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ASYMPTOTIC REPRESENTATIONS OF THE PROPORTION
OF THE SAMPLE BELOW THE SAMPLE MEAN

FOR φ-MIXING RANDOM VARIABLES

Cheun-Der Lea

Abstract. Let {Xi; −∞ < i < ∞} be a stationary sequence of random
variables. Let Fn(x) be the corresponding empirical distribution function of
X1, . . . , Xn, and let X̄ =

∑n
i=1 Xi/n be the sample mean. In this paper, we

derive the asymptotic almost sure representation, the central limit theorem,
a law of iterated logarithm, a Wiener precess embedding and an invariant
principle for Fn(X̄) under different φ–mixing conditions.

1. INTRODUCTION

Let {Xi; −∞ < i < ∞} be a stationary sequence of random variables defined
on a probability space (Ω,F , P). Let Mk−∞ and M∞

k+n be respectively the σ–fields
generated by {Xi; i ≤ k} and {Xi; i ≥ k+n}. We say that {Xi;−∞ < i < ∞} is
φ-mixing if A ∈ Mk−∞ and B ∈ M∞

k+n, for all k (−∞ < k < ∞) and n (≥ 1),

(1) |P(B|A)− P(B)| ≤ φ(n), φ(n) ≥ 0 for all n ≥ 1

where φ(n) ↓ in n and limn→∞ φ(n) = 0.
Throughout this work, {Xi; −∞ < i < ∞} is a stationary sequence of φ–

mixing random variables from a distribution function F. For n ≥ 1, let Fn(x) =
n−1

∑n
i=1 c(x − Xi) be the empirical distribution function based on X1, . . . , Xn,

where c(u) = 1 if u ≥ 0 and c(u) = 0 otherwise, and let X̄ =
∑n

i=1 Xi/n be the
sample mean. The simplest test of the null hypothesis (H0) that n observations are
from a distribution which is symmetric about a specified value ξ is the sign test
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which is defined Fn(ξ) = n−1
∑n

i=1 c(ξ−Xi). nFn(ξ) has a binomial distribution
with parameter n and θ = F(ξ), and EXi = ξ under the null hypothesis. A practical
difficulty in using the sign test is that the assumed center ξ must be known. In testing
the null hypothesis (H′

0) that the observations are from a distribution symmetric
about a unknown center ξ, one can estimate ξ by the sample mean X̄ and use
a modified sign test Fn(X̄) = n−1

∑n
i=1 c(X̄ − Xi). The statistic Tn = Fn(X̄)

represents the proportion of the sample below the sample mean which is often used
in estimating a functional θ = F(ξ) where ξ = E(X1) if both F and ξ are unknown
or in testing F is symmetric about a unknown location ξ against certain classes of
alternatives. Related work for which such statistics are appropriate may be found,
for example, in Blomqvist (1950), David (1962), Mustafi (1968), Gastwirth (1971),
Ghosh (1971), Flinger and Wolfe (1979) and Ralescu and Puri (1984). For sequence
of independent and identically distributed random variables (i.i.d.r.v.), Ghosh (1971)
obtained the following result :

Assume that 0 < Var(X1) < ∞ and 0 < F′(ξ) < ∞. Then

(2) Fn(X̄) = Fn(ξ) + (X̄ − ξ)F′(ξ) + Rn

where Rn = op(n− 1
2 ), and the limiting distribution of n− 1

2 [Fn(X̄)−F(ξ)] is normal
with mean zero and variance Var[c(ξ−X1)+(X1−ξ)F′(ξ)] > 0. Ralescu and Puri
(1984) established, under stronger assumptions, the improved stronger rate, namely
O(n− 3

4 (logn)
1
2 )(log logn)

1
4 ), and the law of iterated logarithm. The object of the

present investigation is to extend these results for φ–mixing processes which include
independent, m–dependent, autoregressive and moving average processes as special
cases.

In what follows we make the following assumptions in different situations on
the mixing coefficient φ(n).

∞∑
n=1

[φ(n)]
1
2 < ∞,(3)

φ(n) = O(n−5) as n → ∞,(4)

and for some t > 0
∞∑

n=1

etnφ(n) < ∞.(5)

For n ≥ 1, let gn be a real-valued Borel measurable function on the real line.
Consider the double sequence of random variables

(6) Yni = gn(Xi), i = 1, . . . , n; P{Yni = 1} = 1 − P{Yni = 0} = pn,
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where 0 < pn < 1. Define

(7) Sn = Yn1 + · · ·+ Ynn.

