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CROSSTALK-FREE REARRANGEABLE MULTISTAGE
INTERCONNECTION NETWORKS

Xuewen Bao and Qiao Li

Abstract. In this paper, the notion of crosstalk-free rearrangeability (CF-
rearrangeability) of multistage interconnection networks (MINs) is formally
defined. Using the concept of line digraphs from graph theory, we show that
the problem of crosstalk-free routing on any bit permutation network (BPN)
is always equivalent to the classical permutation routing problem on a BPN of
smaller size and with fewer stages. We also show the CF-rearrangeability and
minimality (in stage number) of three families of BPNSs, including the dilated
Benes network. Some necessary conditions for a BPN to be CF-rearrangeable
are given, and a brief discussion of CF-rearrangeable networks with dilation
in time or space is included.

1. INTRODUCTION

Multistage interconnection networks (MINs) have been an important intercon-
nection scheme to realize permutations. A MIN is a staged network connecting N
inputs to IV outputs, where each stage consists of a number of crossbars and consec-
utive stages are connected by left-to-right directed edges. To realize a permutation,
N edge-disjoint paths are to be found to connect the N input-output pairs. In the
more recent application of photonic switching, each crossbar can be used at most
once by the paths to avoid crosstalk.

Unless otherwise stated, we assume all crossbars are d x d. We will ignore the
physical feature of crossbars and treat them simply as nodes. As each input (output)
is connected to a unique node in the first (last) stage, it does not play a role in
permutation routing. So, instead of maintaining the input and the output lines, we
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directly treat the nodes in the first (last) stage as inputs (outputs). Also, we deviate
from the usual symbolism a little by calling a MIN of size N x N if it contains N
nodes in the input (and output) stage, for simplicity of notations.

The interest of this paper is in the ability of networks to realize permutations
rather than in the design of routing algorithms for a specific network. Therefore,
we do not differentiate between topologically equivalent networks. Our attention is
restricted to connected bit permutation networks (BPNs) which were first proposed
by Chang, Hwang and Tong [6]. BPN is a very important class of networks.
It includes most of the intensively studied MINs such as the Omega equivalent
networks and their extra-stage versions, the shuffle-exchange networks and Benes
networks. Also, many other networks of interest use BPNs as basic building blocks,
such as those networks derived by vertical stacking or by horizontal concatenating.

In a MIN of size N x N, a t-permutation is a set of input-output pairs in
which each input and output node appears exactly ¢ times. The network is said
to realize a t-permutation conflict-free if there are ¢V edge-disjoint paths in the
network, each connecting an input-output pair. For ¢ = 1, the network is said to
realize a 1-permutation crosstalk-free if there are NV node-disjoint paths connecting
the input-output pairs. A d-nary network is rearrangeable if it can realize any
d-permutation conflict-free, and is crosstalk-free rearrangeable (CF-rearrangeable)
if it can realize any 1-permutation crosstalk-free.

The central idea of this paper is to use the well-known concept of line digraphs
in graph theory. It was noted by several authors that the conflict-free routing on a
MIN is equivalent to the crosstalk-free routing on its line digraph [9, 10, 12]. Since
crosstalk-free routing is a new problem arising from photonic communication, it
is desirable to convert it to the classical problem of conflict-free routing. Works
dealing with this conversion can be found in the literature, but they are restricted to
very limited number of networks.

Hwang and Yen [9] showed that the line digraph of any BPN is also a BPN.
They also showed how to compute the line digraph of any BPN. This result gives a
method to convert the conflict-free routing on BPNSs to the crosstalk-free routing on
their line BPNSs, but is inconvenient to do the conversion in the opposite direction. In
particular, it cannot answer the question if the crosstalk-free routing on an arbitrary
BPN can be converted to the conflict-free routing on another BPN. In this paper, we
continue Hwang and Yen’s work by presenting a method which computes a MIN
whose line digraph is the given BPN. This MIN is called a root digraph of the
BPN. It is seen that the root digraph obtained by our method is either a BPN or
a MIN which can be derived easily from a functionally equivalent BPN of smaller
size and with fewer stages. This implies that the problem of crosstalk-free routing
on a BPN is always equivalent to the classical conflict-free routing on a smaller
BPN, and that, from a theoretical view of point, crosstalk-free routing is not a new
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problem which needs to be attacked from scratch. Based on the result, we are
able to establish some general results about CF-rearrangeable BPNs. The dilated
Benes network is shown to be a CF-rearrangeable network with minimum number of
stages for a given network size, and two new classes of CF-rearrangeable networks
with minimum number of stages are presented. We also give a brief discussion of
CF-rearrangeable networks with dilation in time or space.

