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STRONG CONVERGENCE THEOREM BY AN EXTRAGRADIENT
METHOD FOR FIXED POINT PROBLEMS AND

VARIATIONAL INEQUALITY PROBLEMS

Lu-Chuan Zeng and Jen-Chih Yao

Abstract. In this paper we introduce an iterative process for finding a common
element of the set of fixed points of a nonexpansive mapping and the set
of solutions of a variational inequality problem for a monotone, Lipschitz
continuous mapping. The iterative process is based on so-called extragradient
method. We obtain a strong convergence theorem for two sequences generated
by this process.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H and let PC : H → C be the metric
projection of H onto C.

Definition 1.1. Let A : C → H be a mapping of C into H .

(i) A is called monotone if

〈Au − Av, u− v〉 ≥ 0 ∀u, v ∈ C;

(ii) A is called α-inverse-strongly-monotone (see [1], [3]) if there exists a positive
real number α such that

〈Au− Av, u− v〉 ≥ α‖Au − Av‖2 ∀u, v ∈ C.
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It is easy to see that an α-inverse-strongly-monotone mapping A is monotone
and Lipschitz continuous. We consider the following variational inequality problem
(VI(A, C)): find a u ∈ C such that

〈Au, v − u〉 ≥ 0 ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by Ω. A mapping
S : C → C is called nonexpansive (see [7]) if

‖Su − Sv‖ ≤ ‖u− v‖ ∀u, v ∈ C.

We denote by F (S) the set of fixed points of S.
For finding an element of F (S) ∩ Ω under the assumption that a set C ⊂ H

is nonempty, closed and convex, a mapping S : C → C is nonexpansive and a
mapping A : C → H is α-inverse-strongly-monotone, Takahashi and Toyoda [8]
introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn) ∀n ≥ 0, (1.1)

where x0 = x ∈ C, {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α).
They proved that if F (S) ∩ Ω is nonempty, then the sequence {xn} generated by
(1.1) converges weakly to some z ∈ F (S) ∩ Ω. On the other hand for solving the
variational inequality problem in a finite-dimensional Euclidean space Rn under the
assumption that a set C ⊂ Rn is nonempty, closed and convex, a mapping A : C →
Rn is monotone and k-Lipschitz continuous and Ω is nonempty, Korpelevich [2]
introduced the following so-called extragradient method:

(1.2)




x0 = x ∈ Rn,

x̄n = PC(xn − λAxn),

xn+1 = PC(xn − λAx̄n) ∀n ≥ 0

where λ ∈ (0, 1/k). He showed that the sequences {xn} and {x̄n} generated by
(1.2) converge to the same point z ∈ Ω.

Further motivated by the idea of Korpelevich’s extragradient method, Nadezhk-
ina and Takahashi [10] introduced an iterative process for finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of
a variational inequality problem. They proved the following weak convergence
theorem for two sequences generated by this process.

Theorem 1.1 [10, Theorem 3.1]. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let A : C → H be a monotone, k-Lipschitz continuous
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mapping and S : C → C be a nonexpansive mapping such that F (S)∩Ω �= ∅. Let
{xn}, {yn} be the sequences generated by

(1.3)




x0 = x ∈ H,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn) ∀n ≥ 0

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then the sequences {xn}, {yn} converge weakly to the same point z ∈
F (S) ∩ Ω where

z = lim
n→∞ PF (S)∩Ωxn.

In this paper inspired by Nadezhkina and Takahashi’s iterative process (1.3), we
introduce the following iterative process

(∗)




x0 = x ∈ H,

yn = PC(xn − λnAxn),

xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn) ∀n ≥ 0

where {λn} and {αn} satisfy the conditions:

(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);
(b) {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

It is shown that the sequences {xn}, {yn} generated by (∗) converge strongly to
the same point PF (S)∩Ω(x0) provided limn→∞ ‖xn − xn+1‖ = 0.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H. We write xn ⇀ x to indicate
that the sequence {xn} converges weakly to x and xn → x to indicate that {xn}
converges strongly to x. For every point x ∈ H, there exists a unique nearest point
in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. PC is called the
metric projection of H onto C. It is known that PC is a nonexpansive mapping of
H onto C. It is also known that PC is characterized by the following properties
(see [7] for more details): PCx ∈ C and for all x ∈ H, y ∈ C,

(2.1) 〈x − PCx, PCx − y〉 ≥ 0,
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(2.2) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2.