Then we have the following.

Lemma 1.1. If 0 < pn ≤ kn− 3
8 logn (k > 0), then under (4), for every s > 0,

and C > 0, there exists positive n0(s) and Cs such that n ≥ n0(s),

(8) P{Sn − npn > Cn
3
8 logn} ≤ Csn

−s.

Proof. By the Chebyshev inequality, for every h > 0

(9)

P{Sn − npn > Cn
3
8 log n}

= P{exp(−hnpn − hCn
3
8 logn + hSn) > 1}

≤ exp(−hnpn − hCn
3
8 log n)E{exp(hSn)}.

Choose kn = [n
1
8 (logn)−

1
6 ], where [x] denotes the largest integer ≤ x. Let

(10) S(j)
n = Ynj + Yn,j+kn + · · ·+ Y

n,j+m
(j)
n kn

, 1 ≤ j ≤ kn

where m
(j)
n is the largest integer for which j +m

(j)
n kn ≤ n. Then Sn can be written

as

(11) Sn = S(1)
n + · · ·+ S(kn)

n .

We note that

(12) m(j)
n ≤ m(1)

n and n − kn ≤ m(1)
n kn ≤ n − 1, j = 1, . . . , kn.

Then, by the Jensen inequality and the stationarity of {Yi; −∞ < i < ∞}, we have
for every h > 0

(13)

E {exp (hSn)} = E
{
exp

(
h
∑kn

j=1 S(j)
n

)}
≤ E

{
k−1

n

∑kn
j=1 exp

(
hS(j)

n

)}kn

≤ k−1
n

∑kn
j=1 E

{
exp

(
hknS(j)

n

)}
≤ E

{
exp

(
hknS(1)

n

)}
.
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Now, for 0 ≤ j ≤ m
(1)
n , by an elementary computation,

(14)
E
{
exp (hknYn,1+jkn) |M1+(j−1)kn

−∞
}

≤ 1 + [exp (hkn) − 1] [pn + φ(kn)] .

Hence

(15)

E
{

exp
(
hknS(1)

n

)}
= E

{
E
{
· · ·
{

E
{

exp
(
hknS(1)

n

)
|M1+(m(1)

n −1)kn

−∞
}

|

M1+(m(1)
n −2)kn

−∞
}

| · · · |M1−∞
}}

≤ {1 + [pn + φ(kn)] [exp(hkn) − 1]}m(1)
n +1

≤ exp
{(

m
(1)
n + 1

)
[hpnkn + hφ(kn)kn

+1
2pn (1 − pn)h2k2

n + O
(
pnh3k3

n

)
]
}

≤ exp
{
nhpn + nhφ(kn) + npnh2kn + O

(
npnh3k2

n

)}
.

Choose h = 2sn− 3
8 /C. Then nhφ(kn) = O((logn)

5
6 ) as n → ∞. From (9), (13)

and (15), it follows that there exists positive n0(s) and Cs such that n ≥ n0(s)

(16)
P
{
Sn − npn > Cn

3
8 logn

}
≤ exp(−2s logn + O((logn)

5
6 ))

≤ Csn
−s.

This completes the proof.

Lemma 1.2. If 0 < pn < kn− 1
2 (log logn) (k > 0), then under (5) (t ≥ 3

4 ), for
every s > 0 and C > 0, there exists positive n0(s) and Cs such that n ≥ n0(s),

(17) P
{
Sn − npn ≥ Cn

1
4 (logn)

3
2

}
≤ Csn

−s.

Proof. On choosing kn = [logn] + 1, h = 2s
C n− 1

4 (logn)−
1
2 , the proof follows

on the same line as in Lemma 1.1.
Applying Lemma 1.1 and Lemma 1.2 , we can prove the following two propo-

sitions.

Proposition 1.3. Let {an} be a sequence of positive constants such that
an ∼ kn− 3

8 logn, as n → ∞, for some constant k. Then under (4),

(18)
sup|x−ξ|≤an

| [Fn(x)− F(x)]− [Fn(ξ)− F(ξ)]|

= O(n− 5
8 logn) a.s. as n → ∞
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Proof. Let {bn} be a sequence of positive integers such that bn ∼ n
1
4 as

n → ∞. For n ≥ 1, let

(19) ηr,n = ξ + ranb−1
n for r = 0,±1, . . . , bn.

