
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 5, pp. 1193-1223, September 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON ERGODIC AVERAGES AND THE RANGE
OF A CLOSED OPERATOR

Ryotaro Sato

Abstract. For a γ-th order Cesàro mean bounded linear operator T on a
Banach space X, we characterize the range R(A) of the operator A = T − I,
by using an A-ergodic net and its companion net which were introduced by
Dotson and developed by Shaw. Similarly, if A is the generator of a γ-th order
Cesàro mean bounded C0-semigroup (or strongly continuous cosine operator
function) of bounded linear operators on X, then we characterize the range
R(A).

1. INTRODUCTION

Let X be a Banach space and A be a (bounded or unbounded) closed operator
in X with domain D(A) and range R(A). By using ergodic theory, many authors
have studied the problem of solving the functional equation Ax = y for a given
y ∈ X . See, for example, Alonso, Hong and Obaya [1], Assani [2], Dotson [4-
6], Krengel and Lin [10], Lin and Sine [12], Sato [14-18], Shaw [19, 20], and
Shaw and Li [21]. In particular, Shaw [19] (see also Dotson [4] and Shaw-Li
[21]) studied deeply the mean ergodic properties of an A-ergodic net {Aα} and
its companion net {Bα} consisting of bounded linear operators on X , and applied
them to the problem successfully. In this paper the author intends to adapt Shaw’s
method of study in order to obtain new results and generalize some known results
in [12], [19] and [20]. In §2 some preliminary results are presented, which will
be useful to understand the general situation. In §3 we consider a (bounded or
unbounded) closed operator A. An A-ergodic net {Aα} and its companion net
{Bα} are defined. (Our definition of an A-ergodic net is slightly different from that
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Range and domain, Generator, Resolvent, C0-semigroup, Cosine operator function, Ergodic net and
its companion net, Mean ergodic theorem, Cohomology equation, Coboundary.

1193



1194 Ryotaro Sato

used in [21].) Some lemmas and mean ergodic properties of these nets are obtained,
which will be used in later sections. In §4 we apply the results obtained in §3 to
the problem of the form (T − I)x = y, where T is a bounded linear operator on X

satisfying supn≥0 ‖Cγ
n(T )‖ < ∞ for some γ > −1, Cγ

n(T ) being the γ-th order
Cesàro mean of the operator sequence {Tn}∞n=0. In §5 [resp. §6] we study the
problem of the form Ax = y, where A is the generator of a C0-semigroup {Tt}t≥0

[resp. a strongly continuous cosine operator function {C(t)}t≥0 ] of bounded linear
operators on X such that supt>0 ‖Cγ

t ‖ < ∞ for some γ ≥ 0, where C
γ
t denotes

the Cesàro mean of order γ of {Tt}t≥0 [resp. {C(t)}t≥0], i.e., C0
t = Tt [resp.

C0
t = C(t) ], and

Cγ
t =

γ

tγ

∫ t

0
(t−s)γ−1Ts ds

[
resp. Cγ

t =
γ

tγ

∫ t

0
(t − s)γ−1C(s) ds

]
for γ > 0.

2. PRELIMINARY RESULTS

Let T be a bounded linear operator on a Banach space X . We first define its
Cesàro means Cγ

n(T ) of order γ �= −1, −2, −3, . . . as follows:

Cγ
n(T ) =

(
γ + n

n

)−1 n∑
k=0

(
γ − 1 + k

k

)
T n−k (n ≥ 0),

where
(

α
0

)
= 1, and

(
α
k

)
=

α(α − 1) . . . (α − k + 1)
k!

for α ∈ R and

k ∈ N = {1, 2, . . .}. In particular, we have C0
n(T ) = T n and C1

n(T ) = (n +
1)−1

∑n
k=0 T k for n ≥ 0. In this paper we only consider the case γ > −1, because

the other case γ < −1 is not interesting (cf. Chapter III of Zygmund [24]); and
we mainly consider the case γ ≥ 0, because a pathological result happens in the
case −1 < γ < 0 (cf. Proposition 4.1 of Li-Sato-Shaw [11].) In the following we
give straightforward sufficient conditions for y ∈ R(T − I) and y ∈ R(T − I), and
similarly for y ∈ R(A) and y ∈ R(A), where A is a closed operator. These will
become necessary conditoins when T [resp. A] satisfies some appropriate additional
hypotheses; this will be considered in later sections.

Fact 1. Let y ∈ X and the series
∑∞

k=0 rkT ky be summable for all r, with
0 < r < 1. Let 0 < rn < 1 for all n ≥ 1, and rn ↑ 1 as n → ∞. Then the
following hold:

(i) If weak-limn (1− rn)
∑∞

k=0 rk
nT ky = 0, then y ∈ R(T − I).

(ii) If weak-limn
∑∞

k=0 rk
nT ky = x0 for some x0 ∈ X , then x0 ∈ R(T − I) and

y = x0 − Tx0.
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Proof.

(i) We define f(r) =
∑∞

k=0 rkT ky for 0 ≤ r < 1. If x∗ ∈ X∗ is such that
x∗ = 0 on R(T − I), then

〈(1−r)f(r), x∗〉 = (1−r)
∞∑

k=0

rk〈T ky, x∗〉 = (1−r)
∞∑

k=0

rk〈y, x∗〉 = 〈y, x∗〉.

Since weak-limn→∞ (1 − rn)f(rn) = 0 by hypothesis, we have

0 = lim
n

〈(1− rn)f(rn), x∗〉 = 〈y, x∗〉,

which implies y ∈ R(T − I) by the Hahn-Banach theorem.
(ii) Since f(rn) converges to x0 weakly, there exists a constant M > 0 such that

‖f(rn)‖ ≤ M for all n ≥ 1. Then

f(rn) − Tf(rn) =
∑∞

k=0 rk
nT ky − ∑∞

k=0 rk
nT k+1y

= y + (rn − 1)
∑∞

k=0 rk
nT k+1y = y − (1− rn)Tf(rn),

and hence

‖(f(rn) − Tf(rn))− y‖ ≤ (1− rn)‖T‖M → 0

as n → ∞. Thus, we have

x0 − Tx0 = weak- lim
n

(f(rn) − Tf(rn)) = y.

On the other hand, since limn (1 − rn)‖∑∞
k=0 rk

nT ky‖ = 0, we have y ∈
R(T − I) by (i), whence Tky ∈ R(T − I) for all k ≥ 0. It follows that
f(rn) ∈ R(T − I) for all n ≥ 1, and hence x0 = weak- limn f(rn) ∈
R(T − I). This completes the proof.

Fact 2. Let y ∈ X . Then the following hold:

(i) If γ > −1 and weak-limn Cγ
n(T )y = 0, then y ∈ R(T − I).

(ii) If γ > 0 and the set {nCγ
n(T )y : n ≥ 0} is weakly sequentially compact,

then there exists x0 ∈ R(T − I) such that y = x0 − Tx0.

Proof.
(i) Let x∗ ∈ X∗ be such that x∗ = 0 on R(T − I). Since 〈Tny, x∗〉 = 〈y, x∗〉

for all n ≥ 0, it follows that 〈Cγ
n(T )y, x∗〉 = 〈y, x∗〉. This and the hypothesis

of (i) imply 0 = 〈y, x∗〉, so that y ∈ R(T − I) by the Hahn-Banach theorem.
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(ii) From the hypothesis of (ii) it follows that the set{
γ + n

γ
Cγ

n(T )y : n ≥ 0
}

is weakly sequentially compact, and supn≥0 (γ + n)γ−1‖Cγ
n(T )y‖ < ∞.

Thus, letting

Aα
n =

(
α + n

n

)
and Sα

n (T ) =
n∑

k=0

Aα−1
n−kT k for α ∈ R and n ≥ 0,

we have (cf. Chapter III of Zygmund [24]) that for 0 < r < 1,

∞∑
n=0

rnT ny = (1−r)γ(1−r)−γ
∞∑
n

rnT ny = (1−r)γ(
∞∑

n=0

Aγ−1
n rn)

∞∑
n=0

rnT ny

= (1 − r)γ
∞∑

n=0

rn(
n∑

k=0

Aγ−1
n−kT ky) = (1− r)γ

∞∑
n=0

rnSγ
n(T )y

= (1 − r)γ
∞∑

n=0

rnAγ−1
n · Aγ

n

Aγ−1
n

Cγ
n(T )y ,

where

Aγ
n

Aγ−1
n

=
(γ + 1)(γ + 2) . . . (γ + n) n!
n! γ(γ + 1) . . . (γ + n − 1)

=
γ + n

γ
(n ≥ 0).

Since (1 − r)γ
∑∞

n=0 rnAγ−1
n = 1 and Aγ−1

n > 0 for all n ≥ 0, it follows
from Theorem V.6.4 of [7] that the set {∑∞

n=0 rnT ny : 0 < r < 1} is weakly
sequentially compact. Hence we can apply (ii) of Fact 1 to complete the
proof.