Let A : C → H be a mapping. It is easy to see from (2.2) that the following
implications hold:

(2.3) u ∈ Ω ⇔ u = PC(u − λAu) ∀λ > 0.

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈
Tx and g ∈ Ty, we have 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if its graph G(T ) is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only
if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ), then f ∈ Tx.
Let A : C → H be a monotone, k-Lipschitz continuous mapping and NCv be the
normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}.
Define

Tv =

{
Av + NCv, if v ∈ C,

∅, if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see [5].
In order to prove the main result in Section 3, we shall use the following lemmas

in the sequel.

Lemma 2.1 [6, Lemma 2.1]. Let {sn} be a sequence of nonnegative numbers
satisfying the conditions: sn+1 ≤ (1 − αn)sn + αnβn, ∀ n ≥ 0 where {αn} and
{βn} are sequences of real numbers such that

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞, or equivalently,∏∞
n=0(1 − αn) := limn→∞

∏n
k=0(1− αk) = 0;

(ii) limsupn→∞βn ≤ 0, or
(ii′)

∑
n αnβn is convergent.

Then limn→∞sn = 0.

Lemma 2.2 [4]. Demiclosedness Principle. Assume that S is a nonexpansive
self-mapping of a nonempty closed convex subset C of a real Hilbert space H . If
F (S) �= ∅, then I − S is demiclosed; that is, whenever {xn} is a sequence in C
weakly converging to some x ∈ C and the sequence {(I−S)xn} strongly converges
to some y, it follows that (I − S)x = y. Here I is the identity operator of H .

The following lemma is an immediate consequence of an inner product.

Lemma 2.3. In a real Hilbert space H , there holds the inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈ H.
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3. STRONG CONVERGENCE THEOREM

Now we can state and prove the main result in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone, k-Lipschitz continuous mapping and
S : C → C be a nonexpansive mapping such that F (S) ∩ Ω �= ∅. Let {xn}, {yn}
be the sequences generated by

(∗)




x0 = x ∈ H,

yn = PC(xn − λnAxn),

xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn) ∀n ≥ 0

where {λn} and {αn} satisfy the conditions:
(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);
(b) {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

Then the sequences {xn}, {yn} converge strongly to the same point PF (S)∩Ω(x0)
provided

lim
n→∞ ‖xn − xn+1‖ = 0.

Proof. We divide the proof into several steps.

Step 1. {xn} is bounded and so is {tn} where tn = PC(xn−λnAyn) ∀n ≥ 0.
Indeed let u ∈ F (S) ∩ Ω. From (2.2) it follows that

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, u − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2

+2λn(〈Ayn − Au, u − yn〉 + 〈Au, u− yn〉+ 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2−‖yn−tn‖2+2〈xn−λnAyn−yn, tn−yn〉.

Further from (2.1) we obtain

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnAxn − yn, tn − yn〉 + 〈λnAxn − λnAyn, tn − yn〉
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≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

Hence we have

(3.1)

‖tn−u‖2 ≤ ‖xn−u‖2−‖xn−yn‖2−‖yn−tn‖2+2λnk‖xn−yn‖‖tn−yn‖
≤ ‖xn−u‖2−‖xn−yn‖2−‖yn−tn‖2+λ2

nk2‖xn−yn‖2+‖yn−tn‖2

≤ ‖xn−u‖2+(λ2
nk2−1)‖xn−yn‖2

≤ ‖xn−u‖2.

Now by induction, we have

(3.2) ‖xn−u‖ ≤ ‖x0 − u‖ ∀n ≥ 0.

Indeed when n = 0, it follows from (3.1) that

‖x1 − u‖ = ‖α0x0+(1− α0)St0 − u‖
= ‖α0(x0 − u) + (1− α0)(St0 − u)‖
≤ α0‖x0 − u‖ + (1− α0)‖t0 − u‖
≤ α0‖x0 − u‖ + (1− α0)‖x0 − u‖
= ‖x0 − u‖

which implies that (3.2) holds for n = 0. Suppose that (3.2) holds for n ≥ 1. Then
we have ‖xn − u‖ ≤ ‖x0 − u‖. This together with (3.1) implies that

‖xn+1 − u‖ = ‖αnx0 + (1 − αn)Stn − u‖
= ‖αn(x0 − u) + (1 − αn)(Stn − u)‖
≤ αn‖x0 − u‖ + (1− αn)‖Stn − u‖
≤ αn‖x0 − u‖ + (1− αn)‖tn − u‖
≤ αn‖x0 − u‖ + (1− αn)‖xn − u‖
≤ αn‖x0 − u‖ + (1− αn)‖x0 − u‖
= ‖x0 − u‖.

