV,

where (-, -) denotes the pairing between V* and V. With this notation, we recal
the definitions of the rdevant properties of A ([29], [39)]):

Definition 3.1. Anopeator A: V — V*is

e monotone if

(3.6) a(u—v,u—v) >0, Vu,ve,
and strictly monotone if equality forces u = v.
e hemicontinuous if the map
t— a(u +tv,v)
is continuous for eech u,v € V.

e pseudomonotone if A isbounded and such that
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up, = u and limsupa(up,u, —u) 0

(3.7) imply
a(u,u—v) liminf a(uy, up —v), Vv € V.

Asshown in [29], pseudomonotonicity ensures that A is acontinuous map from
V to V*, where V' is endowed with its norm topology and V* is given the weak
topology. Although we explicitly assume pseudomonotonicity of A in the problem
(3.10) stated beow, it suffices to verify monotonicity and hemicontinuity, as these
two properties immediady imply that A is pseudomonotone ([29], [39]). As a
soecific example, smple caculations show that the operator A, induced by the
p—Laplacian and introduced in Section 2.2, is monotone and hemicontinuous, so it
fits the framework outlined here.

Findly, we are given afunctiond ¢ : V' — R U {4+oc} which is convex, lower
semicontinuous with respect to the topology of V, and whose effective domain

D(g),
(38) D(¢):={v €V | $(v) < +oc},

IS nonempty.

Notetha theintegrds occurring in the preceding parabolic variaional inequali-
ties gave the explicit action of VV* on V. For conciseness, as in the definition of the
forma(-,-) corresponding to A, wetherefore use (-, -) to denote the pairing between
V* and V, so that the following is the generdization of the problems considered in
Sections 2.1, 2.2, and 2.3:

Problem 3.2. Let the spaces V, H, V, and H be as described above. Suppose
that the pseudomonotone operator A : V. — V* and the convex lower semicontin-
uous functional ¢ : V. — RU {400}, with D(p) nonempty, satisfy the coercivity
condition
(39) i BT OW)

lof|—o0 vl

Jor some vo € D(¢). We seek uw € V such that the parabolic variational inequality

(' (t) = F(t),0(t) = ul?)) + a(u(t),v(t) - u(t))

(3.10)
+o((t)) — d(u(t)) >0, Vv eV, ae. t € (0,T)

holds and such that u has the prescribed initial value
(3.1 u(z,0) = uo(z) € H.

A solution u of (3.10) necessarily belongs to the effective domain of the func-
tiond ¢. Although we did not mention the coercivity condition (3.9) in the previous
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examples, such conditions arise naturdly in minimization problems They are typ-
ically used to guarantee that certain approximate solutions form a bounded set; for
gaces in which bounded sets are precompact, we may then extract a convergent
subseguence (in the rd evant topology) and try to show that the corresponding limit
0lves the problem in quedtion.

4. ELLIPTIC VARIATIONAL INEQUALITIES

We will assume some familiarity with the theory of dliptic variational inequd-
ities, which serves as a foundation for the results to follow. However, in order to
atain asemblance of sdf-containment, we shall briefly review and present some of
the main results on dliptic variational inequdities which we shall employ subse-
guently in our review of the basic existence theory of variational inequdities which
are of evolution type

4.1. Existence results

Throughout we shdl assume that V' isared Banach space with its topologicd
dual denoted by V*, and the pairing between V* and V, by (-, ). Let

F:V —= RU=zoo = [—00,]
be a functiond with effective domain
D(F) ={ue V| F(u) # oo}

A point v* € V* is called a subgradient for thefunctiond F' at the point « provided
that v € D(F) and

(4.2) F(v) > F(u) + (u*,v —u), Yv € V.

The et of dl subgradients at apoint w € D(F) is denoted by 0F (u) and called the
subdifferential of F at the point u. (Concerning the properties of the subdifferentia
for convex functions, we refer the reader to [35] and [40].)

We shall state and prove here, one of the basic results rdating minimization
problems with variational inequdities. To this end we shal assume that the func-
tional F' has the following properties:

F,J,5:V — (—o0,00]

where F' has the form
F=J+y,
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where J and j are functionals which are lower semicontinuous with respect to a
topology T, i.e, the sets

{ul J(w) a}, {u]jw) a}

are dosed with regpect to 7 for each a € R. Further we assume that F' is coercive,
i.e, tha
F(u) = oo, as|lul| = oo,

and that bounded subsets of V' are precompact with respect to the topology .

The topologies = most frequently employed are the weak topology, in case V' is
a reflexive space, or the weak dar topology, in case V' is the dual of a separable
goace. In what isto follow, examples for both cases will be of interest.

We have the following result. We dso give a brief sketch of a proof.

Theorem 4.1. Assume the above conditions and that J is convex and D(J) #
0, D(j) =V, with j Gateaux differentiable, with Gateaux derivative j'(u). Then
there exists u € D(J) such that

F(u) = 51‘161‘1/1 F(v)

and

4.2) 0€ dJ(u)+j'(u),

or equivalently that

@4.3) J(v) — J(u) + (§'(u),v —u) >0, Vv € V.