Example 1. There exists an example showing that (ii) of Fact 2 is not true if the
hypothesis γ > 0 is replaced with γ = 0. In fact, there may exist f �∈ R(T−I) such
that ‖nC0

n(T )f‖ → 0 as n → 0 (and so {nC0
n(T )f : n ≥ 0} is weakly sequentially

compact). To see this, we first note that, by an elementary argument, there exists a
sequence {pn}∞n=1 of positive real numbers (for example, pn = (n logn)−1) such
that

1 ≥ pn ↓ 0 as n → ∞, lim
n→∞ npn = 0, and

∞∑
n=1

pn = ∞.
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Define a measure µ on Z by

µ({m}) =

{
1 if m ≤ 0,

pm if m ≥ 1.

We consider X = L1(Z, µ), and define an operator T : L1(Z, µ) → L1(Z, µ) by

Tf(m) = f(m − 1) (m ∈ Z).

It is clear that ‖T‖1 = 1. If we set f = χ{0}, then T nf = χ{n} for n ≥ 0, and

‖nC0
n(T )f‖1 = ‖nT nf‖1 = ‖nχ{n}‖1 = npn → 0

as n → ∞. We next prove that f �∈ R(T − I). Assume the contrary: f = χ{0} =
Tg − g for some g ∈ L1(Z, µ). Then, since χ{0}(m) = g(m − 1) − g(m) for all
m ∈ Z, it follows that g(0)+ 1 = g(−1) = g(−2) = . . . , and g(0) = g(n) for all
n ≥ 1. Since g ∈ L1(Z, µ), we must have 0 = g(0) + 1 = g(−1) = g(−2) = . . . ,
and thus −1 = g(0) = g(n) for all n ≥ 1. But, this is a contradiction, because
∞ =

∑∞
n=1 pn =

∑∞
n=1 |g(n)| · µ({n}) ≤ ‖g‖1 < ∞.

Fact 3. Let A be a closed operator in X with domain D(A) and range R(A).
Let ρ(A) denote the resolvent set of A, and assume that 0 �= λn ∈ ρ(A) for n ≥ 1
and limn→∞ λn = 0. Let y ∈ X . Then the following hold:

(i) If weak-limn→∞ λn(λn − A)−1y = 0, then y ∈ R(A).
(ii) If weak-limn→∞(λn−A)−1y = x0 for some x0 ∈ X , then x0 ∈ R(A)∩D(A)

and y = −Ax0.

Proof.

(i) Since y − (y − λn(λn − A)−1y) = λn(λn − A)−1y → 0 weakly as n → ∞,
and since y − λn(λn − A)−1y = −A(λn − A)−1y ∈ R(A), it follows that
y ∈ R(A).

(ii) Since the hypothesis of (ii) implies supn≥1 ‖(λn − A)−1y‖ < ∞, we obtain
that ‖A(λn − A)−1y + y‖ = ‖λn(λn − A)−1y‖ → 0 as n → ∞. Thus,
by the (weak) closedness of A, we see that x0 ∈ D(A) and −y = Ax0.
Furthermore,

x0 = weak- lim
n→∞ (λn − A)−1y = weak- lim

n→∞ (λn − A)−1A(−x0)

= weak- lim
n→∞ A(λn − A)−1(−x0).

Hence x0 ∈ R(A) ∩ D(A), and the proof is complete.
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Example 2. There exists an example showing that the converses of (i) and (ii)
of Facts 1, 2 and 3 fail to hold. To see this, we define a measure µ on Z by

µ({m}) =

{
1 if m ≤ 0,

(m + 1)2 if m ≥ 1.

We consider X = L1(Z, µ), and define, as in Example 1, an operator T : L1(Z, µ) →
L1(Z, µ) by Tf(m) = f(m − 1) for m ∈ Z . It follows that ‖Tn‖1 = (n + 1)2

for n ≥ 0, and hence r(T ) = 1, where r(T ) denotes the spectral radius of T . If
we set g = χ{0} − χ{−1}, then g = Tχ{−1} − χ{−1} ∈ (T − I)L1(Z, µ), and for
0 < r < 1 we have

hr(m) :=
∞∑

n=0

rnT ng(m) =




0 if m ≤ −2,

−1 if m = −1,

rm − rm+1 if m ≥ 0.

Therefore,

‖hr‖1 = 1 +
∞∑

m=0

(1 − r)rmµ({m}) = 1 + (1 − r)
∞∑

m=0

rm(m + 1)2

> 1 + (1− r)2−1
∞∑

m=0

(m + 2)(m + 1)rm = 1 + (1 − r)−2,

so that limr↑1 ‖hr‖1 = limr↑1 ‖∑∞
n=0 rnT ng‖1 = ∞, and furthermore

(1) lim
r↑1

‖(1 − r)
∞∑

n=0

rnT ng‖1 = ∞.

Next, let A = T − I . If λ > 0 then, clearly, λ ∈ ρ(A), and

(2) (λ − A)−1 = ((λ + 1) − T )−1 = (λ + 1)−1
∞∑

n=0

T n

(λ + 1)n
.

Thus, using the equality (λ − A)−1Ag = λ(λ − A)−1g − g, we get by (1) and (2)
that

(3)

lim
λ↓0

‖(λ − A)−1Ag‖1 ≥ lim
λ↓0

‖λ(λ− A)−1g‖1 − ‖g‖1

= lim
λ↓0

λ

λ + 1

∥∥∥∥∥
∞∑

n=0

T ng

(λ + 1)n

∥∥∥∥∥
1

− 2 = ∞.

Since g ∈ R(T − I), we see that the converses of (i) and (ii) of Facts 1, 2 and
3 fail to hold for y = g and y = −Ag = g − Tg, respectively.
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3. GENERAL RESULTS ON CLOSED OPERATORS

In this section we consider a closed operator A in X with domain D(A) and
range R(A). Let {Aα} be a net of bounded linear operators on X such that

(a) ‖Aα‖ ≤ M (< ∞) for all α,
(b) R(Aα−I) ⊂ R(A) for all α, and limα ‖x−Aαx‖ = 0 for all x ∈ N (A) :=

{x ∈ D(A) : Ax = 0}.

Let P denote the operator in X defined by

D(P ) = {x ∈ X : lim
α

Aαx exists}, and Px = lim
α

Aαx for x ∈ D(P ).

By (a), D(P ) is a closed subset of X , and P is a closed operator in X . Fur-
thermore, from (b) we see that

(4) Px = x for all x ∈ N (A), N (A) ⊂ R(P ) ∩ D(P ), and N (P ) ⊂ R(A).

We consider the following conditions:

(M1) P 2 = P, R(P ) = N (A), and N (P ) = R(A).
(M2) D(P ) = {x ∈ X : {Aαx} has a weak cluster point}.

(M1) implies at once that D(P ) = N (A) ⊕ R(A). In [19], Shaw proved that
(a), (b) and the following condition (c) imply (M1) and (M2). (We note that (c)
does not follow from the above conditions (a), (b), (M1) and (M2). See Remark 6
below.)

(c)
⋃

α R(Aα) ⊂ D(A), weak-limα AAαx = 0 for all x ∈ X , and

limα ‖AαAx‖ = 0 for all x ∈ D(A).

In many cases there exists another net {Bα} of bounded linear operators on X
which is related to A and {Aα} in the following way:

(b′) R(Bα) ⊂ D(A) and I − Aα = ABα ⊃ BαA for all α.

It is direct that (b′) implies (b), and furthermore AAαx = AαAx for all x ∈
D(A). As in Dotson [4] and Shaw-Li [21], we will call {A α} an A-ergodic net
and {Bα} its companion net.

We next consider the following conditions:

(w) There exists a weakly compact operator H on X such that AαH = HAα for
all α, and R(H − I) ⊂ R(A).
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(w′) There exists a weakly compact operator H on X such that BαH = HBα for
all α, and R(H − I) ⊂ R(A).

Lemma 1. (a), (b), (M1), (M2) and (w) imply D(P ) = X .

Proof. Let x ∈ X . Since H is weakly compact and AαHx = HAαx by (w),
and since ‖Aαx‖ ≤ M‖x‖ for all α by (a), it follows that {AαHx} has a weak
cluster point. Hence Hx ∈ D(P ) by (M2), and then putting

xh = PHx = lim
α

AαHx,

we have xh ∈ R(P ) = N (A) by (M1). To see that x − xh ∈ R(A), we notice
from (b) and (w) that R(I −Aα) ⊂ R(A) for all α, and R(H − I) ⊂ R(A). Thus,
if x∗ ∈ X∗ is such that x∗ = 0 on R(A), then 〈xh, x∗〉 = limα 〈AαHx, x∗〉 =
〈Hx, x∗〉 = 〈x, x∗〉, whence 〈x − xh, x∗〉 = 0. It follows that x − xh ∈ R(A) by
the Hahan-Banach theorem, and thus (M1) completes the proof.