For x ∈ [ξ − an, ξ + an], there exists an integer r, −bn ≤ r ≤ bn − 1, such that
x ∈ [ηr,n, ηr+1,n]. Since Fn and F are no-decreasing in x, it is clear that

(20)

[Fn(x)− F(x)]− [Fn(ξ)− F(ξ)]

≤ [Fn(ηr+1,n) − Fn(ξ)]− [F(ηr,n) −F(ξ)]

= [Fn(ηr+1,n)−Fn(ξ)]−[F(ηr+1,n)−F(ξ)]

+[F(ηr+1,n) − F(ηr,n)].

Similarly

(21)

[Fn(x) − F(x)]− [Fn(ξ) − F(ξ)]

≥ [Fn(ηr,n) − Fn(ξ)]− [F(ηr,n)− F(ξ)]

−[F(ηr+1,n) − F(ηr,n)].

In (20) and (21), since F is sufficiently smooth in a fixed neighborhood of ξ, it
follows that

(22)
F(ηr+1,n) − F(ηr,n) = O(anb−1

n )

= O(n− 5
8 logn) as n → ∞.

From (20), (21) and (22), it follows that

(23)

sup
|x−ξ|≤an

| [Fn(x) − F(x)]− [Fn(ξ)− F(ξ)] |
≤ max

|r|≤bn

| [Fn(ηr,n)− Fn(ξ)]− [F(ηr,n) − F(ξ)] |

+O(n− 5
8 logn) as n → ∞.

It will therefore suffice to show that

(24)
∞∑
n=1

P
{
max
|r|≤bn

|[Fn(ηr,n)−Fn(ξ)]−[F(ηr,n)−F(ξ)]| > n−
5
8 logn

}
<∞.

To prove this, we remark that for 1 ≤ r ≤ bn

(25) [Fn(ηr,n − Fn(ξ)]− [F(ηr,n) − F(ξ)] =
1
n

n∑
i=1

Yn,i − pn
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where Yn,i = c(ηr,n − Xi) − c(ξ − Xi), i = 1, . . . , n, pn = F(ηr,n) − F(ξ) for
which

(26) P{Yn,i = 1} = 1 − P{Yn,i = 0} = pn and 0 < pn < n− 3
8 logn.

Hence, by (26) and Lemma 1.1, we have on choosing s = 2 that there exists positive
n0 and C such that n ≥ n0

(27) P{|[Fn(ηr,n) − F(ηr,n)]− [Fn(ξ) − F(ξ)]| > n− 5
8 logn} ≤ Cn−2.

Remark that from the proof of Lemma 1.1, it is clear that n0 and C do not depend
on r. The same inequality also holds for −bn ≤ r ≤ 1. Hence, for n ≥ n0

(28) P
{

max
|r|≤bn

| [Fn(ηr,n) − F(ηr,n]−[Fn(ξ) − F(ξ)] | > n− 5
8 log n

}
≤ Cn− 7

4 .

(24) follows from (28).

Proposition 1.4. Let {an} be a sequence of positive constants such that
an ∼ kn− 1

2 (log log n)
1
2 , as n → ∞, for some constant k. Then under (3) (t ≥ 3

4 ),

(29)
sup|x−ξ|≤an

| [Fn(x) − F(x)]− [Fn(ξ) − F(ξ)] |

= O(n− 3
4 (logn)

3
2 ) a.s. as n → ∞.

Proof. Let bn ∼ n
1
4 (log logn)/(logn)

3
2 and ηr,n = ξ + ranb−1

n . By using
Lemma 1.2, the proof follows along the same line as in Proposition 1.3.

Proposition 1.3 and Proposition 1.4 are parallel to the result of Bahadur (1966).
Using the method of Bahadur, we can derive the asymptotic normality for sample
quantiles under mixing conditions.

The following lemma is due to Heyde and Scott (1973).

Lemma 1.5. Let {Yi; −∞ < i < ∞} be φ–mixing sequence of random
variables with EY1 = 0 and mixing coefficient φ(n). Then, under (3), there exists
a standard Wiener process {W(t); 0 ≤ t < ∞} such that

n∑
i=1

Yi

σ1
= W(n) + o((n log logn)

1
2 ) a.s. as n → ∞(30)

provided that σ2
1 > 0, where σ2

1 = EY2
1 + 2

∑∞
k=2 E(Y1Yk).
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2. RESULTS AND PROOFS

It is assumed that F(x) is absolutely continuous in some neighborhood of ξ,
and has a continuous density function f(x), such that 0 < f(ξ) < ∞, f ′(ξ) exists
and EX2

1 < ∞. For convenience, we let Tn = Fn(X̄) and θ = F(ξ). Our main
theorems are the following.

