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SINGULARITIES AND SOME INVARIANTS OF SINGULARITIES
IN CONTACT 3-MANIFOLDS

Hung-Lin Chiu

Abstract. In this paper, we study the singularities in contact 3-Manifolds.
We give simple presentations for singularities, make an initial classification
of them and show that the space of all singularities has continuous moduli.
We also study the stabilities of singularities and obtain that a nondegenerate
singular point is isolated. Finally, by means of the transversality theorem
of Thom, we show that generically every immersion contains no degenerate
singular points. Thus the singular set of a closed surface is finite.

1. INTRODUCTION

A contact 3-manifold (M, ξ) is a 3-manifold equipped with a contact structure
ξ which is defined by a completely nonintegrable tangent plane field. The complete
nonintegrability of ξ can be expressed by the inequality θ ∧ dθ �= 0 for a 1-form θ

which defines the plane field ξ, that is, ξ = ker θ.
Let Σ be a surface and (M, ξ) be a contact 3-manifold. A differentiable map

F : Σ → M is an immersion if the rank of F at each point p of Σ is 2. An immersion
F is an embedding if F is a homeomorphism of Σ into M . A point p ∈ Σ is said to
be a singular point of an immersion F : Σ → M if F∗p(TΣp) = ξ

F (p)
(the contact

plane at the point F (p)), that is, the surface is tangent to the contact plane at F (p).
Denote SF ⊂ Σ as the set of all singular points of F . In this paper, we always do
not distinguish Σ from F (Σ) if F : Σ → M is an embedding. Outside the singular
set SF the contact structure ξ intersects TΣ along a line field which integrates to a
1-dimensional foliation on Σ with singularities at points SF . This singular foliation
on Σ or on F (Σ) is called the characteristic foliation of Σ. The reader can refer
to [3] for contact manifolds and the related subjects.
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It is well known from Darboux’s theorem that all contact 3-manifolds are locally
contact diffeomorphic. Therefore, for each p ∈ Σ, we can always regard F as an
immersion F : U → W from a neighborhood U ⊂ R

2 of p into a neighborhood
W ⊂ H1 of F (p). Here H1 is the Heisenberg group with the standard contact
form θ̂ = dz + xdy − ydx and the contact bundle ξ̂ = Kerθ̂. Also, suppose R

2 is
equipped with a coordinates (u, v), we can present F to be

F (u, v) =
(
x(u, v), y(u, v), z(u, v)

)
,

for three smooth functions x(u, v), y(u, v), z(u, v) on U . The immersion F is
associated with a vector field XF on U defined by

(1.1) XF = −θ̂(Fv)
∂

∂u
+ θ̂(Fu)

∂

∂v

It is easy to see that p ∈ U is a singular point of F if and only if XF (p) = 0, or,
equivalently, p is a root of the following equation system

θ̂(Fu) = zu + xyu − yxu = 0

θ̂(Fv) = zv + xyv − yxv = 0.
(1.2)

In this paper, inspired by [2], we define the concept of positions in contact 3-
manifolds (see Section 2). Intuitively a position is a description of how to display a
surface into a contact 3-manifold. It is defined by an equivalence class of immersion-
germs (see Definitions 2.1 and 2.2). A position which is defined by an immersion-
germ of F at some singular point is called a singularity. We wonder how many
kinds of singularities can be found. One of our main theorems in this paper is that
we classify singularities by a kind of value called the discriminant (see Example
2.11 in Section 2 and Example 3.2 in Section 3) and finally show that there are
continuous moduli in the space of all singularities. Actually, suppose p is a singular
point of F , we can associate a value I to the immersion-germ [F ]p by

I
(
[F ]p

)
=

det (XF )∗ (p)(
det (π ◦ F )∗ (p)

)2

=
det

(
Hessp(z) + q1 · Hessp(y)− q2 · Hessp(x)

)
(

det (π ◦ F )∗ (p)
)2

+ 1.

(1.3)

Here F (p) = q = (q1, q2, q3), π(x, y, z) = (x, y) is the projection from H1 onto
R

2 and
Hessp(f) =

(
fuu fuv

fvu fvv

)
(p)
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is the Hessian of f(u, v) at p. Note that we regard XF as a map from U into R
2

such that the differential (XF )∗ makes sense. We obtain our first main theorem:

Theorem 1.1. We have that I is an invariant of singularities. That is, if
[F1]p ∼ [F2]q then I

(
[F1]p

)
= I

(
[F2]q

)
.

Moreover, if I > 0 then the singularity is elliptic; if I < 0 then the singularity
is hyperbolic. Therefore, I = 0 means that the singularity is degenerate.

Since we can always find a singularity � such that I(�) = r for each real value
r ∈ R. We immediately have the following corollary:

Corollary 1.2. The space of all nondegenerate singularities has continuous
moduli.