It follows from the assumptions on F' (particularly the assumption of lower
semicontinuity and coercivity) that F' is bounded beow, say,

—o00 < a:= inf F(v).
veV

We thus obtain a bounded sequence {uy, } with
F(u,) — a,
and therefore a subsequence {u,,, } such that, with respect to the topol ogy 7,

Up,; — U,

F(u)=a.
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Therefore
Fu)=Ju) +j(u) F@)=Jw)+j), YveV.

Hence, for ¢ > 0 and v € V < we obtan

0 30+t —w) = J(w) + 3 (i +t{o ) - j(w),

and, usng the convexity of J and the differentiability of j, we obtain

0 J@ynxm+gw¢v—w+%qm

from which follows (4.3) and thus, by definition of the subdifferential,
—j'(u) € 0J(u),

i.e., we also have (4.2).
For monotone mappi ngs we have another fundamental result ([29]), known as
the Browder—Minty Theorem. It is the following:

Theorem 4.2. Let V be a reflexive Banach space, and let A : V — V* be a
monotone hemicontinuous mapping which is bounded. Let ¢ be a convex, lower
semicontinuous functional from V to RU {oc} with nonempty effective domain
D(¢). Finally, suppose that A and ¢ satisfy the coercivity condition

(Au,u —ug) + p(u)

im
lull—o0 [

(4.4)

Y

for some ug € D(p). Then, for all f € V*, there exists a solution uw € V' of the
variational inequality

(4.5) (Au— fo—u) + d(v) —dp(u) >0 YveV.
The solution is unique, whenever A is strictly monotone.

We point out important specid cases of the above theorems, when in the case
of Theorem 4.1 the functional j and in the case of Theorem 4.2 the functional ¢
are the indicaor functionals of aconvex st K in V, i.e,

f
() o0 ={ % fo wgk,

with the set K closed with regpect to either the topology = (Theorem 4.1) or the
topology of V' (Theorem 4.2).
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In these cases, the solution u of the variational inequaity (4.5) clearly belongs
to the set K'; such sas K typicdly correpond to obgtades, unilaerd constraints
or certain boundary conditions.

For more information on datic variaiona inequalities, we refer to [3], [9], [14],
[17], [23], [24], [27], [28], [37], and the references which they provide.

4.2. An example

Let us condder the boundary value problem

@7) —div(A(|Vu|?)Vu) + F(z,u) = 0, in Q
' u = 0, on 0%,
where Q ¢ R¥ is a bounded domain with smooth boundary.
Let
¢ :R—=R, ¢(s) = A(s?)s.
Then, if ¢(s) = |s]P~ts, p > 1, problem (4.7) is the Sationary equation corre-
goonding to some of the problems indicated in the previous section, and is farly
wdl understood and a gresat variety of existence results are available. These results
are usually obtained using variationa methods, monotone operator methods or fixed
point and degree theory arguments in the Sobolev space Wol’p (©2). If, on the other
hand, we assume that ¢ is an odd nondecreasing function such that:

$(0)=0, ¢(t) >0, t >0,
Jim ¢(t) = oo,

and
¢ isright continuous,

then a Sobolev space setting for the problem is not gopropriate. The first general
existence reaults using the theory of monotone operators in Orlicz-Sobolev spaces
were obtained in [13] and in [19], [20]. Other recent work that puts the problem
into this framework is contained in the papers [10] and [18].

We assume that F': 2 x R — R is a Carathéodory function that satisfies certain
growth conditions to be specified later.

A naural way of formulating the boundary value problem is a variaional in-
equality formulation of the problem in a suitable Orlicz-Sobolev pace. In order to
do this we shdl have need of some facts aout Orlicz-Sobolev spaces which we
shall give now.

Let us put ®(t) = fot #(s)ds, t € R. Then & is a Young (or N-) function
(cf.[1], [25], [26]). Also, following these references, we denote by @ the conjugate
Young function of @, i.e,

D(t) = sup{ts — ®(s) : s € R},
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and by ®* the Sobolev conjugate of @, i.e.,

- td—1(s)ds
49 @) = [T
0 S N
provided that
o~ 1(s)d
4.9 / %ds = 00.
1 S N

Let & be a Young function. The Orlicz dass Ly := Lg(9) is the set of dl
(equivdence classes) of measurable functions v defined on 2 such that

/ & (|ju(z)|)dz < co.
Q

The Orlicz space L := La(2) isthelinear hull of Lg, i.e, theset of all messurable
functions « on 2 such that

/@(@)dm<oo, for ome k > 0.
Q

Then Lg is a Banach space when equipped with the norm (the Luxemburg norm)

||u||q>:inf{k>0:/<1>(m>dx 1},
L2\ k

or the equivaent norm (the Orlicz norm)

[|u|(a) = sup {‘A uvdx‘ tv € Ly, [)6(|U’)d$ 1}'

If ®; and ®, are two Young functions, one writes
Q. Do
provided there exig constants ¢y and k& such tha
P1(t)  Pa(kt), t > to,
and one says tha ®; and &, are equivdent whenever
®; Pyand Dy Py

If ®; and &, are equivdent, then they determine the same Orlicz space. Also, itis
the case that the imbedding
Ly, — Ls,,
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is continuous, whenever &; .