The rest of this paper is organized as follows. Section 2 contains the definition
and basic results of BPNs. Section 3 presents a method to compute a root digraph
of an arbitrary BPN. The discussion of CF-rearrangeable networks is included in
Section 4 and concluding remarks are made in Section 5.

2. BiT PERMUTATION NETWORKS

Let G be an s-stage MIN of size N x N, where N = d™. The stages of GG
are numbered from left to right by 1,2,---,s and are denoted by 14, V5, ---, Vg
respectively. The set of edges between stage 7 and stage i + 1 is denoted by E; and
is referred to as the i-th edge stage.

Bit permutation networks were first defined and studied by Chang, Hwang and
Tong [6]. The definition and some basic results are given in the following.

Definition 1. Let G be an s-stage network. G is called a bit permutation
network if the nodes in every stage can be labelled by the d-nary numbers of

length n which admits the existence of s—1 permutations p1, po,-- -, ps—1 On set
{1,2,---,n} and s—1 integers a, as, - - - ,as—1 € {1,2,---,n}, such that, for any
i(l1<i<s—1),node (x1,---,x,) in stage 7 is adjacent to node (y1,---,yy,) in

stage «+1 if and only if y; = x for all j except for possibly j = a;.

pi(d)

We can see from the definition that, if the bits in the labels of all nodes in
V; are permuted by p;: (w1, -+, mn) — (Tp, 1), Tp,(n))» then E; connects a
node in V; to a node in V4 if and only if their labels are different at most at the
a;-th bit. Obviously the Omega equivalent networks, the shuffle-exchange networks
and Benes network all fit into this definition, therefore they are all BPNs. In [6],
Chang, Hwang and Tong also proved that the permutations of bits, p1, p2, - - -, pPsa,
can always be set to identity by wisely labelling the nodes.

Theorem 2.1. G is a BPN of s-stage if and only if the nodes in every stage
can be labelled by the d-nary numbers of length n which admits the existence of
s—1 integers ay,as, -+ ,as—1 € {1,2,---,n} such that, forany i (1 <i < s—1),
node (x1,---,xy,) in stage ¢ is adjacent to node (y1,---,yy) in stage ¢ + 1 if and
only if y; = x; for all j except for possibly j = a;.
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Chang, Hwang and Tong used the vector (ay, ag, - - - , as—1) to represent the BPN
described in Theorem 2.1, called the sequence notation. The sequence notation of
a BPN is not unique. It is implied in [6] that each sequence naturally defines a
partition of the set {Ey, Es,---, Es_1} in which E; and E; belong to the same
subset if and only if a; = a;. Chang, Hwang and Tong proved that two BPNs are
topologically equivalent if and only if their sequences induce the same partition.
Theorem 2.3 below gives a characterization of BPNs which does not depend on the
existence of a labelling system of nodes [14]. It is also a generalization of a theorem
by Bermond et al. [4], a well-known result which first characterizes the Omega
equivalent networks graph-theoretically. More characterizations can be found in [2,
14].

Denote by G; ; the subnetwork of G induced by the nodes in V; through V;. Let
w be a partition of the set {Eq, Es, - -+, Es_1}, and let t; ; = [{[Ei], [Eit1], - -,
[E;_1]}|, where [E;] is the equivalence class containing E; and | A| stands for the
number of different elements in A. The following definitions are derived from [1,
4. 14].

Definition 2. Leti < j.

(i) G is said to satisfy the Banyan property if each pair of input and output nodes
is connected by a unique path.

(i) G is said to satisfy the P(i, ) property if G, ; contains exactly 2"~7+¢ con-
nected components, and is said to satisfy the P(x, x) property if it satisfies
P(i, j) for all possible ordered pairs (i, ).

(iii) G is said to satisfy the P.(i, ) property if G;; contains exactly d" '
connected components, and is said to satisfy the P (x, ) property if it satisfies
P.(i, j) for all possible ordered pairs (i, 7).

(iv) G is said to satisfy the buddy property if any edge stage consists of disjoint
4-cycles.

(v) G is said to satisfy the extended buddy property Q(i, 5) if for any w,v € V,
the sets of nodes in V; reachable from « and v are either the same or disjoint.
G satisfies Q(x, *) if it satisfies Q(i, j) for all possible ordered pairs (i, 7).

Theorem 2.2. ([4]) G istopologically equivalent to the binary Omega network
if and only if G satisfies the Banyan property and property P(x, x).