This shows that (3.2) holds for n+1. Therefore (3.2) holds for all n ≥ 0; i.e., {xn}
is bounded. So it follows from (3.1) that ‖tn − u‖ ≤ ‖x0 − u‖ ∀n ≥ 0, i.e., {tn}
is also bounded.
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Step 2. limn→∞ ‖xn − yn‖ = 0. Indeed from (∗) and (3.1) we get

‖xn+1 − u‖2 = ‖αnx0 + (1 − αn)Stn − u‖2

= ‖αn(x0 − u) + (1 − αn)(Stn − u)‖2

≤ αn‖x0 − u‖2 + (1 − αn)‖Stn − u‖2

≤ αn‖x0 − u‖2 + (1 − αn)‖tn − u‖2

≤ αn‖x0 − u‖2 + (1 − αn)(‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2)

≤ αn‖x0 − u‖2 + ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

which implies that

(3.3)

δ‖xn−yn‖2 ≤ (1−λ2
nk2)‖xn−yn‖2

≤ αn‖x0−u‖2+‖xn−u‖2−‖xn+1−u‖2

≤ αn‖x0−u‖2+(‖xn−u‖−‖xn+1−u‖)(‖xn−u‖+‖xn+1−u‖).

Since limn→∞ ‖xn − xn+1‖ = 0, we have

|‖xn − u‖ − ‖xn+1 − u‖| ≤ ‖xn − xn+1‖ → 0 as n → ∞.

Thus combining with (3.3), the boundedness of {xn} and limn→∞ αn = 0, we
obtain

lim
n→∞ ‖xn − yn‖ = 0.

Step 3. limn→∞ ‖Sxn − xn‖ = 0. Indeed, observe that

(3.4)

‖yn − tn‖ = ‖PC(xn − λnAxn) − PC(xn − λnAyn)‖
≤ λn‖Axn − Ayn‖
≤ λnk‖xn − yn‖ → 0 as n → ∞,

(3.5)

‖Syn − xn+1‖ ≤ ‖Syn − Stn‖ + ‖Stn − xn+1‖
≤ ‖yn − tn‖ + αn‖Stn − x0‖
≤ ‖yn − tn‖ + αn[‖Stn − u‖ + ‖x0 − u‖]
≤ ‖yn − tn‖ + αn[‖tn − u‖ + ‖x0 − u‖]
≤ ‖yn − tn‖ + 2αn‖x0 − u‖ → 0 as n → ∞,
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and

(3.6) ‖Sxn − Stn‖ ≤ ‖xn − tn‖ ≤ ‖xn − yn‖ + ‖yn − tn‖ → 0 as n → ∞.

Consequently, from (3.4)-(3.6), we can infer that

‖Sxn − xn‖ = ‖Sxn − Stn + Stn − Syn + Syn − xn+1 + xn+1 − xn‖
≤ ‖Sxn − Stn‖+ ‖tn − yn‖ + ‖Syn − xn+1‖

+‖xn+1 − xn‖ → 0 as n → ∞.

Step 4. lim supn→∞〈x0 − u∗, xn − u∗〉 ≤ 0 where u∗ = PF (S)∩Ω(x0). Indeed
we pick a subsequence {xni} of {xn} so that

(3.7) lim sup
n→∞

〈x0 − u∗, xn − u∗〉 = lim
i→∞

〈x0 − u∗, xni − u∗〉.

Without loss of generality, we may further assume that {xni} converges weakly to
ũ for some ũ ∈ H. Hence (3.7) reduces to

(3.8) lim sup
n→∞

〈x0 − u∗, xn − u∗〉 = 〈x0 − u∗, ũ− u∗〉.