The dosure of L°° in Lg is denoted by Eg, which is a separable Banach space.
The Orlicz-Sobolev space WLy := WLy (2) isthe set of dl u € Lg such that
the distributiona derivatives d;u = §%, i =1,--- ,N, ae dsoin Lg. Thisisa
Banach space with respect to the norm

N
lullie = llullwiz, = lule + ) 18ule.
=1

It is known (cf. [25], [34]) that L¢ isthe dual space of E, i.e,
Ly = (Eg)*, and Ly = (Ea)*.

The space W'Es is defined similarly.
We denote by W} L the closure of C§°(£2) with respect to the weak* topology.
We also mention anotion of re ative growth of Young functi ons which will play
arolein our considerations (cf. [1], [25], [26]). A Young function @, is said to
grow essentially more slowly than another Young function ®,, abbreviated by

‘I)1<<@2,
if 21(%)
. t)
tlgglo o (kt) =0, Vk > 0.

Now, we formulate and extend (4.7) as a variational inequality in a quitable
Orlicz-Sobolev space.

Multiplying both Sdesof (4.7) by v € C§5°(2) andintegrati ng by parts (provided
these integrations may be performed), we see that the weak form of (4.7) is

4.10 / A(|Vul*)Vu - Vudz + / F(z,u)vdz =0.
Q Q

A naural choice of the space of test functions v is, of course, Wi Ls. However,
the mapping u — L(u), where

(L(w), v) = / A(Vu?)Vu - Vode, v € WL,
Q
is not necessarily defined on the whole space, we, hence, formulate (4.10) as a
variaiond inequality.

Consider the functiond

J:WiLe —RU {co}, J(u) ::ch(yw)dx.
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Since 52 (I¢]) = A(I¢]*)¢i i =1, ., N, we have, at least formally,

N
! = U2 ; UWO;V = U2 u - vax.
(J(u),v)—A;A(W 2) 8, udwda KZA(W 2V - Vod

Let us now assume that F' sdisfies the growth condition
(4.1) |F(z,5)|  B(z)+[¥(s)], s€R, z€Q,

where ¥ is a differentiable Young function such that W, is strictly convex,

(4.12) Py < 07,
and
(4.13) Be€ Ly,

We then may, for u € W'Lg, define k(u) € (W'Lg)* by
(), v) ::AF(ac,u)vdx, Vo € W' Lo,
The following lemma holds (see [27]):
Lemma 4.3. The mapping
k:W'Le — (W'Lg)*

is continuous.

In many situations, it is more convenient to work in an Orlicz space which lies
between Lg- and Ly, . We choose a Young function ¥ such thet

(4.14) Uy < U < O,

We can replace, because of this ordering, ®* by ¥ in the proof of Lemma 4.3 and
obtain:

Lemma 4.4. [fu € Ly, then ¢o(u) € Ly, and
(4.15) F(-,u) € Ly, C Ly.
Moreover,

1FC g ClIECwlg, 1B, + lldo(lul)liz,-
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We dso have:
Lemma 4.5. Ifu € Ly, then F(-,u) € L. The mapping
k:uw—k(u) = F(-,u)

is continuous and bounded from Ly to Ly.

Thus one may formulate (4.10) (a least formally) as the equation:
(4.16) J'(u) + k(u) = 0.

However, J is not differentiable in generd (J is not even defined on the whole
ace Wi Ly, Snce J assumes, in general, finite values only on aconvex, nondense
ubset of Wi Lg). On the other hand, since J is convex and lower semicontinuous
(as will be steted later), we replace (4.16) by the indusion

4.17) 0 € 8J(u) + k(u),

where 9.J is the subdifferentid of J; this in turn, is equivdent to the variational
inequdity

(4.18)

J() — J(u) + (k(u),v —u) >0, Vv € W} Lo
u e WOILq).

The advantage of this formulation is tha solutions of (4.17) are included in the
effective domain of the functiond J,

D7) = {uwe WiLo - J(w) = /Q<I>(|Vu|)dm < oo,

We therefore may consider (4.18) as the variationd inequality formulation of
(4.10) (and hence (4,7)).

We now proceed to discuss the existence of solutions of (4.18) and more general
inequaities We firg provide some properties of the functiond J, (see again [27]).

Lemma 4.6. The functional J is convex and lower semicontinuous on W' Lg.
If ® is strictly convex, then J is strictly convex on Wi L.