Theorem 2.3. ([14]) G is a bit permutation network if and only if there exists
a partition 7 of {E'1, Es, - -+, Ex_1} such that G satisfies properties P (x, %) and
Q(x, ).
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When d = 2,s = n, and each equivalent class of 7 contains exactly one
element, then the P, (i,j) and P.(x,x*) property are reduced to the P(i,7) and
P(x, x) property of Theorem 2.2, respectively.

In [14], it was also proved that two BPNs are topologically equivalent if and
only if they have the same partition of edge stages. Simple analysis reveals that
the partition in Theorem 2.3 and the partition induced by sequence notations are
identical.

By Theorem 2.3, the number of subsets in 7 is exactly n in an N x N connected
BPN. When a BPN is considered, we always assume a proper labelling already exists
such that the sequence notation of Theorem 2.1 is applicable. For example, we will
use (1,2,---,n), (1,---,n,n,---,1)and (1,---,n—1,n,n—1,---,1) to denote
the N x N Omega network, Benes network and the dilated Benes network [13].
Fig. 1 shows four binary BPNs and their sequence notations, where nodes in each
stage are labelled by 0000, ..., 1111 from top to bottom.

AN AN
WA/ XX XN/
N\W/ANA AN/
MWIDXXX XX

o2y
RV
JHr

i
i
;

TN Nl
NS O

/AN FASAN//R\NY
JIR\V/ANG: RO/
I\ N

Fig.1(a). Benes network (1, 2, 3, 4, 4, 3, 2, 1).
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AEAN AN
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/// W/, SR AN
J N/ XXM\
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Fig. 1(b). Dilated Benes network (1, 2, 3, 4, 3, 2, 1).
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Fig.1(c). BPN (1, 2, 3, 4, 2, 3, 1).
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Fig.1(d). BPN (1, 2, 3, 4, 1, 2, 3).

3. RooTt DiGraPH OF BPNSs

Let G be a digraph. The line digraph of G, denoted by L(G), has the edges
of G as its nodes and there is an edge from (uj,v;1) to (ug,ve) in L(G) if and
only if vy = us. If H = L(G), we say G is a root digraph of H and denote it by
G =L"Y(H).

Recall that all MINs considered in this paper do not have input and output lines.
But we make an exception when defining their line digraphs. For a d-nary MIN
G, we obtain a digraph by adding d edges incident to each input (output) node in
the first (last) stage. This is equivalent to adding the input (output) lines back, and
treating them as ordinary edges. The line digraph of this digraph is called the line
digraph of MIN G.

Readers can easily check that the difference in defining the line digraph of a
general digraph and the line digraph of a MIN does not affect the correctness of all
results in the remaining part of this paper. Thus we still denote the line digraph of
a MIN G by L(G). Obviously, L(G) is a MIN with the input (output) lines of G
becoming its input (output) nodes.

The importance of line digraphs is in that a set of edge-disjoint paths in a
digraph always corresponds to a set of node-disjoint paths in its line digraph. Since
the conflict-free routing on an electronic MIN is to find edge-disjoint paths and the
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crosstalk-free routing on a photonic MIN to find node-disjoint paths, it is justifiable
to unify them as one problem via line digraphs, either for theoretical analysis or even
for design of routing algorithms. This suggests that the classical theory in electronic
MINs might not become old-fashioned as a result of technology advancement.

Next we will restrict to connected BPNs. To bridge the gap between the two
problems, two questions naturally arise: (1) what is the line digraph of a BPN?
and more importantly, (2) does a BPN always have a BPN as its root digraph? if
not, what can its root digraph be like? The idea of using line digraphs to tackle
crosstalk-free routing problem was researched by several authors (sometimes under
different names) [9, 10, 12, 13]. But almost all these works were in the line of
the first question. A complete answer to the first question was by Hwang and Yen
[9]. They proved that the line digraph of any BPN is also a BPN. They also gave
a method to compute a sequence of L(G) from the sequence of G.

Theorem 3.1. If G is a BPN of size N x N with sequence (a1, as, - ,as—1),
then L(G) is a BPN of size dN x dN with sequence (b1, b, - - -, bs), where by =
n+1and fort =2,--- s b = a1 ifay_1 ¢ {a1, -+ ,a4_2}, or by = b; if
at—1 €{a1, -+, a2} and i = max{jla; = a;—1,1 < j <t —2}.

Let the edge stages of G and L(G) be { Ey, Es, - -+, Es_1} and {Fy, Fy, - - -, F},
respectively, and let mg, 71 be their partitions. We implement the above method
by procedure LINEGRAPH in terms of ne and 7).