This result says that surfaces at some singular points may define different sin-
gularities even though, topologically, they have the same characteristic foliations.

Remark 1.3. In general, if Σ is closed or with collared Legendrian boundary,
then the characteristic foliation (up to a diffeomorphism fixed at Σ) uniquely defines
the germ of a contact structure along Σ. The reader can refer to [4, 5].

On the other hand, it is also a really interesting problem if there still exists
continuous moduli in regular positions, that is, a position defined by an immersion
at a nonsingular point. We guess that there should be just one regular position
although we are not able to give a proof here.

Remark 1.4. The study of positions or singularities is itself an interesting
problem as well as we guess that it would help us deal with the global Lp estimates
for some subelliptic operators, because we may locally find a suitable normal form
for a boundary of a suitable domain in a pseudohermitian 3-manifold.

We also study the stabilities of singularities and obtain some interesting results
(see Section 4). The second main theorem is about the problem of the stabilities
of singularities. We can tell from Theorem 1.1 that a C2-perturbation will change
singularity from one into another one. That is, the type of singularity is not stable
under a C2-perturbation. However, we can weaken the concept of the stability and
finally obtain a weakly stable theorem in some sense. We show that a nondegenerate
singular point is stable under a C 2-perturbation. That is, after a small perturbation,
the singular point does not vanish, but simply shifts slightly (see Theorem 1.5).
Such a phenomenon is not available for a degenerate singular point. In the end
of Section 4 we give some examples to say that degenerate singular points behave
completely differently under perturbation.
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Let Map(Σ, M) be the space of all C∞ maps from Σ to M and Maps(Σ, M) be
the space Map(Σ, M) equipped with the C s-topology. Let Imm(Σ, M) ⊂Map(Σ, M)
be the set of all immersions. Clearly if Σ is compact, then Imm(Σ, M) is an open
subset of Maps(Σ, M), s ≥ 1. Also, we denote Imms(Σ, M) the space Imm(Σ, M)
equipped with the C s-topology.

Theorem 1.5. Suppose p ∈ Σ is a nondegenerate singular point of F ∈Imm 2

(Σ, M). Then for any neighborhood W of p, there is a neighborhood Ω ⊂Imm 2

(Σ, M) of the immersion F such that for any immersion F̃ ∈ Ω there is a unique
singular point p̃ ∈ W of F̃ which is also nondegenerate. A C 2-perturbation
preserves elliptic, or hyperbolic, singularities. That is they are stable in C 2 topology
in this sense.

Corollary 1.6. A nondegenerate singular point is isolated.

We say an immersion F : Σ → M is good if its singular set SF involves no
degenerate singular point. We immediately have the following corollary:

Corollary 1.7. Let F : Σ → M be a good immersion. Then the singular set
SF is discrete. Moreover if Σ is compact then SF is finite.

The last main theorem is Theorem 1.8 which shows that generically every im-
mersion is good, that is, it contains no degenerate singular point. From Section 4,
we see that degenerate singular points have more complicated behavior and hence
are hard to control. Fortunately, Theorem 1.8 says that generic immersions are
good. Therefore, intuitively, we can say that an immersion at a degenerate singular
point is not in a general position. This result together with Corollary 1.7 show that
generically the singular set SF of an immersion F is finite. In addition, from The-
orem 1.5, we see that both the numbers of elliptic singular points and hyperbolic
singular points of a good map are invariant under a small C2-perturbation. We
prove Theorem 1.8 by means of the transversality theorem of Thom.

Theorem 1.8. Suppose Σ is a closed surface. Then the set of all good
immersions F : Σ → M is an open and dense subset of Imm s(Σ, M), s > 2.

2. POSITIONS AND SINGULARITIES

The Heisenberg group is the Lie group H1 whose underlying manifold is R
3

with coordinates (x, y, z) and whose group law is given by

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + y1x2 − x1y2).



Singularities in Contact 3-Manifolds 1395

As a contact manifold, the Heisenberg group is equipped with the standard contact
form θ̂ = dz + xdy − ydx and the contact bundle ξ̂ = Kerθ̂. An immersion-germ
R

2 → H1 at a point p of R
2 is an equivalent class of immersions F : U → H 1

(each of which is defined on some neighborhood U of p, not necessarily the same
for each); here two immersions are regarded as equivalence if they coincide on some
neighborhood of p. Two immersions of the same class are said to have the same
germ at the point p. We denote by [F ]p the immersion-germ of F at p.

Definition 2.1. Two immersion-germs [F1]p , [F2]q are said to be equivalent if
there exist neighborhoods U1 and U2 of p and q, respectively such that the following
diagram commutes:

for some diffeomorphism h : U1 → U2, h(p) = q and some contact diffeomorphism
f : W1 → W2 from a neighborhood W1 of F1(U1) onto a neighborhood W2 of
F2(U2). We denote the equivalence relation by ∼.