In what follows, we consider the following variational i nequdity associated with
the boundary value problem (4.18):

(4.19)

{ J(v) — J(u) + (k(u),v —u) >0, Vo € K
u€ K,
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where K is a convex subset of W Lg, closed with respect to the weak* topology
and 0 € K (in the case K = W Lo, (4.19) reduces to (4.18)).
We cong der the problem that & is independent of w:

(4.20) { J(v) = J(w) + (kyo —u) >0, Vo € K
uec K,
with k € Ly, (k,v) = [, kvdz, v € WiLa.
We may rewrite (4.20) as

{ J() + (k,v) > J(u) + (k,u), Yo € K
u € K,

and see that u solves (4.20) if and only if » isa minimizer of the problem

(4.21) 1r)rél[r(1[J(v) + (k,v)].

We will indicate why (4.21) has a solution.
To accomplish this we shall, in what follows, make the additional assumption:

e ® sitisfiesa A, condition a infinity (cf. [25]), which has as a consequence
that Lz = FE3.
It follows from the work in [19] that in the space W L a Poincaré inequdity

holds and consequently that ||| Vu|||e fumishesan equivaent norm for W} Lg. Thus
for u € W} Lo we shal henceforth use

Jull :== [[[Vul[[e.
We have the following lemma ([ 27]):

Lemma 4.7. The functional J is sequentially lower semicontinuous with respect
to the weak* topology of W3 Lo and is coercive in the sense that
J(w)

(4.22) W% 00, & [[ul| = oo.

From this lemma, and Theorem 4.1 we obtain the following result:

Theorem 4.8. For each k € L (C (WiLa)*), the set Uy, of solutions of
(4.21) (and thus of (4.20)) is nonempty, convex, and bounded in W} L, and thus
precompact in Ly. The solution set is a singleton, whenever ® is strictly convex.

In case k is dependent upon u, various assumptions may be imposed on & in
order tha Theorem 4.1 may be applied to deduce the existence of a solution of
(4.19). We remark that conditions have been givenin [10] guarantesing that k& = 5
for some functiond j.
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5. THE TRANS.ATION METHOD

The translaion method, introduced by Brézis and Lions ([5], [29]), was one of
the first techniques used to establish the existence of solutions to parabolic varia
tiond inequalities. This approach exploits the fact that the operator —d /dt generates
the semigroup of translations ([ 33], [38]), which leads naturally to a difference ap-
proximation scheme.

The resulting technique does not apply to problem (3.10) as stated in Section 3,
due to its requirement that «'(¢) belong to V* for ae. ¢ € (0,7"). To eschew this
gmoothness assumption, we introduce a wesk formulation of parabolic variational
inequdities in Section 5.1. We use the translation method to prove the existence of
weak solutions of (3.10) and then address the question of when such wesk sol utions
actudly solve (3.10).

5.1. Weak solutions of parabolic inequalities

If u € V solves problem (3.10), then we dealy have
(©'(t) = f(£), v(t) — u(t)) + a(u(t), v(t) — u(t))
(5.1) +o(v(t)) — p(u(t)) = (V') —u'(t),v(t) —u(t)),
VoeV, -].ue(,T).
It follows upon integrating inequality (5.1) from 0 to 7" and using (3.5),

T

/<w@—wmm@—mmﬁ

0 1 2 1 2
= S 1o(T) — w(T) I3 5 | 9(0) — u(0) I}

we obtain
T

by [ (@010~ u(t) +atu). o)~ u(v)) de
+®(v) —P®(u) >0, Yo eV with v(0) = uo,
where & : V — R U {oo} is the convex lower semicontinuous functional defined

by
T

(53) B(v) = / Su()dt for veV.
0

The effective domain D(®) of @ is defined as in (3.8).
The problem of finding v € V such that (5.2) holds is the weak version of
the parabolic variational inequality (3.10), and « is correspondingly referred to as
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aweak solution. A naturd question, then, is when a weak solution actudly solves
the strong formulation (3.10).

Before proceeding, we establish some notation and some ancillary facts For
each ¢ > 0, let S(¢) denote trandation by ¢, i.e.,

St)(u(s)) =u(s—t) for uwe,

from which we obtain the important family of operators
I —
(5.4 {TS(t), t> O} .

By virtue of the pivot space gructure (3.3) and the fact that {S(¢)} is a semigroup
of contractions, we find that the operators (5.4) are monotone:

59 =50, v)y = (0= S@), 02 0,

wherethe firg pairing is between V* and ¥V and the second is between #H and itself.
Letting ¢ — 0 in (5.5) shows that

(5.6) (W, v)p >0, Yo e VN D(d/dt).

In addition to these monotonicity results, the following compatibility of the
smigroup {S(¢)} with the effective domain of ® plays a key rolein the trandation
method. We require D(®) to be invariant under {S(t)}, i.e,

(5.7) S(t)(D(®)) c D(®) for t>0.