Procedure LINEGRAPH
Input: 7¢ = A1 U Ay U---U A, where each A; (1 < k < n) is an ordered set in
which E; precedes E; if and only if i < j.
Output: mpg) = B1UBa U---U Bpqy.
begin
Set By =0 (1 <k<n+1)
Put F into By;
FORi=2TO s
IF E;_1 is the first element in [E;_;], put F; into the first empty set among
By, ,Bpy1.
ELSE IF Ej is the predecessor of E;_; in [E;_1], put F; into the same set as
F}. belongs to.
end

If one wants to get a sequence notation from the partition of edge stages, just let
ar, be a same integer in {1,2,---,n} for all subscripts of Ej in one subset. When
the above procedure ends, for example, let ap = j for F, € B;, k =1,2,...,s.
Then (a1, a2, -+, as) is a canonical sequence of L(G) in the sense defined in [6],
i.e., i < j implies ¢ appears before j in that sequence. We exemplify the method
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with the same BPN as presented in [9]: (1, 3,3,2,2,3,1,3,1, 1, 2,3, 2,2, 1).
It is of size d® x d° and has 16 stages. The partition 7 of its edge stages is:

Ay = {E1, Er, By, Eqo, Er5}

Ag = {Es, E3, Eg, Eg, E12}

Az = {E4, E5, E11, B3, E14}.

Using Procedure LINEGRAPH, we get the partition 7,(¢):

By = {F, Fg, Fi3, F15}

By = {Fy, Fy, Fg, Fy, F11, F14}
Bs = {F3, Fr, Fro, Fi6}

By = {F5, Fi2}.

L(Q) is of size d* x d* and has 17 stages. A sequence notation of it is (1, 2, 3, 2,
4,2,3,1,2,3,2,41,2,1,3).

To answer the second question, one needs to first answer when a BPN has a
root digraph. In 1964, Heuchenne [8] gave a characterization as follows.

Theorem 3.2. Let H be a digraph. H = L(G) for some digraph G if and
only if

(1) H has no multiple edges, and

(2) if (u1,v1), (u2,v1) and (ug, vo) are edges of H, then (uq, v2) is also an edge
of H.

From Theorem 2.3, it is clear that any BPN satisfies Heuchenne’s conditions. So
every BPN is a line digraph. It should be noted that a line digraph may have several
nonequivalent root digraphs [7]. Since this paper only concerns the problem of
converting crosstalk-free routing to conflict-free routing on BPNs, we are interested
in finding root digraphs which have the “closest” relation to BPNs. It will be seen
that every root digraph obtained in the following is a MIN functionally equivalent
to a BPN (in realizing permutations).

Lemma 3.3. Let s > 3. If G is the line digraph of a BPN, then G is a BPN
in which any two consecutive edge stages belong to different subsets of 7 .

Proof. Let H be a BPN whose line digraph is G. Let u be a node in the i-th
stage of H. Then u is connected to d nodes, vy, vo, - - -, vg, in the (¢+1)-th stage of
H. Foreach j, 1 < j < d, vj has d incoming edges and d outgoing edges. These 2d

edges (as nodes of &) form a complete bipartite graph, Kc(zjc)z which is a connected
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component in G;1,;4+2. Any incoming edge of « in H is connected to Ké{g in G.

This means the d connected components Kc(l,l), e ,Kc(lfg of G;11,:+2 belong to one
connected component in G; ;2. S0 G; ;12 has fewer connected components than
Gy, i+2 does. By Theorem 2.3, the i-th and the (i+1)-th edge stage of G belong
to different subsets of 7. [

Fig. 2 illustrates the proof (for d = 2), where nodes and edges of H are rep-
resented by circles and lines, and nodes and edges of G are represented by solid
circles and dotted lines.

Fig. 2. llustration of the proof of Lemma 3.3.

From Lemma 3.3, any two consecutive edge stages in the output BPN of Pro-
cedure LINEGRAPH belong to different subsets. Next we present a converse pro-
cedure, ROOTGRAPH, which recovers the input BPN of Procedure LINEGRAPH
from its output. The validity proof is included in the proof of Lemma 3.4. Let
the edge stages of G and L~1(G) be {Ey, Es,---,E,} and {Fy, Fy,---,Fy 1}
respectively, and 7¢, 7p-1(¢) be their partitions.