Note that every left translation on H1 is a contact diffeomorphism.

Definition 2.2. A position is an equivalence class of an immersion-germ at a
point. If F is an immersion defined on a neighborhood of p, then we say the germ
of F at p defines a position (or simply say F defines a position at p). A position
defined by an immersion-germ at a singular point is said to be a singularity.

Suppose that F : U → H1 is an immersion. Here U is an open subset of R
2

with coordinates (u, v). F is associated with a vector field XF on U defined by

(2.2) XF = −θ̂(Fv)
∂

∂u
+ θ̂(Fu)

∂

∂v

It is easy to see that p ∈ U is a singular point of F if and only if XF (p) = 0.

Definition 2.3. A singular point p ∈ U of an immersion F is said to be
nondegenerate if the differential (XF )∗(p) of XF at p is invertible (here we regard
XF as a map from U ⊂ R

2 into R
2). In addition, an nondegenerate singular point

p is said to be elliptic if det(XF )∗(p) > 0 and hyperbolic if det(XF )∗(p) < 0.



1396 Hung-Lin Chiu

Remark 2.4. Let F : Σ → (M, θ) be an immersion from a surface into a
contact 3-manifold M with a contact form θ. Locally, for each p ∈ Σ, we can
choose a coordinates neighborhood (U ; u, v) of p and a coordinates neighborhood
(W ; x, y, z) of F (p) such that F (u, v) = (x(u, v), y(u, v), z(u, v)) is an immersion
from an open subset U ⊂ R

2 into W ⊂ H1 with the standard contact form θ̂ =
dz+xdy−ydx. Thus we can define nondegenerate, elliptic and hyperbolic singular
point like Definition 2.3. Proposition 2.8 shows that the definition is independent
of the choice of local coordinates.

In order to have Proposition 2.8, we need the following three Lemmas.

Lemma 2.5. Let F : U −→ H1 be an embedding and h : U −→ U a
diffeomorphism. Suppose F̃ = F ◦ h as shown in the following diagram. Then we
have that h∗XF̃

= (det h∗)XF .

Proof. Since that

h∗
∂

∂x
=

∂u

∂x

∂

∂u
+

∂v

∂x

∂

∂v

h∗
∂

∂y
=

∂u

∂y

∂

∂u
+

∂v

∂y

∂

∂v
,

and
F̃x = Fu

∂u

∂x
+ Fv

∂v

∂x

F̃y = Fu
∂u

∂y
+ Fv

∂v

∂y
,

we have

h∗XF̃
= −θ̂(F̃y)h∗

∂

∂x
+ θ̂(F̃x)h∗

∂

∂y

= −θ̂(F̃y)
(

∂u

∂x

∂

∂u
+

∂v

∂x

∂

∂v

)
+ θ̂(F̃x)

(
∂u

∂y

∂

∂u
+

∂v

∂y

∂

∂v

)
=

(
∂v

∂y

∂u

∂x
− ∂v

∂x

∂u

∂y

)(
−θ̂(Fv)

∂

∂u
+ θ̂(Fu)

∂

∂v

)
= det h∗ · XF .
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Lemma 2.6. Let F : U −→ W1 ⊆ H1 be an embedding and f : W1 −→ W2

a contact transformation such that f ∗θ̂ = ϕθ̂. Suppose F̃ = f ◦F as shown in the
following diagram. Then we have that X

F̃
= ϕXF .

Proof. We have

XF̃ = −θ̂(F̃v)
∂

∂u
+ θ̂(F̃u)

∂

∂v

= −θ̂(f∗Fv)
∂

∂u
+ θ̂(f∗Fu)

∂

∂v

= −f∗θ̂(Fv)
∂

∂u
+ f∗θ̂(Fu)

∂

∂v

= −ϕθ̂(Fv)
∂

∂u
+ ϕθ̂(Fu)

∂

∂v
= ϕ · XF .

Lemma 2.7. Let X be a vector field on U ⊂ R
2, h : U −→ U a diffeomor-

phism, and ϕ a function on U . Put Y = h∗X and Z = ϕX . If p is a singular
point of X , i.e., X(p) = 0, then we have

Y∗(q) = h∗(p) · X∗(p) · h∗(p)−1,

Z∗(p) = ϕ · X∗(p),

where q = h(p).

Proof. Since Y = h∗X means that Y (h(p)) = h∗(p)X(p) for each p ∈ U .
Therefore, by elementary calculus, we have Y∗(h(p))h∗(p) = h∗(p)X∗(p) at any
singular point p of X . Finally Z∗(p) = ϕ ·X∗(p) is obvious.