Theorem 2.1. Under (4),

(31) Tn − θ = n−1
n∑

i=1

Zi + O(n− 5
8 log n) a.s. as n → ∞

where Zi = c(ξ − Xi) − θ + (Xi − ξ)f(ξ),, i = 1, . . . , n.

Proof. By Lemma 1.5, there exists a standard Wiener process {W(t); 0 ≤ t <
∞} such that

(32)
∑n

i=1(Xi − ξ)
σ1

= W(n) + o((n log logn)
1
2 ) a.s. as n → ∞.

From (32) and the classical law of iterated logarithm, it follows that

(33) |X̄ − ξ| ≤ 2σ1n
− 1

2 (log logn)
1
2 ≤ kn− 2

8 log n a.s. as n → ∞.

Now, using Proposition 1.3, we have

(34) Fn(X̄) = F(X̄) + Fn(ξ) − F(ξ) + O(n− 5
8 log n) a.s. as n → ∞.

By Theorem C page 45 in Serfling (1980) and (33),

(35) F(X̄) = F(ξ) + (X̄ − ξ)f(ξ) + O(n−1 log logn) a.s. as n → ∞.

From (34) and (35), we have

(36) Fn(X̄) = F(ξ) + (X̄ − ξ)f(ξ) + Fn(ξ) − F(ξ) + O(n− 5
8 log n)

and (31) follows.

Theorem 2.2. Under (5), (t ≥ 3
4 ),

(37) Tn − θ = n−1
n∑

i=1

Zi + O(n− 3
4 (logn)

3
2 ) a.s. as n → ∞

where Zi is defined as in Theorem 2.1

Proof. By applying Proposition 1.4, the proof follows on the same line as in
Theorem 2.1.
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2. REMARKS AND APPLICATIONS

Define

(38) σ2 = E{Z2
1} + 2

∞∑
k=2

E{Z1Zk}

where Zi is defined as in Theorem 2.1. We remark that EX2
1 < ∞ implies EZ2

1 < ∞.
By Lemma 1 on page 170 in Billingsley (1968),

(39) E{Z1Zk+1} ≤ 2φ(k)
1
2 E{Z2

1}.
Therefore, under (3), σ2 < ∞.

Theorem 3.1. Under (4),

(40)
√

n

(
Tn − θ

σ

)
D−→ N(0, 1) as n → ∞,

provided σ2 > 0, where σ2 is defined as in (38).

Proof. By Theorem 2.1,

(41)
√

n

(
Tn − θ

σ

)
=

n∑
i=1

Zi

√
nσ

+ O
(
n− 1

8 logn
)

a.s. as n → ∞.

(40) is a consequence of (49) and Lemma 1.5.
In the context of the law of iterated logarithm, Ralescu and Puri (1984), under

i.i.d. case, has shown that Rn = O(n− 3
4 (logn)

1
2 · ·(log logn)

1
4 ) a.s. as n → ∞.

Since we do not need such a strong rate on Rn and (31), (32) suffice our purpose.

Theorem 3.2. Under (4), there exists a standard Wiener Process {W(t); 0 ≤
t < ∞} such that

(42) n

(
Tn − θ

σ

)
= W(n) + o(n

1
2 (log logn)

1
2 ) a.s. as n → ∞

provided σ2 > 0. Proof. By Theorem 2.1,

(43) n

(
Tn − θ

σ

)
=

n∑
i=1

Zi

σ
+ O

(
n

3
8 logn

)
a.s. as n → ∞,
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and (42) follows from (43) and Lemma 1.5.
As an immediate consequence of (42), we establish the law of iterated logarithm

for Tn. Theorem 3.3. Under (4),

(44) lim
n→∞

n
1
2 (Tn − θ)√

2σ2 log log n
= 1 a.s.

and

(45) lim
n→∞

n
1
2 (Tn − θ)√

2σ2 log log n
= −1 a.s.

Proof.