Procedure ROOTGRAPH
Input: 7¢ = A1 U Ay U---U A, where each A; (1 < k < n) is an ordered set in
which E; precedes E; if and only if i < j.
Output: TL-1(G) = BiUByU---UB,,_1.
begin

Set By =0 (1<k<n-1)

FOR i =s—1 DOWNTO 1

IF E; is the last element in [E;], put F; into the first empty set among

B17 T 7Bn—1-
ELSE IF Ej is the successor of E; in [E;], put F; into the same set as Fj,_;
belongs to.

end

Lemma 3.4. Let s > 3. If G is a BPN in which any two consecutive edge
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stages belong to different subsets of 7, then G is the line digraph of the BPN
obtained by Procedure ROOTGRAPH.

Proof.

(1) If any two consecutive edge stages belong to different subsets of ng, no
E; is followed immediately by FE;.; in a subset of 7. So in Procedure
ROOTGRAPH, £ is never equal to ¢ + 1 and the subset which F; is going
into is well-defined. Therefore, Procedure ROOTGRAPH terminates.

(2) Obviously, the output 7;-1(¢) of Procedure ROOTGRAPH is a partition of
{Fy,---, Fs_1}. Exceptfor E,, the last element of each subsetin = accounts
for an nonempty subset of 771 (), so the number of nonempty subsets in
Tr-1(q) Is exactly n—1.

(3) Let the output of Procedure ROOTGRAPH be input to Procedure LINE-
GRAPH, and output = be got. We now show m = ng. Remember that all
subsets of m, m and 7,1 () are ordered sets in which E; (F}) precedes E;
(F};) if and only if ¢ < j.

If E; is the predecessor of E; in 7g, then j > ¢ + 1 since no two consecutive
edge stages of G belong to a same subset. By the definition of ROOTGRAPH, when
it is the turn of F; to go into a subset, E; is £;’s successor, so F; goes into the
same subset as F;_; belongs to and becomes the predecessor of Fj_1 in 7p-1(q).
Again, by the definition of LINEGRAPH, when E; is to be placed into a subset of
m, F; is F;_1’s predecessor. So, Fj is put into the same subset as F; belongs to
and becomes the successor of F; in .

It is proved that, if E; is the predecessor of E; in mq, E; is the predecessor of
E; also in 7. To show 7 and 7 are the same partition, it is sufficient to show that
both have the same number of subsets. But this is readily got from the conclusion
of (2). [ |

By analysis similar to the proof above, we see also that, if the output of Procedure
LINEGRAPH is the input of Procedure ROOTGRAPH, the original partition is
retrieved. So the two procedures are converse to each other.

Theorem 3.5. Let s > 3. G has a BPN as its root digraph if and only if G is
a BPN in which any two consecutive edge stages belong to different subsets of 7 ¢,
or equivalently, the subnetwork G'; ;o has exactly d™~2 connected components for
any i, 1 <i<s—2.

Proof. This can be easily derived from Lemma 3.3, Lemma 3.4, and Theorem
2.3. ]
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When s = 1, G has no edge stage. The only 1-stage connected BPN consists of
a single node, so its root digraph is not BPN. It is not difficult to see that there is
only one 2-stage connected BPN either. That is the complete bipartite graph K 4,
which has the single node as its root digraph.

Fig. 3(b)—(d) show the root digraphs (obtained by Procedure ROOTGRAPH) of
the BPNs in Fig. 1(b)—(d). By Theorem 3.5, the root digraph(s) of any BPN which
has two consecutive edge stages belonging to a same subset cannot be a BPN. For
example, Fig.3(a) shows a root digraph of the Benes network of Fig.1(a) [10],
which is not a BPN since any BPN contains no multiple edges between two nodes.

; ==\ ;
T ——
?mm@@m%
7 P AV

Fig.3(@). (1, 2, 3):(3, 2, 1), root digraph of (1, 2, 3, 4, 4, 3, 2, 1).
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\Eé//
= :
pE=-=

Fig.3(b). (1, 2, 3, 3, 2, 1), root digraph of (1, 2, 3, 4, 3, 2, 1).
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Fig.3(c). (1, 2, 3, 2, 3, 1), root digraph of (1, 2, 3, 4, 2, 3, 1).
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Fig.3(d). (1, 2, 3, 1, 2, 3), root digraph of (1, 2, 3, 4, 1, 2, 3).

Now we consider the root digraph of BPNs not covered by Theorem 3.5. If
edge stage E; and E; ., of G belong to the same subset, G ;1o has exactly d"2
connected components. Each component is the 3-stage BPN (1,1) (Fig.4(a)). It
is not difficult to see that BPN (1,1) has a unique root digraph, consisting of two
nodes connected by d parallel edges. One node has d incoming edges and the other
has d outgoing edges (Fig. 4(b)). This observation leads us to introduce a new class
of MINs as follows.