Lastly we consider the condition

(d) B∗
αx∗=ϕ(α)x∗ for all x∗∈X∗ such that x∗=0 on R(A), and limα |ϕ(α)|=∞.

Lemma 2. Under the hypotheses (a), (b′), (M1), (w′) and (d), the condition
y ∈ R(A) is equivalent to supα ‖Bαy‖ < ∞.

Proof. Suppose y = Ax for some x ∈ D(A). Then Bαy = BαAx = x−Aαx
for all α by (b′), and hence supα ‖Bαy‖ ≤ (1 + M)‖x‖ by (a).

Conversely, suppose supα ‖Bαy‖ < ∞. Since H is weakly compact and
BαHy = HBαy by (w′), it follows that {BαHy} has a weak cluster point xp ∈ X .
Let {BβHy} be a subnet of {BαHy} with

(5) xp = weak- lim
β

BβHy.

If x∗ ∈ X∗ is such that x∗ = 0 on R(A), then

〈xp, x∗〉 = lim
β

〈BβHy, x∗〉 = lim
β

ϕ(β)〈Hy, x∗〉 and lim
β

|ϕ(β)| = ∞,

by (d). It follows that 〈Hy, x∗〉 = 0, and hence Hy ∈ R(A) by the Hahn-Banach
theorem. Thus PHy = 0 by (M1). Furthermore, by (b′),

Hy = Hy − PHy = lim
β

(Hy − AβHy) = lim
β

ABβHy,
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so that (5) and the (weak) closedness of A can be applied to infer that xp ∈ D(A)
and Hy = Axp. Since Hy − y = Ax for some x ∈ D(A) by (w′), we conclude
that y = Hy − (Hy − y) = A(xp − x), and this completes the proof.

Remark 1. Under the hypotheses of Lemma 2, the condition supα ‖Bαy‖ < ∞
is equivalent to lim infα ‖Bαy‖ < ∞. Indeed, if lim infα ‖Bαy‖ < ∞, then there
exists a subnet {Bβy} of the net {Bαy} such that supβ ‖Bβy‖ < ∞. Then, clearly,
(A, Aβ , Bβ) satisfies conditions (a), (b′), (M1), (w′) and (d) with β in place of α.
It follows from Lemma 2 that y ∈ R(A), and hence supα ‖Bαy‖ < ∞.

Fact 4. (Cf. Theorem 1 of [20].) Let 0 �= λn ∈ ρ(A) for n ≥ 1, and
limn λn = 0. If ‖λn(λn − A)−1‖ ≤ M (< ∞) for all n ≥ 1, and the opera-
tor H =

∑n
j=1 aj(bj −A)−1, where 0 �= bj ∈ ρ(A) and

∑n
j=1 aj/bj �= 0, is weakly

compact, then

(i) X = N (A)⊕ R(A), and
(ii) y∈R(A) ⇔ supn≥1 ‖(λn−A)−1y‖<∞ ⇔ lim infn→∞ ‖(λn−A)−1y‖<∞.

Proof. Put An = λn(λn − A)−1 and Bn = −(λn − A)−1 for n ≥ 1. By an
elementary calculation it is known (cf. [19]) that {An} is an A-ergodic sequence
satisfying condition (c), and {Bn} is its companion sequence satisfying condition
(d). Letting c =

∑n
j=1 aj/bj, we then see that

c−1H − I =
n∑

j=1

c−1(aj/bj)[bj(bj − A)−1 − I ] =
n∑

j=1

c−1(aj/bj)A(bj − A)−1,

so that R(c−1H − I) ⊂ R(A). It is clear that HAn = AnH and HBn = BnH for
all n ≥ 1. Thus, conditions (w) and (w′) hold with c−1H in place of H , and hence
we can apply Lemmas 1 and 2 together with Remark 1 to complete the proof.

Remark 2. Suppose 0 ∈ ρ(A). Then, since R(A) = X , Fact 4 is trivial.

Fact 5. Let T be a bounded linear operator on X such that r(T ) ≤ 1. Let 0 <
rn < 1 for all n ≥ 1, and limn rn = 1. If the operators An = (1− rn)

∑∞
k=0 rk

nT k

satisfy ‖An‖ ≤ M (< ∞) for all n ≥ 1, and the operator H =
∑N

k=1 akT k, where∑N
k=1 ak �= 0, is weakly compact, then

(i) X = N (T − I)⊕ R(T − I), and
(ii) y∈R(T−I) ⇔ supn≥1 ‖∑∞

k=0 rk
nT ky‖<∞ ⇔ lim infn→∞ ‖∑∞

k=0 rk
nT ky‖

< ∞.

Proof. Putting A = T − I and λn = (1 − rn)/rn (hence rn = (λn + 1)−1

and 1 − rn = λn(λn + 1)−1), we see, as in Example 2 (cf. (2)), that An =
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λn(λn − A)−1. It follows that {An} is an A-ergodic sequence satisfying (c), and
that {−(λn−A)−1} = {−rn

∑∞
k=0 rk

nT k} is its companion sequence satisfying (d).
Furthermore, if we set c =

∑N
k=1 ak, then

c−1H − I =
N∑

k=1

c−1ak(T k − I) = (T − I)
N∑

k=1

c−1ak(
k−1∑
j=0

T j),

and so R(c−1H − I) ⊂ R(A). Thus, as in Fact 4, Lemmas 1 and 2 and Remark 1
can be applied to establish Fact 5.

The following result may be of independent interest in view of Theorem 2.3 of
[9] and Theorem 3.3 of [21].

Fact 6. Let H be a weakly compact operator on X such that R(H) ⊂
D(A), AH ⊃ HA and R(H − I) ⊂ R(A). Then A(U ∩ D(A)) ⊂ R(A), where U
is the closed unit ball of X .

Proof. Let xn ∈ U ∩ D(A), n = 1, 2, . . . , and y ∈ X be such that
limn→∞ ‖Axn − y‖ = 0. Since H is weakly compact, there exists a subsequence
{nj}∞j=1 and a point xp ∈ X such that xp = weak- limj Hxnj . Then we have
limj AHxnj = limj HAxnj = Hy, since limj→∞ ‖Axnj − y‖ = 0, and thus,
from the (weak) closedness of A we see that xp ∈ D(A) and Axp = Hy. On the
other hand, since R(H − I) ⊂ R(A) by hypothesis, there exists x ∈ D(A) such
that Hy − y = Ax. Thus, y = Hy − (Hy − y) = A(xp − x), and this completes
the proof.

Lemma 3. Under the hypotheses (a), (b′), (M1) and (d) the following hold:
(i) If y ∈ A(R(A) ∩ D(A)), then limα Bαy exists.

(ii) If {Bαy} has a weak cluster point x ∈ X , then x = limα Bαy, x ∈ R(A)∩
D(A) and y = Ax.

Proof.
(i) Suppose y = Ax, where x ∈ R(A)∩D(A). Then Bαy = BαAx = x−Aαx

by (b′), and limα Bαy = x − limα Aαx = x − Px = x by (M1), since
x ∈ R(A).

(ii) Let x∗ ∈ X∗ be such that x∗ = 0 on R(A). Since 〈Bαy, x∗〉 = ϕ(α)〈y, x∗〉
and limα |ϕ(α)| = ∞ by (d), the relation

0 = lim inf
α

|〈Bαy, x∗〉 − 〈x, x∗〉| = lim inf
α

|ϕ(α)〈y, x∗〉 − 〈x, x∗〉|

implies 〈y, x∗〉 = 0. Consequently y ∈ R(A). Denoting by {Bβy} a subnet
of {Bαy} such that x = weak- limβ Bβy, and then using (b′), (M1) and
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the (weak) closedness of A, we see that x ∈ D(A) and y = y − Py =
limβ (y − Aβy) = weak- limβ ABβy = Ax. Furthermore,

x = weak- lim
β

Bβy = weak- lim
β

BβAx = weak- lim
β

ABβx ∈ R(A),

so that x ∈ R(A) ∩ D(A), and hence limα Bαy = x by the above proof of
(i). This completes the proof.

From the proof of (i) of the above lemma we see that if y = Ax for some
x ∈ R(A)∩D(A), then x = limα Bαy ; it follows that to every y ∈ A(R(A)∩D(A))
there corresponds a unique x ∈ R(A) ∩ D(A) such that y = Ax.