Proposition 2.8. Suppose that Fi, i = 1, 2 are two immersions defined on
neighborhoods of p and q, respectively. If [F1]p and [F2]q define the same posi-
tion, then, without lose of generality, we can assume that both F i, i = 1, 2 are
embeddings and satisfy the commutative diagram (2.1). We have

(2.3) XF2 =
ϕ

det h∗
· h∗XF1.
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Moreover if they define a singularity, we have

(2.4) (XF2)∗ (q) =
ϕ(p)

det h∗(p)
· h∗(p) · (XF1)∗ (p) · h∗(p)−1,

where q = h(p) and f ∗θ̂ = ϕθ̂.

Proof. This Proposition just follows from Lemmas 2.5, 2.6 and 2.7. Let
F = f ◦ F1 = F2 ◦ h. Then, by Lemma 2.5 and 2.6,

XF = ϕXF1

h∗XF = det h∗ ·XF2 .

This implies (2.3). If p is a singular point of F1, then (2.4) follows from (2.3) by
Lemma 2.7.

Denote by M2(R) the space of all 2 × 2 matrices over R. Let P : M2(R) −→
R be an invariant, homogeneous function of degree m, that is, it satisfies (i)
P (QAQ−1) = P (A) for all Q ∈ GL(2), and (ii) P (cA) = cmP (A) for some
m ∈ Z. Then we have

P ((XF2)∗(q)) = cmP ((XF1)∗(p)) ,

where c = ϕ(p)
deth∗(p)

. Therefore we immediately have

Proposition 2.9. If m is even and F defines a singularity at p, then the sign
of P

(
(XF )∗(p)

)
is an invariant of singularity.

Example 2.10. The following are invariant homogeneous polynomials of de-
grees as indicated:

(1) Tr(A), the trace of A, is of degree 1.
(2) det(A), the determinant of A, is of degree 2.
(3) Pc(A) = (Tr2 + c · det)(A) is of degree 2 for any number c ∈ R.

Example 2.11. Let F (x, y) = (x, y, z(x, y)) be an immersion into H1, defined
on a neighborhood of (0, 0) with z(x, y) = Ax2 + 2Bxy + Cy2 for some constant
A, B and C. We have

XF = −θ̂(Fy)
∂

∂x
+ θ̂(Fx)

∂

∂y

= ( (−2B − 1)x − 2Cy, 2Ax + (2B − 1)y ) .
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Clearly XF (0, 0) = 0. So (0, 0) is a singular point of F . What is the type of the
singularity defined by F at (0, 0)? It is up to the value of D = B2 −AC which is
called the discriminant of F . In fact, after a simple calculation, we have ( putting
S = (XF )∗(0, 0))

S =
( −2B − 1 −2C

2A 2B − 1

)
det(S) = 1 − 4(B2 − AC).

Clearly D = 1
4 means that F at (0, 0) defines a degenerate singularity. So

suppose D �= 1
4 we have

Lemma 2.12. Let Pc : M2(R) → R be the invariant homogeneous polynomial
of degree 2 defined by Pc = Tr2 + c · det for some c ∈ R. Then c = 4

4D−1 is the
only value such that Pc(S) = 0.

Proof. We have

0 = Pc(S)

= (Tr2 + c det)(S)
= 4 + c(1− 4D).

So c = 4
4D−1 .

For i = 1, 2, let Fi(x, y) = (x, y, zi(x, y)) be two immersions into H1, defined
on a neighborhood of (0, 0) with zi(x, y) = Aix

2 + 2Bixy + Ciy
2 for some con-

stants Ai, Bi and Ci. Suppose the respective discriminants are Di = B2
i − AiCi.

The following Proposition shows that different discriminants define different sin-
gularities.

Proposition 2.13. If D1 �= D2, then F1 and F2 define the different singularities
at (0, 0).

Proof. Putting Si = (XFi)∗(0, 0) and ci = 4
4Di−1 . D1 �= D2 means c1 �= c2.

We have by Lemma 2.12 that Pc1(S1) = 0 and Pc1(S2) �= 0. This shows that they
have different signs, and hence different singularities by Proposition 2.9.

3. PRESENTATION OF SINGULARITIES

Let F (x, y) = (x, y, z(x, y)) be an immersion into H1 with z(x, y) = a · x2 +
2b · xy + c · y2. Here a(x, y), b(x, y) and c(x, y) are three C∞ functions (each
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is defined on a neighborhood of (0, 0)). It is easy to see that (0, 0) is a singular
point of F , so F at (0, 0) defines a singularity. Conversely it is also true that every
singularity � has such a presentation.

Proposition 3.1. Suppose � is a singularity. Then there exist C ∞ functions
a(x, y), b(x, y) and c(x, y) defined on a neighborhood of (0, 0) such that � can
be defined by the immersion F (x, y) = (x, y, z(x, y)) at (0, 0). Here z(x, y) =
a · x2 + 2b · xy + c · y2.