An important consequence of condition (5.7) is that, for each v € D(®), the se-
quence {v, } defined by

~1
(5.9 Vo = <I+ a%) v, for a >0,

beongsto D(®) N D(d/dt) and satisfies

(5.9 limv, =v, (V),v,—v)y O.
a—0

Findly, for t > 0, we define the mapping A; : V' — V* by

At:I_TS(t)—f—A,

with the corresponding form a,(-, -),

at(u,v) = (Ayu,v), for w,veV.
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5.2. Existence of weak solutions
We now prove the following result ([5]):

Theorem 5.1. Let the spaces V, H, V, and H be as described above. Suppose
that the pseudomonotone operator A : V. — V* and the convex lower semicontin-
uous functional ¢ : V. — RU {400}, with D(p) nonempty, satisfy the coercivity
condition
(5.10) TN CICRl) e C N

[v]l—o0 o]l

Jor some vy € D(¢). Further, suppose that the semigroup of translations {S(t)}
and D(®) satisfy the compatibility condition (5.7), where ® is defined by (5.3).
Then, for each f € V*, there exists u € D(®) such that

T
(5.1 /0 ((/(s) = F(5),0(s) = u(s)) + alu(s), v(s) — u(s))) ds
+®(v) — ®(u) >0, Yo € D(®) N D(d/dt) with v(0)= up.

Proof.  First, note that the operator A; inherits the pseudomonotonicity and
coercivity conditions of A, thanks to the monotonicity results verified in Section
5.1. Onefirst verifies that the following variationa inequdity

T
512 A (ar(ue(s), v(s) —ue(s)) — (F(5), v(s) —us(s))) ds

+®P(v) — D(ur) >0, Yo € V.
is an elliptic variaiond inequdity of the type discussed in Section 4 and hence that
the Browder—Minty theorem, Theorem 4.2, may be applied to deduce the existence

of a olution uv; € D(®P) of (5.12). Using the definition of A, we thus obtain
{ut} € D(®) such that

T I-5(t)
(5.13) A <Tt ut(s)—f(3)7v(3)—lbt(5)>ds

+ / aur(5), v(s) — us(s)) ds + B(v) — B(ug) > 0, Yo € V.
0

The variational inequdity (5.13) and the coercivity condition (3.9) show that
{ut} is bounded. Consequently we may assume that

Utéuelc and AutégEV*.

The convergence of {Aw;} follows from the boundedness of A.
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We now show that the weak limit « solves (5.2). Due to the monotonicity of
the operators (5.4), the inequdity

T1=50)
(5.14) /0 < t ”(5)_f(3)vv(8)—u,s(s)> ds

T

+A alus(5), v(s) — us(s)) ds + B(v) — Bug) > 0,Yv € V.

follows from (5.13). By adding fOT a(u(s), v(s) —u(s))ds to both sdes of (5.14)
and rearranging terms, we have

T
[ 2009 = 160006 - )y s
0 T
(5.15) + /0 a(ur(s), o(s) — u(s)) ds + D(v) — D(uy)
T
ZA a(u(s),ut(s) —u(s))ds Vv e V.

Hence,

T
limsupA a(ut(s),u(s) —u(s))ds

t—0

T
(5.16) /) (' (s) — f(s), v(s) —u(s)) ds

+®(v) — D(u), Yo e V.
For each a > 0, define uy asin (5.8). We may then substitute v = wu,, into
(5.16) to obtain

T
lim sup/0 a(ut(s), us(s) — u(s)) ds

t—0
T
> [ 5)+ 906) = £(3)0a(9) = u(s) s
0
+D(uq) — D(u),

because of (5.9). Letting o — 0, we deduce

T
(5.18) 1imsupA a(uy(s),us(s) —u(s)) ds 0.

t—0
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Hence, by the pseudomonotonicity of A, we obtain tha

T
/ a(u(s),u(s) —v(s))ds
0

T
lim ian a(ug(s), ue(s) —v(s))ds, Yve V.

t—0

(5.19)

Combining (5.19) with inequality (5.16), we find that

T
A a(u(s),u(s) —v(s))ds
T
A (W'(s) — f(s),v(s) — u(s)) ds + ®(v) — B(u), Vv eV,

which is precisdy the parabolic variaiond inequdity (5.2).

Since all of the examples considered in Section 2 satisfy the requirements of
Theorem 5.1, we have esteblished the existence of weak solutions to all of these
problems. Of course, one would like to know whether these weak solutions satisfy
the original grong formulation (3.10).

We refer to [5] where some such reaults are discussed.

6. RorHE S METHOD

Rothe's Method ([22], [31], [41]), also known as the method of lines or the
method of semidiscretization, is an extension of the backward Euler scheme for
parabolic equaions and is a powerful tool in both the theoreticd and numerical
analyses of evolution problems. To illustrate the method, we use it to solve the
sample parabolic variational inequdity (2.9) discussed in Section 2.1:

Problem: Find u € K with u(0) =uo € H and such tha
6.1) (W/'(t),v(t) —u®)) + a(u(t),v(t) —u(t)) >0, Vo €K, a.e. t €(0,T),
where
6.2) K={veVpz)>0 for zel},

and IC consists of those v € V such that v(t) € K for ae t € (0,7"), and a(-, ) is
the form

a(u,v):/Vu-Vvdac for w,veV.
Q

As mentioned earlier, this problem modd s diffusion in a domain with a semiper-
mesble boundary.