Remark 3. Under the hypotheses (a), (b′), (M1) and (d), we have: y ∈
A(D(P ) ∩ D(A)) ⇔ y ∈ A(R(A) ∩ D(A)) ⇔ limα Bαy exists ⇔ {Bαy} has a
weak cluster point, so that, in particular, if D(A) ⊂ D(P ), then y ∈ A(R(A) ∩
D(A)) is equivalent to y ∈ R(A). Indeed, by Lemma 3 it suffices to show that
y ∈ A(D(P ) ∩ D(A)) implies y ∈ A(R(A) ∩ D(A)). For this purpose, suppose
y = Ax for some x ∈ D(P ) ∩ D(A). Since D(P ) = N (A) ⊕ R(A) by (M1), we
then have x = x1 + x2 with x1 ∈ N (A) and x2 ∈ R(A). Then it follows that
x2 = x−x1 ∈ D(A), and hence y = Ax = Ax1+Ax2 = Ax2 ∈ A(R(A)∩D(A)).
This completes the proof.

4. THE RANGE OF THE OPERATOR T − I

In this section we consider a bounded linear operator T on X . Let γ > −1,
and suppose the Cesàro means Cγ

n(T ) of order γ satisfy

(6) sup
n≥0

‖Cγ
n(T )‖ = M (< ∞).

It follows (cf. Chapter III of Zygmund [24]) that r(T ) ≤ 1, and that

(7) sup
0<r<1

‖(1− r)
∞∑

k=0

rkT k‖ ≤ sup
n≥0

‖Cα
n (T )‖ ≤ M

for all α with γ < α < ∞.
We use the following fundamental equation (this can be easily checked from

Chapter III of Zygmund [24]):

(8) (T − I)Cα
n (T ) =

α

n + 1
[Cα−1

n+1 (T )− I ]
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for α �= 0,−1,−2, . . . , and n ≥ 0. By this, if we set

(9) A = T − I, An = Cγ+1
n+1 (T ), and Bn =

−(n + 1)
γ + 2

Cγ+2
n (T ) for n ≥ 0,

then

(10) ABn = BnA =
−(n + 1)

γ + 2
(T − I) Cγ+2

n (T ) = I − Cγ+1
n+1 (T ) = I − An,

and ‖An‖ ≤ M for all n ≥ 1, by (7). Furthermore, using (6) and the relations

(11) AnA = AAn = (T − I) Cγ+1
n+1(T ) =

γ + 1
n + 2

[Cγ
n+2(T )− I ],

we get limn→∞ ‖AnA‖ = 0. Thus {An} is an A-ergodic sequence satisfying
condition (c), and {Bn} is its companion sequence. To see that {Bn} satisfies
condition (d), suppose x∗ ∈ X∗ is such that x∗ = 0 on R(A). Then, for x ∈ X we
have

(12) 〈Bnx, x∗〉 =
〈−(n + 1)

γ + 2
Cγ+2

n (T )x, x∗
〉

=
−(n + 1)

γ + 2
〈x, x∗〉,

whence B∗
nx∗ = ϕ(n)x∗, with ϕ(n) = −(n + 1)/(γ + 2). This proves that {Bn}

satisfies (d). Therefore it follows from the preceding section that if we set

D(P ) = {x ∈ X : lim
n

Anx exists}, and Px = lim
n

Anx for x ∈ D(P ),

then (M1) and (M2) hold with An in place of Aα.

Before continuing the argument the author thinks it would be appropriate to
mention the necessity of introducing condition (6) for our discussion. As is well-
known (cf. [8], [11]), if T is a positive linear operator on a Banach lattice, then
supn≥0 ‖C1

n(T )‖ < ∞ is equivalent to sup0<r<1 ‖(1− r)
∑∞

k=0 rkT k‖ < ∞. Of
course, this equivalence is strongly due to the positivity of T , and if we do not
assume the positivity of T , the situation is quite different. To see this, the following
results (cf. [11]) would be interesting; and furthermore by (i) below it seems that
the only case γ ≥ 0 is of interest.

(i) There exists an example of a positive linear isometry T on an L1-space such
that supn≥0 ‖Cγ

n(T )‖1 = ∞ for all γ with −1 < γ < 0. (Here, we have
supn≥0 ‖Cγ

n(T )‖1 = 1 for all γ ≥ 0, because ‖T‖1 = 1.)
(ii) If 0 < γ < 1, then there exists an example of positive linear operator T on

an L1-space such that supn≥0 ‖Cγ
n(T )‖1 = ∞, but supn≥0 ‖Cα

n (T )‖1 < ∞
for all α > γ .
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(iii) If k is a positive integer, then there exists an example of a bounded linear
operator T on X such that supn≥0 ‖Ck

n(T )‖ < ∞, but supn≥0 ‖Cβ
n (T )‖ = ∞

for all β with −1 < β < k.

(iv) There exists an example of a bounded linear operator T on X , with r(T ) = 1,
such that supn≥0 ‖(1 − r)

∑∞
k=0 rkT k‖ < ∞, but ‖Cβ

n (T )‖ = ∞ for all β

with −1 < β < ∞.

We continue the argument. The next result is a direct consequence of Lemma 3
and Remark 3 (see also (7) and the proof of Fact 5).

Theorem 1. (Cf. Theorems 2.3 and 2.4 of [19].) Let γ > −1, and suppose (6)
holds. Then the following conditions are equivalent:

(i) y ∈ (T − I)(D(P ));

(ii) y ∈ (T − I)(R(T − I));

(iii) limn nCγ+2
n y exists;

(iv) {nCγ+2
n y} has a weak cluster point;

(v) limr↑1
∑∞

k=0 rkT ky exists;

(vi) {∑∞
k=0 rkT ky} has a weak cluster point as r ↑ 1.

Relating to the above theorem, the next result may be of independent interest.

Lemma 4. If 0 < α < β < ∞ and y ∈ X , then the following hold:

(i) supn≥0 ‖(n + 1)Cα
n (T )y‖ = M < ∞ implies

sup
n≥0

‖(n + 1)Cβ
n (T )y‖ ≤ (β ∨ 1)

(α + 1)
α

M,

and
sup

0<r<1
‖

∞∑
k=0

rkT ky‖ ≤ α + 1
α

M ;

(ii) strong [resp. weak]- limn→∞ nCα
n (T )y = x implies

strong [resp. weak]- lim
n→∞ nCβ

n (T )y = βα−1x,

and
strong [resp. weak]- lim

r↑1

∞∑
k=0

rkT ky = α−1x.
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Proof. To see the first inequality of (i), we notice that Aα
n/Aα−1

n = (α + n)/α

for all n ≥ 0. Thus we have, using the relation Cα
n (T ) = Sα

n (T )/Aα
n (cf. §2), that∥∥∥∥ 1

Aα−1
n

Sα
n (T )y

∥∥∥∥ =
∥∥∥∥ Aα

n

Aα−1
n

Cα
n (T )y

∥∥∥∥ =
∥∥∥∥α + n

α
Cα

n (T )y
∥∥∥∥

=
α + n

α(n + 1)
‖(n + 1)Cα

n (T )y‖ ≤ α + n

α(n + 1)
M ≤ α + 1

α
M,

and so, since (cf. Chapter III of [24])

1

Aβ−1
n

Sβ
n (T )y =

1

Aβ−1
n

n∑
k=0

Aβ−α−1
n−k Sα

k (T )y =
1

Aβ−1
n

n∑
k=0

Aβ−α−1
n−k Aα−1

k

Sα
k (T )y
Aα−1

k

,

and since

Aβ−1
n =

n∑
k=0

A
β−α−1
n−k Aα−1

k , where A
β−α−1
n−k > 0 and Aα−1

k > 0,

we find that ∥∥∥∥β + n

β
Cβ

n (T )y
∥∥∥∥ =

∥∥∥∥∥ A
β
n

A
β−1
n

Cβ
n (T )y

∥∥∥∥∥ =
∥∥∥∥ 1

A
β−1
n

Sβ
n (T )y

∥∥∥∥
≤ 1

Aβ−1
n

n∑
k=0

Aβ−α−1
n−k Aα−1

k

∥∥∥∥∥Sα
k (T )y
Aα−1

k

∥∥∥∥∥ ≤ α + 1
α

M

for all n ≥ 0. Then

‖(n + 1)Cβ
n (T )y‖ =

∥∥∥∥β(n + 1)
β + n

· β + n

β
Cβ

n (T )y
∥∥∥∥

≤ β(n + 1)
β + n

· α + 1
α

M ≤ (β ∨ 1)
α + 1

α
M.

This proves the first inequality. The second inequality of (i) can be proved as in
the proof of (ii) of Fact 2, and hence we may omit the details.

The proof of (ii) is similar to that of (i) with a slight modification, and hence
we also omit the details.