(46)

n
1
2 (Tn − θ)√

2σ2 log logn
=

W(n)√
2n log logn

+ o(1)

=

n∑
i=1

(W(i)− W(i− 1))

√
2n log logn

+ o(1) a.s. as n → ∞

(44) and (45) follow from (46) and the classical law of iterated logarithm.
For each n ≥ 1, let Wn be a random variable on [0, 1] defined as follows :

(47) Wn(0) = 0, Wn(
i

n
) =

i(Ti − θ)

n
1
2 σ

and Wn(t), 0 ≤ t ≤ 1, defined elsewhere, by linear interpolation. Then we have
the following theorem.

Theorem 3.4. Under (4),

(48) Wn −→ W1 in (C[0, 1], d)

where C[0, 1] is the space of all continuous functions on [0, 1], d is the uniform
metric, and W1 is a standard Wiener process on [0, 1].

Proof. Let, for each n ≥ 1,

(49) Rn =
n

1
2

σ


Tn − θ − n−1

n∑
j=1

Zj


 .
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Define

(50) W∗
n(0) = 0, W∗

n(t) =
(

1
σ
√

n

) [nt]∑
j=1

Zj + (nt − [nt])
(

1
σ
√

n

)
Z[nt]+1

for 0 < t ≤ 1. The usual functional central limit theorem for φ-mixing processes
(viz., Theorem 20.1 Billingsley (1968)) holds, so that

(51) W∗
n −→ W1 in (C[0, 1], d).

Therefore, it suffices to prove that

(52) d(Wn, W∗
n) P−→ 0 as n → ∞.

But

(53) d(Wn, W∗
n) ≤ 3 max

1≤i≤n

i
1
2 |Ri|
n

1
2

and lim
n→∞ |Rn| = 0 a.s.

For any ε > 0, δ > 0, by the Egoroff’s theorem, there exists a set A such that
P(A) ≥ 1 − δ

2 and Rn converges to zero uniformly on A, so that there exists a
positive integer n0 such that |Rn(ω)| < ε

3 for all ωεA if n ≥ n0. Now

(54)
P


3

∑
1≤i≤n

i
1
2 |Ri|
n

1
2

> ε




≤ P

{
max

1≤i≤n0

i
1
2 |Ri|
n

1
2

>
ε

3

}
+ P

{
max

n0≤i≤n

i
1
2 |Ri|
n

1
2

>
ε

3

}
.

However,

(55)

P



∑

n0≤i≤n

i
1
2 |Ri|
n

1
2

>
ε

3




≤ P

({
max

n0≤i≤n

i
1
2 |Ri|
n

1
2

>
ε

3

}
∩ A

)
+ P(Ac)

≤ P
({

max
n0≤i≤n

|Ri| >
ε

3

}
∩ A

)
+ δ

2

=
δ

2
where Ac is the complement of set A. On the other hand, the first term on the right
hand side of (54) is bounded by

(56) P


 max

1≤i≤n0

|Ri| >
εn

1
2

3n
1
2
0


 ≤

n0∑
i=1

P


|Ri| >

εn
1
2

3n
1
2
0


 .
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It is plain that there exists n1 ≥ n0 such that if n ≥ n1, P{|Ri| > εn
1
2 /3n

1
2
0 } >

δ/2n0, 1, . . . , n0. Hence, for n ≥ n1

(57) R

{
max

1≤i≤n0

i
1
2 |Ri|
n

1
2

>
ε

3

}
<

δ

2
.

From (55) and (57) we obtain P{3 max
1≤i≤n

i
1
2 |Ri|
n

1
2

> ε} < δ if n ≥ n1, (57) follows.

This proves the theorem.

Remark 3.5. Theorem 3.4 clearly generalizes Theorem 3.1, and by Theorem
1.5.1 in Csörgö and Révész (1981), it implies that for x > 0

lim
n→∞P

{
max
1≤i≤n

i(Ti − θ) > xσn
1
2

}
= P

{
sup

0≤t≤1
W1(t) ≥ x

}
= 2[1− φ(x)](58)

Remark 3.6. Let {Nk; k ≥ 1} be a sequence of nonnegative integer-valued
random variables, and k−1Nk → λ in probability as k → ∞, where λ is a positive
random variable defined on the same space (Ω,F , P). Then, by Theorem 2 of
Mogyorodi (1965) and Proposition 1.3, under (4),

(59)
N

1
2
k (Tn − θ)

σ

D−→ N(0, 1) as n → ∞

provided σ2 > 0. Also, as an immediate consequence of Lemma 1.5 and Theorem
20.3 of Billingsley (1968), we have

(60) WNk
−→ W1 in (C[0, 1], d)
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