312 Matthew Rudd and Klaus Schmitt

The first gep of Rothe’s method is to partition the time interval [0,7] into n
egud subintervas [t;—1, t;], wherei = 1,2,... ,n, t; = ih, and h isthe mesh width

%. For eech i =1,2,..., we consider the problem of finding a solution u; € K
of
(6.3 <M,v—ui>+a(ui,v—ui)20, Vove K.
h
with

ug =ug(x), € Q.

Rewriting inequality (6.3) in the form

(ui—1,v(t) —ui(t)), Yv € K,

S|

(6.4) %(uz, v —u) +a(ui,v—u;) >
and observing that u;_; is known a each step, we see tha (6.3) is an dliptic
vaiational inequdity for the bilinear form

(6.5) u,v»—)l/uvdm—l—/VwVvdx
h Ja Q

defined on V' x V. For n large, the coefficient 1/h is large, 0 the form (6.5)
satisfies the coercivity condition (4.4) with vy = 0. Our basic existence reault (4.2)
therefore applies to the dliptic variational inequality (6.3) to guarantee a solution
U; S K.

We thus obtain n autonomous functions u; € K, i = 1,... ,n, that may be
combined to form Rothe s function, a proposed gpproximate solution of the origind
parabolic veriationd inequality:

t—ti1
h

Obsrve that Rothe's function w,(z,t) is linear in time over each subinterva
[ti_1,t;]; the time variable plays the role of a homotopy parameter connecting u;_;
atimet;_q1 tou; attimet;.

To show that u,(x,t) converges to a solution u(z,t) of (6.1) asn — oo,
we esablish some necessary estimates and then apply the Arzda—-Ascoli Theorem.
Thus, for j > 2, we tekev = u; in the inequality (6.3) fori = j—1 and v = u;_1
in the inequdity for ¢ = j to produce

(6.6) un(z,t) = ui—1(x) + (ui(x) — ui—1(x)), t€ [ti—1,ti].

(6.7) <_u—1 =2

h y Uj — Uj—1> + a(uj—1,u; —uj-1) >0,

Uj —Uje
(6.8) <JTJ1,UJ'_1 —Uj> +a(uj,uj—1 —uj) > 0.
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Adding inequdlities (6.7) and (6.8) yidds

1 1
©9) S lui— wj—1]|?+ |V (uj — w1 7 (i1 = tj-2, U5 — uj-1),
from which we obtain
(6.10) luj —ujq|® + 20|V (u; —uj1)|* Jlujo —ujo]|?, G >2

by applying the Cauchy-Schwarz inequality and using the dementary inequality
2ab  a®+ % Thenorm || - || being used here is the norm of H = L?(Q).
For the case j = 1, we choose v = ug in (6.3) to get

1
lun = wol* + [V (wn = uo) > [(Vuo, V(w1 = w))].
If the initial datum w, belongsto H2(Q2) N H} (), integration by parts reveals that

[((Vuo, V(ur —uo))|  [(Aug,ur —uo)| || Auol| [Ju1r — uol|,

90 that we have the basic bound

(6.11)

HU1—UO

h
Combining this estimate with inequdity (6.10) shows that

| A,

Ui — Uj—1

h

for some constant C' that is independent of ». Upon choosing v = u; in (6.3), a
gmilar uniform bound involving the norm of V' follows:

6.12) ‘

H C, i=1,2,...,n,

(6.13) |lwillvy C i=1,2,...,n.

These bounds provide a uniform esimate on the derivative u,, since

Uy — Uj—1

h

uﬁl =
Thus, (6.12) says that
(6.14) |u.|| C for te]0,T],
which immediately gives the equi continuity result

|un(t) —un(7)| Clt—7], for t,7€]0,T]
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for the family {u,}, n € N. The Arzda-Ascoli Theorem and the compact em-
bedding of H} () into L?(12) then guarantee that u,, converges to some function
u in the space C([0,T], L2(Q2)). In fact, u is Lipschitz continuous and therefore
differentiable almost everywherein [0, 7.

It remains to show that the limit « solves the parabolic variational inequdity
(6.1). To accomplish this we next define u, (t) to be the step function

(6.15) En(t) =u; for te [tz;l, ti].

It follows from (6.13) that {w,,} has asubsequence that convergesweakly in H{ (Q2),
which we rdabd as {u,}. Moreover, (6.12) yields the bound

_ C
[ (t) —un®)]
from which it follows that the weak limit of this sequence is u. By exploiting
the bound (6.14) in a similar fashion, we see that v;, converges weakly to «’ in
L*(0,T;L3(Q)).
In terms of w,, and u.,, the dliptic variational inequdity (6.3) is

(6.16) (1), 0(t) — (1)) + a(Tn(t), v(t) —Tn(t)) = 0, Vv €K,

which holds dmost everywherein [0, T]. For arbitrary points 71 and 7 in [0, 77,
integrating (6.16) from 71 to 72 gives

(6.17) / P (0),0() — T (8)) + a(@n(), v(t) —Tn(8)) dk > 0, Yo € K.