Remark 4. Let γ > −1, and suppose (6) holds. Then we have the following:

(i) For every β with β > γ , we have limn→∞ ‖(T − I)Cβ
n (T )‖ = 0 (cf. the

proof of Lemma 1 of [3]); thus by putting

A′
n = Cβ

n+1(T ), and B′
n =

−(n + 1)
β + 1

Cβ+1
n (T ) for n ≥ 0,
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we get another A-ergodic sequence {A′
n} satisfying condition (c), and its

companion sequence {B′
n} satisfying condition (d). It follows that the con-

dition y ∈ (T − I)(D(P )) is equivalent to the existence of the limit limn→∞
nCβ+1

n (T )y, with β > γ . Apparently, this condition is stronger than (iii) in
Theorem 1, by Lemma 4. On the other hand, the condition y ∈ (T−I)(D(P ))
does not imply the existence of the limit limn→∞ nCγ+1

n (T )y, in general. In
fact, if γ = 0, let T be a unitary operator on a Hilbert space H . Then T is
mean ergodic, and (n + 1)C1

n(T )(T − I)x = T n+1x − x for x ∈ H . Here,
the existence of the limit limn→∞ T n+1x cannot be expected, in general. As
a counter-example for the case γ = 1, we can take a bounded linear oper-
ator T on a reflexive Banach space X such that supn≥0 ‖C1

n(T )‖ < ∞,
and also such that lim supn→∞ n−1‖T nx‖ > 0 for some x ∈ X (cf.
[8] or [11]). Then clearly limn→∞ C1

n(T )x fails to exist, but we have
D(P ) = N (T − I)⊕ R(T − I) = X , since X is reflexive. By (8)

(n + 1)C2
n(T )(T − I)x = 2[C1

n+1(T )x− x],

whence the limit limn→∞ nC2
n(T )y, with y = (T − I)x, does not exist.

(ii) If y = (T − I)x for some x ∈ X , then, by (8)

nCγ+1
n (T )y = nCγ+1

n (T )(T − I)x = n
γ + 1
n + 1

[Cγ
n+1(T )x − x],

and thus we have supn≥0 ‖nCγ+1
n (T )y‖ < ∞. But here, if 0 < ε < 1, then

we cannot obtain the inequality supn≥0 ‖nCγ+ε
n (T )y‖ < ∞, in general. In

fact, if T is a bounded linear operator on X such that supn≥0 ‖Ck
n(T )‖ <

∞, where k is a positive integer, and also such that supn≥0 ‖Cβ
n (T )‖ =

∞ for all β with −1 < β < k, then to each δ with 0 < δ < 1 there
corresponds x ∈ X so that supn≥0 ‖Ck−δ

n (T )x‖ = ∞. Then, we must have
supn≥0 ‖nCk+1−δ

n (T )(T − I)x‖ = ∞, by (8).

Theorem 2. (Cf. Corollary 2 of [12].) Let γ > −1, and suppose (6) holds. If
the operator H =

∑N
k=1 akT k, where

∑N
k=1 ak �= 0, is weakly compact, then

(i) X = N (T − I)⊕ R(T − I), and

(ii) y ∈ R(T −I) ⇔ supn≥0 ‖nCγ+1
n (T )y‖ < ∞ ⇔ lim infn→∞ ‖nCγ+2

n (T )y‖
<∞ ⇔ sup0<r<1 ‖∑∞

k=0 rkT ky‖<∞ ⇔ lim infr↑1 ‖∑∞
k=0 rkT ky‖<∞.

Proof.

(i) By virtue of (7), this follows from (i) of Fact 5.
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(ii) By (ii) of Remark 4 and (i) of Lemma 4, we see that

y ∈ R(T − I) ⇒ sup
n≥0

‖nCγ+1
n (T )y‖ < ∞ ⇒ lim inf

n→∞ ‖nCγ+2
n y‖ < ∞;

and lim infn→∞ ‖nCγ+2
n y‖ < ∞ ⇒ y ∈ R(T − I) follows from Lemma 2

and Remark 1. The remaining parts follow immediately from Fact 5. This
completes the proof.

Remark 5. It is interesting to note that the condition supn≥0 ‖nCγ+1
n (T )y‖ <

∞ does not imply y ∈ R(T − I), in general. Indeed, it is known (cf. [12]) that
there exists an example of a mean ergodic linear contraction T on X such that
supn≥0 ‖nC1

n(T )y‖ < ∞ does not imply y ∈ R(T − I). Clearly, T satisfies (6),
with γ = 0 and M = 1, in this case. (See also Facts 4 and 5.)

Theorem 3. (Cf. Theorem 2.3 of [9].) Let γ > −1, and suppose (6) holds.
Then the following conditions are equivalent:

(i) {y ∈ X : supn≥0 ‖nCγ+1
n (T )y‖ < ∞} = R(T − I);

(ii) (T − I)U ⊂ R(T − I), where U = {x ∈ X : ‖x‖ ≤ 1};
(iii) {y ∈ X : lim infr↑1 ‖∑∞

k=0 rkT ky‖ < ∞} = R(T − I).

Proof.
(i) ⇒ (ii). For every x ∈ U we have, by (8),

‖nCγ+1
n (T )(T − I)x‖ ≤ (γ + 1)‖Cγ

n+1(T )x − x‖ ≤ (γ + 1)(M + 1),

and so

(T − I)U ⊂ {y ∈ X : sup
n≥0

‖nCγ+1
n (T )y‖ ≤ (γ + 1)(M + 1)}.

Hence, (i) implies that (T − I)U ⊂ R(T − I).
(ii) ⇒ (iii). Putting A = T − I and λ = (1− r)/r for 0 < r < 1 (cf. the proof

of Fact 5), we have

λ(λ − A)−1 = (1− r)
∞∑

k=0

rkT k, and (λ − A)−1 = r

∞∑
k=0

rkT k,

so that supλ>0 ‖λ(λ− A)−1‖ ≤ M by (7), and hence {λ(λ− A)−1}λ>0 is an A-
ergodic net satisfying (c), and {−(λ−A)−1}λ>0 is its companion net satisfying (d).
In particular, we have that ‖Aλ(λ−A)−1‖ = ‖λ(I−λ(λ−A)−1)‖ ≤ λ(1+M) ↓ 0
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as λ ↓ 0. Thus we can apply Theorem 3.3 of Shaw-Li [21] to infer that (ii) is
equivalent to

(iii)′ {y ∈ X : sup0<r<1 ‖∑∞
k=0 rkT ky‖ < ∞} = R(T − I),

which is also equivalent to (iii) (cf. Remark 1).
(iii) ⇒ (i). By (i) of Lemma 4 and (ii) of Remark 4 we see that (iii)′ implies

(i). This completes the proof.

5. THE RANGE OF THE GENERATOR A Of A C0-SEMIGROUP OF OPERATORS

In this section we consider a C0-semigroup {Tt} = {Tt}t≥0 of bounded linear
operators on X . Thus T0 = I , Tt+s = TtTs for t, s ≥ 0, and for every x ∈ X the
mapping t �→ Ttx is strongly continuous on [0, ∞). Its generator A is defined by

D(A) = {x ∈ X : lim
t↓0

Ttx − x

t
exists}, and Ax = lim

t↓0
Ttx − x

t
for x ∈ D(A).

Then it is known (cf. e.g. [13]) that A is a densely defined closed operator in X .
For α ≥ 0 we define the Cesàro means Cα

t , t > 0, of order α of {Tt} by

Cα
t =




Tt if α = 0,

αt−α

∫ t

0
(t − s)α−1Ts ds if α > 0.

In particular, we have C1
t x = t−1

∫ t
0 Tsx ds for x ∈ X . By Fubini’s theorem, and

then by an induction argument on n we easily see that
(i) if 0 < α, β < ∞, then for every x ∈ X

(13) Cα+β
t x =

∫ t

0

(t − s)β−1

[∫ s

0

(s − r)α−1Trx ds

]
ds∫ t

0

(t − s)β−1

[∫ s

0

(s − r)α−1dr

]
ds

,

(ii) if n ≥ 1 is an integer, then for every x ∈ X

(14) Cn
t x = n! t−n

∫ t

0

[∫ s1

0

(∫ s2

0

(
. . .

(∫ sn−1

0
Tsnx dsn

)
. . .

)
ds3

)
ds2

]
ds1.

Furthermore, if 0 < α < β < ∞, then for every x ∈ X

(15) sup
t>0

‖Ttx‖ ≥ sup
t>0

‖Cα
t x‖ ≥ sup

t>0
‖Cβ

t x‖.

Let γ ≥ 0, and assume that

(16) sup
t>0

‖Cγ
t ‖ = M (< ∞).
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We then choose a positive integer n so that γ ≤ n. By (15) we have ‖Cn
t ‖ ≤ M

for all t > 0. Thus, by (14), for λ ∈ C with �λ > 0 we can define a bounded
linear operator R(λ) on X by

(17)
R(λ)x = λn

∫ ∞
0 e−λt

{∫ t
0

[∫ s1

0 (. . . (
∫ sn−1

0 Tsnx dsn) . . .) ds2

]
ds1

}
dt

for x ∈ X.