Proof. We choose a arbitrary presentation of � and denote it by ϕ : U → H1.
After a translation and a left translation on R

2 and H1, respectively, we can assume
that (0, 0) ∈ U, ϕ(0, 0) = (0, 0, 0) and � is defined by ϕ at (0, 0).

Suppose ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), then x(0, 0) = y(0, 0) = z(0, 0) =
0. We have

Xϕ = −θ̂(ϕv)
∂

∂u
+ θ̂(ϕu)

∂

∂v

= ( −(zv + xyv − yxv), zu + xyu − yxu ) .
(3.1)

Since � is a singularity, so (0, 0) is a singular point of ϕ, that is, Xϕ(0, 0) = 0.
From (3.1) we can see that this is equivalent to that (0, 0) is a critical point of
z(u, v), i.e., dz(0, 0) = 0.

On the other hand, let π : H1 → R
2 be the projection from H1 to R

2 along
z-axis. Putting h = π ◦ ϕ, that is, h(u, v) = (x(u, v), y(u, v)). We will show that
(V, h) defines a coordinates chart for some neighborhood V ⊂ U of (0, 0) and by
the inverse function theorem this just follows from that h∗(0, 0) is invertible. In
fact, since ϕ is an immersion, we see that ϕu = (xu, yu, zu) and ϕv = (xv, yv, zv)
are independent at each point (u, v). However

ϕu(0, 0) = (xu, yu, zu)(0, 0) = (xu(0, 0), yu(0, 0), 0)

ϕv(0, 0) = (xv, yv, zv)(0, 0) = (xv(0, 0), yv(0, 0), 0).

Therefore
h∗(0, 0) =

(
xu yu

xv yv

)
(0, 0)

is invertible.
Let F = ϕ ◦ h−1. Then F can be expressed by a graph, that is,

F (x, y) = (x, y, z(x, y)),

and z(0, 0) = 0, dz(0, 0) = 0. By definition F at (0, 0) defines the same singularity
�.
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Finally that z(0, 0) = 0, dz(0, 0) = 0 imply that z(x, y) = a · x2 + 2b · xy +
c · y2 for some suitable smooth functions a(x, y), b(x, y) and c(x, y) defined on a
neighborhood of (0, 0).

Let z(x, y) = a ·x2 +2b ·xy +c ·y2. What is the type of the singularity defined
by F (x, y) = (x, y, z(x, y)) at (0, 0)? The answer to this question is given by the
following Example:

Example 3.2. Suppose F (x, y) = (x, y, z(x, y) = a · x2 + 2b · xy + c · y2).
From (3.1), we have

XF = ( −(zy + x), zx − y ) ,

and hence

(XF )∗(0, 0) =
( −2B − 1 −2C

2A 2B − 1

)
,

where A = a(0, 0), B = b(0, 0), C = c(0, 0). We also call the value D = B2−AC

the discriminant of F . Therefore, Putting z̃(x, y) = Ax2 + 2Bxy + Cy2, we see
that F (x, y) = (x, y, z(x, y)) at (0, 0) defined the same type of singularity as the
one defined by F̃ (x, y) = (x, y, z̃(x, y)) at (0, 0) as we can tell from Example 2.11.
Here the same type means that they have the same value of discriminant. Again
singularities belonging to different types are different. It is easy to see that

(3.2) det
(
Hess(0,0)(z)

)
= −4D,

here Hess(0,0)(z) is the Hessian of z(x, y) at (0, 0), and hence the type of the
singularity defined by F at (0, 0) is up to the determinant of the Hessian of z(x, y)
at (0, 0).

As a consequence, we have

Proposition 3.3. The space of all singularities has continuous moduli.

Proposition 3.4. We have that D < 1
4 (> 1

4 ) if and only if the singularity is
elliptic (hyperbolic). Therefore, D = 1

4 means that the singularity is degenerate.

Proof of Theorem 1.1. Let F (u, v) =
(
x(u, v), y(u, v), z(u, v)

)
be an immer-

sion from U ⊂ R
2 into W ⊂ H1 such that F (p) = q = (q1, q2, q3). Suppose

p = (p1, p2) is a singular point of F . After a translation by −(p1, p2) and a left
translation by−(q1, q2, q3) on R

2 and on H1, respectively, we obtain a new immer-
sion F̃ (ũ, ṽ)=

(
x̃(ũ, ṽ), ỹ(ũ, ṽ), z̃(ũ, ṽ)

)
such that F̃ (0, 0)=(0, 0, 0), that is,



1402 Hung-Lin Chiu

ũ = u − p1,

ṽ = v − p2;
x̃(ũ, ṽ) = x(u, v)− q1,

ỹ(ũ, ṽ) = y(u, v)− q2,

z̃(ũ, ṽ) = z(u, v) + q1y(u, v)− q2x(u, v)− q3.