(@) (b)

Fig.4. N =d = 3. (a) BPN (1, 1); (b) root digraph of (1, 1).

Let G; and G4 be two BPNs of the same size. The bridged BPN of G and
G4, denoted by G : G, is the MIN obtained from their union by adding d parallel
edges from each output node of G to the input node of G5 with identical label.
The edge stage containing parallel edges in G; : G5 is called a bridging edge stage.
We can define the bridged BPN of more than two BPNs similarly.

Fig. 3(a) shows the bridged BPN of (1, 2, 3) and (3, 2, 1). Note that (1, 2,
3):(1, 2, 3) and (1, 2, 3):(3, 2, 1) are not topologically equivalent, though (1, 2, 3)
and (3, 2, 1) are the same network. It results from the fact that the two parts have
been correlated to each other by the bridging edge stage.

As before, it is required that every bridged BPN be connected, though it may be
obtained by bridging disconnected BPNs. If one of the BPNs has only one stage,
its sequence notation is the empty vector, (). For example, both (1, 2, 3):():(2, 1)



1238 Xuewen Bao and Qiao Li

and ():(1, 2):(2, 3) are obtained by bridging three BPNs.

All BPNs can be considered as special bridged BPNs. Ina BPN, if £;, E; 1, - - -,
E; are all in the same subset of the partition, we say F;.1, - - -, E;1 are repeating
edge stages. By removing a bridging (or repeating) edge stage we mean deleting
all its edges and identifying the pairs of nodes in the two stages orderly. Adding a
bridging (or repeating) edge stage is the reverse operation.

Lemma 3.6. Let G = (al, s ,asl_l) : (bl, s ,552_1), G’ = (al, cey
Qs —1, b17 Ty bSQ—l)v and L(G/) = (Clv C2, ", 681+82—1)- Then L(G) = (Clv Ty
CsysCsyy Csy+1," "y Csy+so—1)- That'is, L(G) is obtained from L(G ') by adding a
repeating edge stage after the s;-th edge stage.

Proof. Let H = (c1, ", Csy,Csyy Csy41, " "+ 5 Csy4sy—1) @Nd H' = L(G’). We
need to show that L(G) is a BPN with the same partition as H. It is easy to check
that L(G) satisfies the Q(x, ) property of Theorem 2.3. So it remains to show
that L(G) and H have the same numbers of components in corresponding partial
networks.

Let ¢ be the function of number of components in a digraph. Let 4, j be integers
such that 1 <i < j < s1 + s2+ 1. Suppose u and v are two nodes of L(G) in the
i-th and j-th stage respectively. Then « and v are two edges of G' (may be input or
output edges). If i # s;+1 and j # s1+1, neither » nor v is an edge in the bridging
edge stage of GG. So they also represents two edges, «/ and v/, of G’. Obviously, v
is reachable from u in G if and only if v/ is reachable from «’ in G’. Therefore,
o(L(G)ij) = c(H;;_y) fori < sp+1 < j. If j < s1+1, we only consider the left
part of G and delete all the stages on the right of the bridging edge stage (but leave
the edges in the bridging edge stage pendant), because c(L(G); ;) is determined only
by this part. However, after deleting from G’ the stages s; + 1 through s; +s9 — 1
(leaving the last edge stage pendant), we get an equivalent network. This implies
o(L(G)ij) = c(H] ;) for j < s + 1. Similarly, ¢(L(G)i ;) = e(H;_; ;) for
i >s1+ 1. So C(L(G)Z’j) = C(Hz"j), 1< <j < 814 s9+ 1. |

Lemma 3.6 can be extended to bridged BPNs with any number of bridging edge
stages. Therefore, we can derive the line digraph of a bridged BPN by first removing
its bridging edge stages, applying Procedure LINEGRAPH, and then adding repeat-
ing edge stages in appropriate positions. We can also revise Procedure LINEGRAPH
so that it computes the line digraph of any bridged BPN directly.

Procedure LINEGRAPH-R

Input: A;UAU---UA,UA,+1, where A, contains bridging edge stages and
A (1 <k <n)isan ordered set in which E; precedes E; if and only if i < j.
Output: mpg) = B1UBa U---U Bpqy.
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begin
Set By =0 (1<k<n+1)
Put F} into By;
FOR:=2TO s
IF E;_1 € A,41, put F; into the same set as F;_; belongs to
ELSE IF E;_; is the first element in [E;_4], put F; into the first empty set
among By, -, Bpy1.
ELSE IF E} is the predecessor of E;_; in [E;_4], put F; into the same set
as Fj, belongs to.
end

From the discussion above, it is seen that there is always a root digraph in the
bridged BPN class for any BPN. We can find it by first removing its repeating edge
stages, applying Procedure ROOTGRAPH, and then adding bridging edge stages
in appropriate positions. The following is a revision of Procedure ROOTGRAPH
which computes the root digraph of any BPN directly.