In order to prove 〈x0−u∗, ũ−u∗〉 ≤ 0, it suffices to show that ũ ∈ F (S)∩Ω. Note
that by Lemma 2.2 and Step 3, we have ũ ∈ F (S). Now we show ũ ∈ Ω. Since
from (3.4) and (3.6) we obtain xn − tn → 0 and yn − tn → 0, we have tni ⇀ ũ
and yni ⇀ ũ. Let

Tv =

{
Av + NCv, if v ∈ C,

∅, if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see [5]. Let(v, w) ∈
G(T ). Then we have w ∈ Tv = Av + NCv and hence w − Av ∈ NCv. Therefore
we have 〈v − u, w − Av〉 ≥ 0 for all u ∈ C. On the other hand, from tn =
PC(xn − λnAyn) and v ∈ C we have

〈xn − λnAyn − tn, tn − v〉 ≥ 0

and hence

〈v − tn,
tn − xn

λn
+ Ayn〉 ≥ 0.
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Therefore according to the fact that w − Av ∈ NCv and tn ∈ C, we have

〈v − tni , w〉 ≥ 〈v − tni , Av〉

≥ 〈v − tni , Av〉 − 〈v − tni ,
tni − xni

λni

+ Ayni〉
= 〈v − tni , Av − Atni〉 + 〈v − tni , Atni − Ayni〉

−〈v − tni ,
tni − xni

λni

〉

≥ 〈v − tni , Atni − Ayni〉 − 〈v − tni ,
tni − xni

λni

〉.

Thus we get 〈v − ũ, w〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have
ũ ∈ T−10 and hence ũ ∈ Ω. This shows that ũ ∈ F (S) ∩ Ω. Therefore by the
property of the metric projection, we derive 〈x0 − u∗, ũ − u∗〉 ≤ 0.

Step 5. xn → u∗ and yn → u∗ where u∗ = PF (S)∩Ω(x0). Indeed combining
Lemma 2.3 with (3.1), we get
(3.9)
‖xn+1 − u∗‖2 = ‖(1− αn)(Stn − u∗) + αn(x0 − u∗)‖2

≤ (1 − αn)2‖Stn − u∗‖2 + 2αn(1− αn)〈x0 − u∗, xn+1 − u∗〉
≤ (1 − αn)‖tn − u∗‖2 + 2αn〈x0 − u∗, xn+1 − u∗〉
≤ (1 − αn)‖xn − u∗‖2 + αnβn,

where βn = 2〈x0 − u∗, xn+1 − u∗〉. Thus an application of Lemma 2.1 combined
with Step 4 yields that ‖xn − u∗‖ → 0 as n → ∞. Since xn − yn → 0, we have
yn → u∗.

4. APPLICATIONS

As in Nadezhkina and Takahashi [10], we give two applications of Theorem
3.1.

Theorem 4.1. Let H be a real Hilbert space. Let A : H → H be a monotone,
k-Lipschitz continuous mapping and S : H → H be a nonexpansive mapping such
that F (S) ∩ A−10 �= ∅. Let {xn} be a sequence generated by


x0 = x ∈ H,

yn = xn − λnAxn,

xn+1 = αnx0 + (1 − αn)S(xn − λnAyn) ∀n ≥ 0

where {λn} and {αn} satisfy the conditions:
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(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);

(b) {αn} ⊂ (0, 1),
∑∞

n=0 αn = ∞, limn→∞ αn = 0.

Then the sequence {xn} converges strongly to PF (S)∩A−10(x0) provided

lim
n→∞ ‖xn − xn+1‖ = 0.

Proof. We have A−10 = Ω and PH = I. By Theorem 3.1, we obtain the
desired result.

Remark 4.1. See Yamada [9] and Xu and Kim [6] for the case when A : H →
H is a strongly monotone and Lipschitz continuous mapping on a real Hilbert space
H and S : H → H is a nonexpansive mapping.

Theorem 4.2. Let H be a real Hilbert space. Let A : H → H be a monotone,
k-Lipschitz continuous mapping and B : H → 2 H be a maximal monotone mapping
such that A−10 ∩ B−10 �= ∅. Let JB

r be the resolvent of B for each r > 0. Let
{xn} be a sequence generated by


x0 = x ∈ H,

yn = xn − λnAxn,

xn+1 = αnx0 + (1 − αn)JB
r (xn − λnAyn) ∀n ≥ 0

where {λn} and {αn} satisfy the conditions:

(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);

(b) {αn} ⊂ (0, 1),
∑∞

n=0 αn = ∞, limn→∞ αn = 0.

Then the sequence {xn} converges strongly to PA−10∩B−10(x0) provided

lim
n→∞ ‖xn − xn+1‖ = 0.

Proof. We have A−10 = Ω and F (JB
r ) = B−10. Putting PH = I, by Theorem

3.1 we obtain the desired result.
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