(3.3)

We note that F at p and F̃ at (0, 0) define the same singularity. We compute, at p,

det (XF )∗ = det
(

zuu+xyuu−yxuu zuv+xyuv−yxuv +xvyu−xuyv

zvu+xyvu−yxvu+xuyv−xvyu zvv+xyvv−yxvv

)
= det

(
Hessp(z)+q1 ·Hessp(y)−q2 ·Hessp(x)

)
+

(
det (π ◦ F )∗ (p)

)2

(
3.4

)
= detHess(0,0)(z̃)+

(
det

(
π ◦ F̃

)
∗
(0, 0)

)2

= det
(

z̃ũũ z̃ũṽ

z̃ṽũ z̃ṽṽ

)
(0, 0)+

(
det

(
x̃ũ x̃ṽ

ỹũ ỹṽ

)
(0, 0)

)2

.

Where π : H1 → R
2 is the projection onto the first two variables.

On the other hand, from the argument of the proof of Proposition 3.1, let
h̃(ũ, ṽ) =

(
x̃(ũ, ṽ), ỹ(ũ, ṽ)

)
, that is, h̃ = π ◦ F̃ . Then F = F̃ ◦ h̃−1 can be

expressed by a graph F (x̃, ỹ) = (x̃, ỹ, z̃(x̃, ỹ) = ax̃2 + 2bx̃ỹ + cỹ2). By a direct
computation and note that dz̃(0, 0) = 0, we get that(

z̃x̃x̃ z̃x̃ỹ

z̃ỹx̃ z̃ỹỹ

)
(0, 0)

=
(

ũx̃ ṽx̃

ũỹ ṽỹ

)(
z̃ũũ z̃ũṽ

z̃ṽũ z̃ṽṽ

)(
ũx̃ ũỹ

ṽx̃ ṽỹ

)
(0, 0).

(3.5)

Combining (3.2), (3.4) and (3.5), we get,

det (XF )∗(p) =

[
det

(
z̃x̃x̃ z̃x̃ỹ

z̃ỹx̃ z̃ỹỹ

)
det

(
x̃ũ x̃ṽ

ỹũ ỹṽ

)2

+ det
(

x̃ũ x̃ṽ

ỹũ ỹṽ

)2
]

(0, 0)

= (−4D + 1)
(

det
(

x̃ũ x̃ṽ

ỹũ ỹṽ

)
(0, 0)

)2

,

(3.6)

where D = det
(

a(0, 0) b(0, 0)
b(0, 0) c(0, 0)

)
. Thus I = −4D + 1. This completes the

proof of Theorem 1.1 because Proposition 3.4.
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4. STABLE SINGULARITIES

Let U ⊂ R
2 be an open subset and Let ℵ1(U) be the space of all smooth vector

fields on U equipped with the C 1-topology. We have the following perturbation
Proposition

Proposition 4.1. Let X : U → R
2 be a smooth vector field and p ∈ U is a

singular point of X (i.e. X(p) = 0) such that X ∗(p) is invertible. Then for any
neighborhood W ⊂ U of p, there is a neighborhood Ω ⊂ ℵ 1(U) of X such that
for any vector field Y ∈ Ω there is a unique singular point p̃ ∈ W of Y which is
also nondegenerate, (i.e. Y∗(p̃)isinvertible).

Proof. This is a standard result. The reader can refer to Chapter 16 in [6].

As an application, let (M, θ) be a contact 3-manifold, we have

Proposition 4.2. Suppose p ∈ Σ is a nondegenerate singular point of F ∈
Imm2(Σ, M). Then for any neighborhood W of p, there is a neighborhood Ω ⊂Imm 2

(Σ, M) of the immersion F such that for any immersion F̃ ∈ Ω there is a unique
singular point p̃ ∈ W of F̃ which is also nondegenerate.

Proof. Let (U ; u, v) be a local coordinates of p. Let ℵ1(U) be the set of all
smooth vector fields on U with C1-topology. Then the mapping from Imm2(Σ, M)
to ℵ1(U) defined by F �−→ XF = −θ(Fv) ∂

∂u + θ(Fu) ∂
∂v is continuous. Therefore,

by Proposition 4.1, we have the Proposition.

We immediately have the following Corollary

Corollary 4.3. A nondegenerate singular point is isolated.

We can sharpen Proposition 4.2 as following:

Proposition 4.4. A C2-perturbation preserves elliptic, or hyperbolic, singu-
larities. That is they are stable in C 2 topology in this sense.

Proof. This is because that the determinant of (XF )∗ at some singular point
just involves derivatives of F with order up to 2.