Procedure ROOTGRAPH-R
Input: 7¢ = A1 U A U---U A, where each A; (1 < k < n) is an ordered set in
which E; precedes £ if and only if i < j.
Output: By UBy U ---U B,,_1 U B,,, where B,, contains the bridging edge stages.
begin
Set B =0 (1 <k <n);
FOR i =s—1 DOWNTO 1
IF E; 1 is the successor of E; in [E;], put F; into B,
ELSE IF E; is the last element in [E;], put F; into the first empty set among
By, - ,Bn_1.
ELSE IF E} is the successor of E; in [E;], put F; into the same set as Fj,_;
belongs to.
end

The main theorem of this section is derived directly from all the results above.
That is the following

Theorem 3.7. A MIN is a BPN if and only if it is the line digraph of a bridged
BPN.

As the final example for this section, removing the repeating edge stages of (1,
2,2,3,1,4,3,3,3 4,4,1,1, 2) gives (1, 2, 3, 1, 4, 3, 4, 1, 2), whose root
digraph, by ROOTGRAPH, is (1, 2, 1, 3, 1, 1, 3, 2). After adding bridging edge
stages, we have (1):(2, 1, 3, 1):0:(2):(3):(2), which is the same as the result of
ROOTGRAPH-R.
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4. CF-REARRANGEABLE BPNS

In this section, we apply the results of Section 3 to derive some results about
CF-rearrangeable BPNS.

Lemma 4.2. ([10]) The conflict-free routing of a d-permutation on a MIN is
equivalent to the crosstalk-free routing of a specific 1-permutation on its line di-
graph. A MIN is rearrangeable if and only if its line digraph is CF-rearrangeable.

Lemma 4.3. In conflict-free routing, a bridged BPN G is functionally equiv-
alent to the BPN obtained from G by removing its bridging edge stages.

The next theorem shows that the crosstalk-free routing problem on BPNs can
be solved by the older theory in electronic switching.

Lemma 4.4. The crosstalk-free routing on any BPN is equivalent to the conflict-
free routing on a BPN of smaller size and with fewer stages.

Proof. By Theorem 3.7, any BPN G has a root digraph in the bridged BPN class.
The bridged BPN can be transformed into a BPN H by removing its bridging edge
stages without damaging its ability of realizing permutations. Then the crosstalk-free
routing on G is equivalent to the conflict-free routing on H. ]

Theorem 4.4. A BPN G is CF-rearrangeable if and only if the BPN obtained
from G by removing its repeating edge stages is CF-rearrangeable.

Proof. The CF-rearrangeability of G is equivalent to the rearrangeability of the
bridged BPN H obtained by ROOTGRAPH-R, which is functionally equivalent to
the rearrangeability of H’ obtained by removing bridging edge stages. In return,
the rearrangeability of H’ is equivalent to the CF-rearrangeability of G’ = L(H'),
which can be derived directly from G by removing repeating edge stages. ]

It can be verified that L(1,--- ,n—1,n—1,---,1) = (1,---,n—1,n,n —
1,---,1) (this observation was also made in [10]). So the dilated Benes network is
actually the line digraph of Benes network. Since Benes network is rearrangeable,
the dilated Benes network is CF-rearrangeable. Padmanabhan and Netravali [13]
introduced the dilated Benes network and gave an adapted Looping Algorithm for
crosstalk-free routing. It is also seen from Theorem 4.4 that Benes network is itself a
CF-rearrangeable network, because it can be derived from the dilated Benes network
of same size by adding a repeating edge stage in the center part.

In the following we will consider “minimum” CF-rearrangeable networks. It is
widely known that 2n + 1 is a lower bound on the number of stages for a N x N
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shuffle-exchange network to be rearrangeable. But whether this lower bound is tight
or not is an unsolved problem. In [2], Bao, Hwang and Li showed that 2n + 1 is
also a lower bound for a BPN to be rearrangeable. So Benes network is an example
of rearrangeable networks with the minimum number of stages in the BPN class.

Lemma 4.5. ([2]) The minimum number of stages for an N x N BPN to be
rearrangeable is 2n + 1. Furthermore, if G is a rearrangeable BPN with 2n + 1
stages, then both of the two subnetworks, G 1, ,+1 and G,41, 2,41, are topologically
equivalent to the Omega network.