On the other hand, if �λ > max {0, ω0} (ω0 denotes the growth order of {Tt}),
then, using Fubini’s theorem n times we have

(λ − A)−1x =
∫ ∞

0
e−λtTtx dt = R(λ)x for x ∈ X,

so that (λ − A)−1 = R(λ). And, since the operator-valued function λ �→ R(λ) is
analytic on {λ : �λ > 0}, it follows by analytic continuation that

(18) {λ : �λ > 0} ⊂ ρ(A), and (λ − A)−1 = R(λ) for λ with �λ > 0.

It also follows from (14) and (17) that for every x ∈ X

(19) sup
λ>0

‖λ(λ− A)−1x‖ = sup
λ>0

‖λR(λ)x‖ ≤ sup
t>0

‖Cn
t x‖,

and thus

(20) sup
λ>0

‖λ(λ − A)−1‖ = sup
λ>0

‖λR(λ)‖ ≤ M.

We now use the fundamental equation (it is interesting to compare this with
(8)):

(21) Cα+1
t A ⊂ ACα+1

t =
α + 1

t
[Cα

t − I ] (t > 0, α ≥ 0),

which is due to Shaw [19] for the special case α = 1. This can be proved as
follows. By (13), or using Fubini’s theorem directly, we observe that

∫ t

0
(t − s)αTsx ds =




α

∫ t

0
(t − s)α−1

(∫ s

0
Trx dr

)
ds if α > 0,

∫ t

0

Tsx ds if α = 0.

Thus, if x ∈ X and α > 0, then by the closedness of A we see that Cα+1
t x ∈ D(A),

and

ACα+1
t x=

α + 1
tα+1

A

∫ t

0
(t−s)αTsx ds =

α(α + 1)
tα+1

∫ t

0
(t−s)α−1A

(∫ s

0
Trx dr

)
ds
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=
α(α + 1)

tα+1

∫ t

0
(t − s)α−1(Tsx − x) ds =

α + 1
t

[Cα
t − I ]x.

By a similar calculation, if x ∈ D(A) and α > 0, then Cα+1
t Ax = (α+1)t−1 [Cα

t −
I ]x. Hence, (21) holds for the case α > 0. The special case α = 0 is a basic property
of a C0-semigroup.

By (15) and (21), if we set

(22) At = Cγ+1
t , and Bt =

−t

γ + 2
Cγ+2

t for t > 0,

then

(23)

{
supt>0 ‖At‖ ≤ M, BtA ⊂ ABt = I − At,

AtA ⊂ AAt = γ+1
t [Cγ

t − I ], and limt→∞ ‖AAt‖ = 0.

Hence {At} is an A-ergodic net satisfying condition (c), and {Bt} is its com-
panion net. It is also easily checked that {Bt} satisfies condition (d). Now we
define

D(P ) = {x ∈ X : lim
t→∞ Atx exists}, and Px = lim

t→∞ Atx for x ∈ D(P ).

Then, (M1) and (M2) hold; and we have N (A) = {x ∈ X : Ttx = x for all t > 0}
and R(A) = {Ttx − x : x ∈ X, t > 0}. The proof of the next result is similar to
that of Theorem 1; hence we may omit the details.

Theorem 4. (Cf. Theorem 3.4 of [19].) Let γ ≥ 0, and suppose (16) holds.
Then the following conditions are equivalent:

(i) y ∈ A(D(P )∩D(A)); (ii) y ∈ A(R(A)∩D(A)); (iii) limt→∞ tCγ+2
t y

exists; (iv) {tCγ+2
t y} has a weak cluster point as t → ∞; (v) limλ↓0 (λ−A)−1y

exists; (vi) {(λ − A)−1y} has a weak cluster point as λ ↓ 0.

The next result may be regarded as a continuous version of Lemma 4.

Lemma 5. Let γ ≥ 0, and suppose (16) holds. If 1 ≤ α < β < ∞ and y ∈ X ,
then the following hold:

(i) supt>0 ‖tCα
t y‖ = M < ∞ implies

sup
t>0

‖tCβ
t y‖ ≤ βα−1M, and sup

λ>0
‖(λ − A)−1y‖ ≤ α−1M ;

(ii) strong [resp. weak]- limt→∞ tCα
t y = x implies

strong [resp. weak]- lim
t→∞ tCβ

t y = βα−1x,
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and
strong [resp. weak]- lim

λ↓0
(λ − A)−1y = α−1x.

Proof. To prove this lemma, we use the Beta function B(p, q), where p, q > 0.
By the relations

∫ t

r
(t − s)p−1(s − r)q−1 ds =

∫ t−r

0
(t − (s + r))p−1sq−1 ds

= (t − r)p+q−1

∫ 1

0
(1− s)p−1sq−1 ds = (t − r)p+q−1B(p, q)

for 0 ≤ r ≤ t, it follows that

B(β − α, α)
∫ t

0

(t − r)β−1Try dr =
∫ t

0

(∫ t

r

(t − s)β−α−1(s − r)α−1ds

)
Try dr

=
∫ t

0
(t − s)β−α−1

(∫ s

0
(s − r)α−1Try dr

)
ds (by Fubini’s theorem)

=




∫ t

0
(t − s)β−α−1

(∫ s

0
(s − r)α−2dr

) ∫ s

0
(s − r)α−1Try dr∫ s

0
(s − r)α−2dr

ds if α > 1,

∫ t

0
(t − s)β−2

(∫ s

0
Try dr

)
ds if α = 1.

Thus, if α > 1, then

tCβ
t y =

β

tβ−1

∫ t

0
(t − r)β−1Try dr

=
β

tβ−1B(β − α, α)

∫ t

0

(t − s)β−α−1

(∫ s

0

(s − r)α−2dr

) ∫ s

0

(s − r)α−1Try dr∫ s

0

(s − r)α−2dr

ds.

Here we have, as above,∫ t

0
(t − s)β−α−1

(∫ s

0
(s − r)α−2dr

)
ds = B(β − α, α − 1)

∫ t

0
(t − r)β−2dr

=
B(β − α, α− 1)tβ−1

(β − 1)
,
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and ∥∥∥∥
∫ s

0
(s − r)α−1Try dr

∥∥∥∥∫ s

0
(s − r)α−2dr

=
α − 1
sα−1

∥∥∥∥
∫ s

0
(s − r)α−1Try dr

∥∥∥∥
=

α − 1
α

‖sCα
s y‖ ≤ α − 1

α
M.

It follows that

‖tCβ
t y‖ ≤ β

tβ−1B(β − α, α)
· B(β − α, α− 1)tβ−1

β − 1
· α − 1

α
M = βα−1M

for all t > 0. On the other hand, if α = 1, then

tCβ
t y=

β

tβ−1

∫ t

0

(t−r)β−1Try dr=
β

tβ−1B(β − 1, 1)

∫ t

0

(t−s)β−2

(∫ s

0

Try dr

)
ds,

and ∥∥sC1
s y

∥∥ =
∥∥∥∥
∫ s

0
Try dr

∥∥∥∥ ≤ M.

Thus, ∥∥∥tCβ
t y

∥∥∥ ≤ β

tβ−1B(β − 1, 1)
· tβ−1

β − 1
M = βM

for all t > 0. This proves the first inequality of (i).
To prove the second inequality of (i), we observe from (14), (17) and (18) that

if n ≥ max{γ, α} and λ > 0, then

(λ − A)−1y = λn

∫ ∞

0
e−λt

{∫ t

0

[∫ s1

0
(. . . (

∫ sn−1

0
Tsny dsn) . . .) ds2

]
ds1

}
dt

= λn

∫ ∞

0

e−λt tn

n!
Cn

t y dt.

Therefore,

‖(λ − A)−1y‖ ≤ λn

∫ ∞

0
e−λt tn−1

n!
‖tCn

t y‖ dt ≤ λn

∫ ∞

0
e−λt tn−1

n!
M ′ dt =

M ′

n
,

where M ′ := supt>0 ‖tCn
t y‖; we note that M ′ ≤ nα−1M < ∞ by the first

inequality of (i). This completes the proof of the second inequality of (i).
The proof of (ii) is similar to that of (i) with a slight modification, and hence

we omit the details.

Theorem 5. Let γ ≥ 0, and suppose (16) holds. If the operator H =∫ β
α a(t)Tt dt, where a(t) is a real-valued continuous function on the interval [α, β]

with
∫ β
α a(t) dt �= 0, is weakly compact, then
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(i) X = N (A)⊕ R(A), and
(ii) y ∈ R(A) ⇔ supt>0 ‖tCγ+1

t y‖ < ∞ ⇔ lim inft→∞ ‖tCγ+2
t y‖ < ∞

⇔ supλ>0 ‖(λ − A)−1y‖ < ∞ ⇔ lim infλ↓0 ‖(λ − A)−1y‖ < ∞.