The preservation of singularities is in the sense of Proposition 4.2. For example,
W, Ω can be chosen so that if p is elliptic then the unique singular point p̃ is also
elliptic.

Theorem 1.5 is just Proposition 4.2 plus Proposition 4.4.
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we now give some examples to say that degenerate singular points behave com-
pletely differently under perturbation.

Example 4.5. Let W ∈ R
2 be an open subset, we consider the embedding

F : W ↪→ H1 (with the standard contact form θ̂ = dz + xdy − ydx) which be
expressed by a graph:

F : (x, y) �−→ (x, y, z(x, y)).

F induces a vector field XF = −θ̂(Fy) ∂
∂x + θ̂(Fx) ∂

∂y . The set SF is just the set of
all zeros of the following system of equations:

θ̂(Fx) = zx − y = 0

θ̂(Fy) = zy + x = 0.
(4.1)

(1) Suppose (0, 0) ∈ W and F (x, y) = (x, y, z = x2 + y2). Then (0, 0) is a
nondegenerate singular point of F . Now let us consider a small perturbation
F ε(x, y) = (x, y, zε(x, y) = x2 + y2 + εx). It is easy to show that SF ε ={
(−2ε

5 , ε
5 )

}
and also (−2ε

5 , ε
5 ) is nondegenerate. This means that, under the

perturbation F ε, the singular point (0, 0) of F does not vanish, but simply
shifts slightly to (−2ε

5 , ε
5 ).

The degenerate singular point of the embedding F (x, y) = (x, y, z(x, y) =
x2y − xy) behaves completely differently under some perturbation.

(2) Let zε(x, y) = x2y − xy + εy. The system (4.1) is

(2x− 1)y = y,

x2 + ε = 0.

We see that
(i) If ε = 0, then (0, 0) is the only singular point and it is degenerate.

(ii) If ε > 0, there is no singular point.
(iii) If ε < 0 (and |ε| is small enough), then SF ε =

{
(±√|ε|, 0)

}
, and each

singular point is nondegenerate. In addition, (
√|ε|, 0) is elliptic and

(−√|ε|, 0) is hyperbolic.

We see that under these perturbations the degenerate singular point either
vanishes (for ε > 0) or decomposes into two nondegenerate singular points at
a distance of order

√|ε| from it (for ε < 0 small enough). Thus the singular
point of F 0(x, y) = (x, y, x2y − xy) is unstable.

(3) Finally suppose W ⊂ R
2 is a disc with radius small enough, consider the

embeddings F ε(x, y) = (x, y, zε = sinxy + εx). Then if ε = 0, SF 0 =
{(0, y)|y ∈ R} ∩ W which is a line segment, but if ε �= 0, then there is no
any singular point on W . So these singular points are not stable. Note that
all the singular points of F 0 are degenerate.
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5. GENERIC IMMERSIONS

In this Section, let Σ be a surface and (M, θ) be a contact 3-manifold. We will
use the transversality theorem of Thom to show that almost all immersions do not
have any degenerate singular point. First we give a simple review on the theorem
of Thom. The reader can refer to [1, 2, 7].

Definition 5.1. Two linear subspaces of a finite-dimensional linear space are
said to be transversal if their sum is the whole space.

Definition 5.2. Let f : A → B be a C∞ map of a manifold A to a manifold
B, containing a submanifold C. The map f is said to be transversal to C at the
point a of A if either f(a) does not belong to C or the image of the tangent space
to A at a under the derivative f∗(a) is transversal to the tangent space to C:

f∗(a)TaA + Tf(a)C = Tf(a)B.

The map f is said to be transversal to C if it is transversal to C at every point of
A.

Let Jk(A, B) be the space of k-jets of maps from A to B. It is a differentiable
manifold. Locally the manifold Jk(A, B) may be represented as the space of Taylor
polynomials of degree k.

Theorem 5.3. [the transversality theorem of Thom]. Let Σ be a closed surface
and C a closed submanifold of the space of 2-jets J 2(Σ, M). Then the set of maps
F : Σ → M , whose 2-jet extensions are transversal to C, is an open and dense
subset of Maps(Σ, M), s > 2.

Definition 5.4. A good immersion is an immersion which does not have any
degenerate singular point.

The following Corollary says that generically an immersion is good.

Theorem 5.5. Suppose Σ is a closed surface. Then the set of all good
immersions F : Σ → M is an open and dense subset of Imm s(Σ, M), s > 2.