Lemma 4.6. The minimum number of stages for an N x N BPN to be CF-
rearrangeable is 2n. Furthermore, if G is a CF-rearrangeable BPN with 2n stages,
then both of the two subnetworks, G 1 41 and G, 25, are topologically equivalent
to the Omega network.

Proof. Suppose G is CF-rearrangeable. Since a CF-rearrangeable BPN with
minimum number of stages has no repeating edge stages, by Theorem 3.5 and
Lemma 4.1, the root digraph H of G from ROOTGRAPH is a rearrangeable BPN.
As the size of H is d™~! x d™~1, H has at least 2n — 1 stages. So G has at least
2n stages. If G has exactly 2n stages, then G 41 and G, 2, are the line digraphs
of Hy , and H, 2,-1 respectively. By Lemma 4.5, both H, ,, and H, 2,1 are
Omega-equivalent. Therefore, both Gy 41 and G,, 2, are Omega-equivalent. m

We have seen that the dilated Benes network is a CF-rearrangeable BPN with
minimum number of stages. In [5], it was shown that the (2n — 1)-stage BPN
obtained from the (2n—1)-stage Benes network by reversing the order of the n-th
and (n+1)-th edge stages is rearrangeable. In [2], it was also shown that the BPN
obtained by reversing the order of the n-th, (n+1)-th and (n+2)-th edge stages is
rearrangeable. So, the BPN obtained from the 2n-stage dilated Benes network by
reversing its (n+1)-th and (n+2)-th [(n+1)-th, (n+2)-th and (n+3)-th, resp.]
edge stages is also CF-rearrangeable.

Theorem 4.6. (1,---,n,n—2,n—1,n—3,---,1)and (1,---,n,n—3,n—2,n—
1,n—4,--- 1) are two CF-rearrangeable BPNs with minimum number of stages.

For d = 2, Fig. 3(c) and (d) show the two 8 x 8 rearrangeable networks derive
from 8 x 8 binary Benes network by reversing the order of edge stages. Fig. 1(c)
and (d) show the two corresponding 16 x 16 CF-rearrangeable networks.

Rearrangeable and CF-rearrangeable networks can also realize permutations of
larger size if multiple passes are permitted. In general, we have

Theorem 4.7. An N x N rearrangeable network can realize any dt-permutation
in ¢t passes. An N x N CF-rearrangeable network can realize any ¢-permutation
crosstalk-free in ¢ passes.
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To prove this theorem, we only need a classical theorem in graph theory—Konig’s
Theorem [3]. In the following, we state it using the terms of this paper.

Konig’s Theorem Any t-permutation can be factorized into ¢ 1-permutations.

It is worth noting that efficient algorithms already exist in the literature to factor-
ize a t-permutation into 1-permutations, usually in the context of perfect matching
in bipartite graphs. When a ¢-permutation is to be routed crosstalk-free on a CF-
rearrangeable network, we first factorize the ¢-permutation into ¢ 1-permutations,
and then route each 1-permutation in one pass. If a dt-permutation is to be realized
conflict-free on a rearrangeable network, we just combine any d 1-permutations into
one d-permutation, and route it in one pass.

Traditionally, realizing a permutation in multiple passes is termed as dilation in
time, and realizing a permutation on a vertically stacked network as dilation in space.
When only (CF-)rearrangeable networks are considered, there is no difference in the
routing technic for both dilations. In [15], Yang et al. proved that any 2-permutation
can be routed crosstalk-free on the binary Benes network in two passes. Jiang et al.
[11] proposed to vertically stack Benes network for crosstalk-free routing. These
results can be viewed as special cases of Theorem 4.8. In their cases, one stage of
nodes can be saved if the dilated Benes network takes the place of Benes network.

5. CONCLUSIONS

The main contribution of this work is a line-digraph characterization of bit per-
mutation networks. Using the concept of line digraphs from graph theory, we bridged
the gap between the problem of conflict-free routing and the problem of crosstalk-
free routing on bit permutation networks, and proved that crosstalk-free routing on
a bit permutation network is always equivalent to the conflict-free routing on a bit
permutation network of smaller size and with fewer stages. Based on these results,
we gave some necessary conditions for a BPN to be CF-rearrangeable. We also
showed the CF-rearrangeability and minimality (in stage number) of three families
of BPNs, including the dilated Benes network. The problem of CF-rearrangeable
networks with dilation in time or space was also touched upon.
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