Proof. We may assume that
∫ β
α a(t) dt = 1. Then, using the closedness of A,

we have

(H − I)x =
∫ β

α
a(t)[Ttx − x] dt =

∫ β

α
a(t)A

(∫ t

0
Tsx ds

)
dt

= A

∫ β

α
a(t)

(∫ t

0
Tsx ds

)
dt

for all x ∈ X , so that R(H − I) ⊂ R(A). By this, together with the fact that
Cη

t H = HCη
t and (λ − A)−1H = H(λ − A)−1 for all η ≥ 0, t > 0 and

λ > 0, we see that conditions (w) and (w′) hold for (A, {At}, {Bt}), and also
for (A, {λ(λ − A)−1}, {(λ − A)−1}). Therefore, (i) follows from Lemma 1; and
(ii) follows from (21) with α = γ , Lemmas 5 and 2, and Remark 1.

Example 3. There exists an example of a mean ergodic C0-semigroup {Tt} of
linear isometries on X such that supt>0 ‖tC1

t y‖ < ∞ does not imply y ∈ R(A).
To see this, let X = C0(R) be the space of all scalar-valued continuous functions
f on the real line R such that lims→−∞ f(s) = 0 = lims→∞ f(s). By the norm

(24) ‖f‖ = sup{|f(s)| : s ∈ R},

X becomes a Banach space. Let {Tt} = {Tt}t≥0 be the C0-semigroup of linear
isometries on X defined by

(25) Ttf(s) = f(t + s) for s ∈ R.

It is immediate that limb→∞ b−1‖ ∫ b
0 Ttf dt‖ = 0 for every f ∈ X . Thus {Tt} is

a mean ergodic semigroup. Let g be the function in X defined by

g(s) =




s if 0 ≤ s ≤ 1,

2− s if 1 ≤ s ≤ 2,

0 otherwise.

Then, a simple calculation shows that

sup
t>0

‖tC1
t g‖ = sup

t>0

∥∥∥∥
∫ t

0

Tug du

∥∥∥∥ ≤ 1.
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But we have g �∈ R(A). To see this, assume the contrary: g = Ah for some
h ∈ D(A). Then, since D(A) = {f ∈ C0(R) : f ′ ∈ C0(R)}, and since Af = f ′

for f ∈ D(A), we have g = h′. It follows that h(0) − h(s) =
∫ 0
s g(t) dt for

all s ≤ 0, so that h(s) = h(0) for all s ≤ 0, by the definition of g. Therefore
h(0) = lims→−∞ h(s) = 0. This implies that for all s ≥ 2

h(s) = h(0) +
∫ s

0
g(t) dt =

∫ 2

0
g(t) dt = 1,

which is a contradiction, because we must have lims→∞ h(s) = 0. On the
other hand, it is clear that {Tt} satisfies (16), with γ = 0 and M = 1. (In-
cidentally we remark that by putting T = T1 we have supn≥0 ‖nC1

n(T )g‖ =
supn≥0 ‖

∑n
k=0 T kg‖ ≤ 1. But, we also have g �∈ R(T−I). Indeed, if g = (T−I)h

for some h ∈ C0(R), then h(s) = −g(s) + Th(s) = −g(s) + h(1 + s) ≤ h(1 + s)
for all s ∈ R, by the definition of g. Since h ∈ C0(R), this is possible only when
h = 0 on R. But, since g �= 0, we must have h �= 0, and hence this is impossible.
Clearly, T is a mean ergodic linear isometry on C0(R). Cf. Remark 5.)

By virtue of (21) with α = γ and Lemma 5, the next theorem can be proved
by essentially the same argument as that of Theorem 3, and hence we omit the
details. (From Theorem 3.3 of [21] (see also Theorem 2.3 of [9]) we see that if
supλ>0 ‖λ(λ−A)−1‖ < ∞, then the condition A(U ∩ D(A)) ⊂ R(A) is equivalent
to that R(A) is an Fσ-set.)

Theorem 6. Let γ ≥ 0, and suppose (16) holds. Then the following conditions
are equivalent:

(i) {y ∈ X : supt>0 ‖tCγ+1
t y‖ < ∞} = R(A);

(ii) A(U ∩ D(A)) ⊂ R(A), where U = {x ∈ X : ‖x‖ ≤ 1};
(iii) {y ∈ X : lim infλ↓0 ‖(λ − A)−1y‖ < ∞} = R(A).

6. THE RANGE OF THE GENERATOR A OF A STRONGLY CONTINUOUS COSINE OPERATOR

FUNCTION

In this section we consider a strongly continuous cosine operator function {C(t)} =
{C(t)}t≥0. Thus, C(0) = I , C(t + s) + C(t− s) = 2C(t)C(s) for t ≥ s ≥ 0, and
lims→t ‖C(s)x − C(t)x‖ = 0 for t ≥ 0 and x ∈ X . Its generator A is defined by

D(A) = {x ∈ X : lim
t↓0

2[C(t)x − x]
t2

exists}

and
Ax = lim

t↓0
2[C(t)x − x]

t2
for x ∈ D(A).
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It is known (cf. e.g. Sova [22]) that A is a densely defined closed operator in
X . As in §5, we define the Cesàro means Cα

t , t > 0, of order α ≥ 0 of the cosine
operator function {C(t)} by

Cα
t =




C(t) if α = 0,

αt−α

∫ t

0
(t − s)α−1C(s) ds if α > 0.

In particular, we have C1
t x = t−1

∫ t
0 C(s)x ds for x ∈ X .

Let γ ≥ 0, and assume that (16) holds (i.e. supt>0 ‖Cγ
t ‖ = M < ∞). As

observed in §5, if n is a positive integer with n ≥ γ , then, since ‖Cn
t ‖ ≤ M for

all t > 0, we can define a bounded linear operator R(λ2) on X , for λ ∈ C with
�λ > 0, by

(26) R(λ2)x=λn−1

∫ ∞

0

e−λt

{∫ t

0

[∫ s1

0

(
. . .

(∫ sn−1

0

C(sn)x dsn

)
. . .

)
ds2

]
ds1

}
dt

for x ∈ X . Then we have, as in §5, that

(27) {λ2 : �λ > 0} ⊂ ρ(A), and (λ2 − A)−1 = R(λ2) for λ with �λ > 0

(cf. e.g. [22], [23]). Since

(28) sup
λ>0

‖λ(λ − A)−1x‖ = sup
λ>0

‖λR(λ)x‖ ≤ sup
t>0

‖Cn
t x‖

for every x ∈ X , we have

(29) sup
λ>0

‖λ(λ − A)−1‖ = sup
λ>0

‖λR(λ)‖ ≤ M.

In this section the following equation is fundamental (cf. (21)):

(30) Cα+2
t A ⊂ ACα+2

t =
(α + 2)(α + 1)

t2
[Cα

t − I ] (t > 0, α ≥ 0),

which is due to Shaw [19] for the special case α = 2. To prove this we first note
by Fubini’s theorem that∫ t

0
(t − s)α+1C(s)x ds = (α + 1)

∫ t

0
(t − s)α(

∫ s

0
C(r)x dr) ds

=




(α + 1)α
∫ t

0
(t − s)α−1(

∫ s

0
(s − u)C(u)x du) ds if α > 0,∫ t

0
(t − s)C(s)x ds if α = 0.
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Then, for x ∈ X and α > 0, we see by the closedness of A that Cα+2
t x ∈ D(A),

and

ACα+2
t x =

α + 2
tα+2

A

∫ t

0
(t − s)α+1C(s)x ds

=
(α + 2)(α + 1)α

tα+2

∫ t

0
(t − s)α−1A(

∫ s

0
(s − u)C(u)x du) ds

=
(α + 2)(α + 1)α

tα+2

∫ t

0

(t − s)α−1(C(s)x − x) ds

=
(α + 2)(α + 1)

t2
[Cα

t − I ]x,

where the third equality comes from Lemma 2.14 of [22]. By a similar calculation,
if x ∈ D(A) and α > 0, then Cα+2

t Ax = (α+2)(α+1)t−2 [Cα
t −I ]x. This proves

(30) for the case α > 0. The special case α = 0 is a basic property of a strongly
continuous cosine operator function.

By (30), together with the fact that supt>0 ‖C(t)x‖ ≥ supt>0 ‖Cα
t x‖ ≥ supt>0

‖Cβ
t x‖ for 0 < α < β < ∞ and x ∈ X , it follows that if we set

(31) At = Cγ+2
t , and Bt =

−t2

(γ + 4)(γ + 3)
Cγ+4

t for t > 0,

then

(32)

{
supt>0 ‖At‖ ≤ M, BtA ⊂ ABt = I − At,

AtA ⊂ AAt = (γ+2)(γ+1)
t2

[Cγ
t − I ], and limt→∞ ‖AAt‖ = 0.