1

Taking liminf as n — oo in this inequdity, we have

(6.18) /TQ W' (t),v(t) —u®)) + a(u(t),v(t) —u(t))dt >0, Yo € K,

1

sncetw, — uandu, — win L*(0,T; L?(Q)) and the bilinear form a(-, -) is weakly
lower semicontinuous. As (6.18) holds for any 71 and 7», the parabalic variationd
inequdity (6.1) follows proving that u is the desired solution.

Rothe’s method for parabolic variational inequdities (3.10) may thus be sum-
marized as the following algorithm:

e For a given integer n, divide the time interva [0, 7] into equd intervals of
width h = L.,

e Foreachi = 1,...,n, obtan a solution w; € K of the elliptic variationd
inequality
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6.19) <M—f,v—ui>+a(ui,v—ui)20 Y € K,

h
where u;_; € K isknown.

e Construct Rothe' s function w,, (z,t) (6.6) and provetha {u, } convergesto a
solution « of (3.10) asn — oc.

The firg two steps of this procedure are simple, as long as there are existence
results for dliptic variationd inequalities involving the particular operator A and
the function spaces in question. The details of the third step, however, will depend
heavily on the particular problem under consderation. A general result that follows
from an gpplication of Rothe s method is the following ([22]):

Theorem 6.1. Let the spaces V, H, V, and H be as described before. Suppose
that the pseudomonotone operator A : V. — V* and the convex lower semicontin-
uous functional ¢ : V. — R U {+oo}, with D(¢p) nonempty, satisfy the coercivity
condition

(6.20) i M0V —w0) +(v) _

= 00
=00 o]l

for some vo € D(¢), and suppose that there exists zy € H satisfying

(6.21) (z0,v) + a(uo,v) + ¢(v) — P(uo) = (f(0),v —uo) Vv €V

for the initial datum ug € H. Finally, suppose that f : [0,T]|x H — H is Lipschitz.
Then there exists a unique u € L*>(0,T;V)NC([0,T]; H) with ' € L>(0,T; H)
such that

(W'(t) = f(t; ult),v(t) —u(t)) +alult),v(t) —u(t))

6.22) -
+o(v(t)) — d(u(t)) >0, Vo €V, a.e. t € (0,T)

and u(0) = ug € H.

We remark that Kacur, [22], actudly proves this theorem for the more general
case of a maxima monotone operaor A. Operators of this type aise in many
evolution problems and are much more general than the pseudomonotone operaors
considered here. For instance, maximal monotone operators, such as the funda
mental example provided by the subdifferential of a convex function, are generally
multivalued, whereas we have only considered single-valued operators from V' to
V*. Werefer to [6] for athorough treatment of such operators and their fundamental
role in evolution problems on Hilbert spaces.

Although this technique and the translation method of the previous section both
employ a difference approximation of «/, we emphasize that the two goproaches



316 Matthew Rudd and Klaus Schmitt

are quite different. Roth€'s method produces strong solutions u € C([0, T7; H),
wheress the translation method only provides weak solutions, whose regularity must
then be invedigated. In addition, the constructive nature of Rothe s method renders
it effective in numerical andysis and computation. For more on this aspect of the
method, as well as applications to a wide variety of evolution problems we refer
the reader to [22], [41].

7. THE PeNALTY METHOD

Pendization is another common gpproach to variaiond inequdities, see, eg.,
[9], [17], [23], [29], [32] for some detailed discussons. The underlying idea is to
replace the inequality under consideration with a sequence of equetions involving
apenalty operator P whose kemd is the closed, convex set D(¢), where ¢ is the
convex lower semicontinuous functiond in the inequdity. In the common case in
which ¢ is the indicator functiond of a constraint set K, for example, the approxi-
mating eguations thus penalize admissible functions for violaing the congraint that
K represents. One then shows that the sequence of solutions obtained converges to
a solution of the origind variaiond inequality.

For amplicity of exposition, we restrict attention to the obstacle problem for
the p—Laplacian that was discussed in Section 2.2. After showing how to use the
pendty method to solve this particular problem, we describe how to apply it to the
more generd situaion of problem (3.2).

We are thus interested in finding u € K with«(0) = up € L?(Q) and such tha
the parabolic variational inequdity

(7.2) (W — f,v—u) +a(u,v—u) >0, Vv € K,

holds, whereV = W, *(Q), V = L2(0, T; V), and (-, -) denotes the pairing between
V* and V, given explicitly by

T
(7.2 (u, v) :A A(u(t), o(f)) dedt, ue V', v eV,

where the integrand [, (u(t),v(t))dx is the action of u(t) € V* onw(t) € V. We
emphasize that this pairing is the same as that used in Section 5; this is necessary
because the pendty method for the parabolic variaional inequality (7.1) requires
the solution of parabolic equations. In the preceding sections, we used associated
dliptic problems to treat the parabolic variational inequdities of intered.