Proof. Consider the jet space J 2(Σ, M). We first define a closed submani-
fold C of J2(Σ, M) as following: Choose a local coordinates (u, v) on Σ and a
local coordinates (x, y, z) on M in the neighborhoods of points p and q = F (p),
respectively. In addition, we assume that the coordinates (x, y, z) is chosen such
that θ = dz + xdy − ydx. The map F is given locally by

F (u, v) = (x(u, v), y(u, v), z(u, v)).
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The 2-jet is determined by the following numbers:

{u, v} ; {x, y, z} ; {xu, xv, yu, yv, zu, zv} ;
{xuu, xuv = xvu, xvv, yuu, yuv = yvu, yvv, zuu, zuv = zvu, zvv} .

These numbers give a local coordinates in the space J2(Σ, M). Let C be the closed
submanifold locally defined by the following equations

f̃ = zu + xyu − yxu = 0
g̃ = zv + xyv − yxv = 0.

(5.1)

Here f̃ , g̃ are two smooth functions defined on open subset of J2(Σ, M) and
df̃ ∧ dg̃ �= 0. This definition is independent of the choice of local coordinates
(u, v); (x, y, z), so it defines a closed submanifold of J2(Σ, M).

Next the 2-jet extension j2F of a map F is a map from Σ to J2(Σ, M),
associating to each point p of Σ the 2-jet of F at that point. That is, j2F is the
map locally is defined by

(u, v) →(u, v, F (u,v), Fu(u,v), Fv(u,v), Fuu(u,v), Fuv(u,v)=Fvu(u,v), Fvv(u,v)),

where F (u, v) = (x(u, v), y(u, v), z(u, v)). By definition j2F is transversal to C
if, at each point (u, v), either

(i) (j2F )(u, v) does not belong to C, or

(ii)
{

(j2F )u (u, v), (j2F )v (u, v), T(j2F ) (u,v) C
}

generates the tangent space
T(j2F )(u,v)J

2(Σ, M) at (j2F )(u, v). By the following Lemma, this just means
that F is good, provided F is an immersion. Therefore this Theorem follows
from Theorem 5.3 and the openness of Imm(Σ, M) in Maps(Σ, M).

Lemma 5.6. Suppose that F : Σ → M is an immersion. Then j 2F is
transversal to C if and only if F is good.

Proof. We will show that

(i) j2F (u, v) does not belong to C if and only if (u, v) is a nonsingular point,
and

(ii)
{

(j2F )u (u, v), (j2F )v (u, v), T(j2F ) (u,v) C
}

generates the tangent space
T(j2F )(u,v)J

2(Σ, M) if and only if (u, v) is a nondegenerate singular point.
By the definition of C (see (5.1)), (i) is obvious. For (ii), since df̃∧dg̃ �= 0 and
df̃ ∧ dg̃ = 0 on C, we have that

{
(j2F )u(u, v), (j2F )v(u, v), T(j2F )(u,v)C

}
generates the tangent space T(j2F )(u,v)J

2(Σ, M) if and only if
〈
df̃ ∧ dg̃ ,

(j2F )u(u, v) ∧ (j2F )v(u, v)
〉 �= 0. Here <, > is a pairing.
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On the other hand, let ∇ be the standard gradient on the coordinates neighbor-
hood in J2(Σ, M). Then we have

∇f̃ = (0, 0; yu,−xu, 0;−y, 0, x, 0, 1, 0; 0, · · · , 0)
∇g̃ = (0, 0; yv,−xv, 0; 0,−y, 0, x, 0, 1; 0, · · · , 0).

So

(j2F )u · ∇f̃ = −yxuu + xyuu + zuu

(j2F )u · ∇g̃ = xuyv − xvyu − yxvu + xyvu + zvu

(j2F )v · ∇f̃ = xvyu − yvxu − yxuv + xyuv + zuv

(j2F )v · ∇g̃ = −yxvv + xyvv + zvv.

Therefore,

0 �=
〈
df̃ ∧ dg̃ , (j2F )u(u, v)∧ (j2F )v(u, v)

〉
=

∣∣∣∣ df̃((j2F )u) dg̃((j2F )u)
df̃((j2F )v) dg̃((j2F )v)

∣∣∣∣ (u, v)

=
∣∣∣∣ (j2F )u · ∇f̃ (j2F )u · ∇g̃

(j2F )v · ∇f̃ (j2F )v · ∇g̃

∣∣∣∣ (u, v)

=(zuu+xyuu−yxuu)(zvv+xyvv−yxvv)−(zuv+xyuv−yxuv)2+(xuyv−xvyu)2

=
∣∣∣∣ fu fv

gu gv

∣∣∣∣ (u, v),

where f = θ(Fu) = zu + xyu − yxu, g = θ(Fv) = zv + xyv − yxv . This means
that (u, v) is nondegenerate.

The following Theorem says that generically the singular set of an immersion
from a compact surface is finite.

Theorem 5.7. Let F : Σ → M be a good immersion. Then the singular set
SF is discrete. Moreover if Σ is compact then SF is finite.
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