In addition, a(-, -) isthe form

T
73 a(wv) = A Kz Vu)P2Vult) - Vo(t) de dt, for uve Y,
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and
Ap: V= V"

is given by
(Apu,v) = a(u,v),

K isthe congraint set
(74) K ={v e Vv >y},

for agiven ¢ € Whr(Q) saisfyingy 0onT, and K isthesat of dl v € V with
v(t) € K forae. te (0,7).
For this particular problem, we define the gppropriae penalty operator P :V —
V* by
(7.5) (Pu)(t) :=—( —v(t)", veV, t €0,T)],
where () — v(t))™ denotes the postive part of v —v(t) €V, ie,
(¥ — (1)) == max{y —v(t),0}.

This truncation operation leaves V' = Wol’p(Q) invariant, so it follows from the
pivot space Sructure (3.3) that P maps V into V*.

Notetha thekernd of P is precisdy the constraint set K. In addition, we have
the following:

(Pu — Pv,u—v)

T
// T (@ — o)) (u(t) - v(t) dedt
0 Q

T
A /{UM} o(0)2 dz dt
T
- / / (6 —u(®) (ult) — o(t)) da dt
0 J{u<y v}
T
+A /{v<¢ u}(zb—v(t))(u(t)—v(t))da:dt

" [’T /{u,v>¢} 0- (u(t) —v(t)) da, dt,

which is nonnegative because the firg three integrands are clearly nonnegative and
the last integrd vanishes. Thus, P ismonotone. Since the sumof a pseudomonotone
operator and a monotone operator is pseudomonotone ([29], [39]), it follows that
A, + P is pseudomonotone for any positive scdar
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Let us choose vy € K, then, since Pvyg = 0, and P is monotone, we obtai n the
lower bound

a(v,v—9) + (Pv,v—vg)= a(v,v —vg) + (Pv — Puvg,v — vp)

(7.6) > a(v,v — vp)
> [o][? = |[vl| 7o, for e V.
Therefore, A, + P dso sdisfies the desred coercivity condition. Finally, asmple

calcul aion verifies that P is hemicontinuous.
For e > 0, we now consider the associated penalized problem

(7.7) u’—Apu+éPu: f in Qx(0,7),

which is understood in the sense of distributions. Since A,+ 1 P is pseudomonotone
and coercive, equation (7.7) has a solution u. in V N D(d/dt) ([(29]), in the sense
that ]
(ul + Apue — fov) = g(—Pug,w, YoeV,

where, as above, (-, -) denotes the pairing between V* and V. One can show that a
subsequence of the resulting set {u, } of solutions of (7.7) converges asc — 0 to a
solution of the parabolic variational inequdity (7.1).

This is accomplished by noting that the boundedness of the sequence {u.}
follows from the coercivity condition (3.9) and, as shownin ([29]), we can conclude

from the identity
(Pug,v) = e(ul + Apue,v), Yo € V,

that
(7.9 |Puc(t)||y-  Ce,

for some constant C' > 0. Consequently, we may extract a subsequence {u.,, } such
that e, — 0, ue,, — w inV for ome v € V, and Pu., — 0in V* asn — oc.
Since P is monotone, we have

(Pv — Pug, ,v —ue, ) >0, VoEV,
from which we obtain
(7.9 (Pv,v—u) >0, VoV

after passing to the limit asn — oco. For any w € V and s > 0, subdituting
v =wu+ sw into (7.9), yidds

(P(u+ sw), sw) > 0.
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Dividing by s and using the hemicontinuity of P we see tha
(Pu,w) >0, Yw eV,

from which it follows that Pu = 0. The wesk limit u therefore belongs to K.
Usng equation (7.7) and the monotonicity of P, we have

1
<uén +Apu5”7« _f7u - u5n> = €_<Pu _Pu5n>u _u5n> Z 07
which yidds

limsup(Apue,, e, —u) limsup(f — u. ,ue, —u) =0.
n—oo n—oo

We may thus use the pseudomonotonicity of A, to obtain

(710 (Apu,u—v) ligggf(Apusn,ugn —v)y (f—d,u—v), Ve,
which is exactly inequality (7.1). The function u obtained from this pendizaion
process therefore solves the parabolic obstade problem for the p—Lapladan and
u €V, v € V* hence, u € C([0,T]; H). Thus, the solution u has the same
regularity property as that obtained by Rothe' s method.

Due to the naure of the constraint st K in this particular example, it was
essy to identify the gppropriae penalty operator P (7.5). For the generd parabolic
variationd inequality (3.10), the penalty operator P may be defined by

(7.12) P = J(I - Pp)),

where J is the dudity map and Pp ) denotes proj ection onto the closed convex set
D(¢). This definition assures that P is monotone and hemicontinuous, properties
tha were essential in the argument above.

An aspect of the penalty method that we have not pursued is its effectiveness
in treating problems of regularity. Regularity results for the penadized eguations
may be exploited to deduce more detailed information about the solution u of the
vaiaiond inequdity of interest. We refer to ([17]) and the references therein for
gpecific rexults in this direction.

Findly, the penalty method may dso be applied to varidiond inegualities of
hyperbolic type. Mignot and Pud illudrate this agpproach in [ 30], and more general
discussions of this dass of variationd inequalities may be found in [5], [22], [29].
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