Hence {At} is an A-ergodic net satisfying condition (c), and {Bt} is its companion
net satisfying condition (d). Let

D(P ) = {x ∈ X : lim
t→∞ Atx exists}, and Px = lim

t→∞ Atx for x ∈ D(P ).

Then, as in §5, (M1) and (M2) hold. The following are standard and easily checked:
N (A)={x ∈ X : C(t)x=x for all t > 0}, and R(A)={C(t)x−x : x∈X, t > 0}.

Using these we have the next result, which corresponds to Theorem 4. Since
the proof is essentially the same as that of Theorem 1, we may omit it here.

Theorem 7. (Cf. Theorem 3.7 of [19].) Let γ ≥ 0, and suppose (16) holds.
Then the following conditions are equivalent:

(i) y ∈ A(D(P )∩D(A)); (ii) y ∈ A(R(A)∩D(A)); (iii) limt→∞ t2Cγ+4
t y

exists; (iv) {t2Cγ+4
t y} has a weak cluster point as t → ∞; (v) limλ↓0(λ−A)−1y

exists; (vi) {(λ − A)−1y} has a weak cluster point as λ ↓ 0.
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Lemma 6. Let γ ≥ 0, and suppose (16) holds. If 2 ≤ α < β < ∞ and
y ∈ X , then the following hold:

(i) supt>0 ‖t2Cα
t y‖ = M < ∞ implies

sup
t>0

‖t2Cβ
t y‖ ≤ β(β − 1)

α(α − 1)
M, and sup

λ>0
‖(λ−A)−1y‖ ≤ 1

α(α − 1)
M ;

(ii) strong [resp. weak]-limt→∞ t2Cα
t y = x implies

strong [resp. weak]- lim
t→∞ t2Cβ

t y =
β(β − 1)
α(α − 1)

x,

and
strong [resp. weak]- lim

λ↓0
(λ − A)−1y =

1
α(α − 1)

x.

Proof. From the proof of Lemma 5 we see that

(33) t2Cβ
t y =

β

tβ−2
· 1
B(β − α, α)

∫ t

0
(t−s)β−α−1

(∫ s

0
(s − r)α−1C(r)y dr

)
ds.

Thus, if α > 2, then

t2Cβ
t y =

β

tβ−2B(β − α, α)

∫ t

0
(t − s)β−α−1

(∫ s

0
(s − r)α−3 dr

) ∫ s
0 (s − r)α−1C(r)y dr∫ s

0 (s − r)α−3 dr
ds.

Here ∥∥∥∥
∫ s

0
(s − r)α−1C(r)y dr

∥∥∥∥∫ s

0
(s − r)α−3 dr

=
α − 2
sα−2

∥∥∥∥
∫ s

0
(s − r)α−1C(r)y dr

∥∥∥∥
=

α − 2
α

‖s2Cα
s y‖ ≤ α − 2

α
M ,

and
β

tβ−2B(β − α, α)

∫ t

0

(t − s)β−α−1

(∫ s

0

(s − r)α−3dr

)
ds

=
β

tβ−2B(β − α, α)
· B(β − α, α− 2) · tβ−2

β − 2
=

β(β − 1)
(α − 1)(α− 2)

.
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Hence we have

‖t2Cβ
t y‖ ≤ β(β − 1)

(α − 1)(α− 2)
· α − 2

α
M =

β(β − 1)
(α − 1)α

M

for all t > 0. On the other hand, if α = 2, then

t2Cβ
t y =

β

tβ−2B(β − 2, 2)

∫ t

0

(t − s)β−3

(∫ s

0

(s − r)C(r)y dr

)
ds,

and ∥∥∥∥
∫ s

0

(s − r)C(r)y dr

∥∥∥∥ = 2−1‖s2C2
s y‖ ≤ 2−1M.

Thus,

‖t2Cβ
t y‖ ≤ β

tβ−2B(β − 2, 2)
· tβ−2

β − 2
· 1
2
M =

β(β − 1)
2

M.

This proves the first inequality of (i).
To prove the second inequality of (i), we note that if n ≥ max{γ, α} and λ > 0,

then
(λ2 − A)−1y = R(λ2)y

= λn−1

∫ ∞

0
e−λt

{∫ t

0

[∫ s1

0
(. . . (

∫ sn−1

0
C(sn)y dsn) . . .) ds2

]
ds1

}
dt

= λn−1

∫ ∞

0
e−λt tn

n!
Cn

t y dt (cf. (14))

=
λn−1

n!

∫ ∞

0
e−λttn−2(t2Cn

t y) dt,

where ‖t2Cn
t y‖ ≤ n(n − 1)α−1(α − 1)−1M for all t > 0 by the first inequality of

(i), and
λn−1

n!

∫ ∞

0
e−λttn−2 dt =

1
n!

Γ(n − 1) =
1

n(n − 1)
.

Thus we have

‖(λ2 − A)−1y‖ ≤ 1
n(n − 1)

· n(n − 1)M
α(α − 1)

=
M

α(α − 1)
,

which proves the second inequality of (i).
The proof of (ii) is similar to that of (i), and hence we may omit it.

The next two theorems correspond to Theorems 5 and 6, respectively.

Theorem 8. Let γ ≥ 0, and suppose (16) holds. If the operator H =∫ β
α a(t)C(t) dt, where a(t) is a real-valued continuous function on the interval

[α, β] with
∫ β
α a(t) dt �= 0, is weakly compact, then
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(i) X = N (A)⊕ R(A), and
(ii) y ∈ R(A) ⇔ supt>0 ‖t2Cγ+2

t y‖ < ∞ ⇔ lim inft→∞ ‖t2Cγ+4
t y‖ < ∞

⇔ supλ>0 ‖(λ − A)−1y‖ < ∞ ⇔ lim infλ↓0 ‖(λ − A)−1y‖ < ∞.

Proof. As in the proof of Theorem 5 we may assume that
∫ β
α a(t) dt = 1. Then,

using the closedness of A and Lemma 2.14 of [22], we find that for all x ∈ X

(H − I)x =
∫ β

α
a(t)[C(t)x − x] dt =

∫ β

α
a(t)A

(∫ t

0
(t − s)C(s)x ds

)
dt

= A

∫ β

α
a(t)

∫ t

0
(t − s)C(s)x ds dt,

so that R(H − I) ⊂ R(A). By this, together with (30) with α = γ and Lemma 6,
the present theorem follows as in Theorem 5.

The proof of Theorem 9 below is essentially the same as that of Theorem 3,
and so we may omit the details.

Theorem 9. Let γ ≥ 0, and suppose (16) holds. Then the following conditions
are equivalent:

(i) {y ∈ X : supt>0 ‖t2Cγ+2
t y‖ < ∞} = R(A);

(ii) A(U ∩ D(A)) ⊂ R(A), where U = {x ∈ X : ‖x‖ ≤ 1};

(iii) {y ∈ X : lim infλ↓0 ‖(λ − A)−1y‖ < ∞} = R(A).

Example 4. There exists an example of a mean ergodic cosine operator function
{C(t)} of linear contractions on X such that supt>0 ‖t2C2

t y‖ < ∞ does not imply
y ∈ R(A). To see this, as in Example 3, let X = C0(R) and Ttf(s) = f(t + s)
for t, s ∈ R. Define

(34) C(t) = (Tt + T−t)/2 (t ≥ 0).

Then {C(t)} becomes a strongly continuous cosine operator function on X with
‖C(t)‖ ≤ 1 for all t ≥ 0 (cf. [22]). It is clear that limb→∞ b−1‖ ∫ b

0 C(t)f dt‖ = 0
for every f ∈ X . Thus {C(t)} is mean ergodic. Define a function g in X by

(35) g(s) =




s if 0 ≤ s ≤ 1,

2− s if 1 ≤ s ≤ 3,

s − 4 if 3 ≤ s ≤ 4,

0 otherwise.
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Then, for t > 0 and u ∈ R, we have

t2C2
t g(u) = 2

∫ t

0

(∫ s

0
C(r)g(u) dr

)
ds =

∫ t

0

(∫ u+s

u−s
g(r) dr

)
ds.

It follows from the definition of g that |t2C2
t g(u)| ≤ 4 for all u ∈ R. Hence,

supt>0 ‖t2C2
t g‖ ≤ 4. But we have g �∈ R(A). To see this, assume the contrary:

g = Ah for some h ∈ D(A). Since D(A) = {f ∈ C0(R) : f ′′ ∈ C0(R)} and
Af = f ′′ for f ∈ D(A) (cf. e.g. Example 2.27 of [22]), we then have g = Ah = h′′.
Here h′ ∈ C0(R) by Landau’s inequality (cf. e.g. page 8 of [13]). On the other
hand, by the relation h′(u)− h′(0) =

∫ u
0 g(s) ds for u ∈ R and the definition of g,

we have h′(u) = h′(0) for all u ≥ 4. It follows that h′(0) = limu→∞ h′(u) = 0.
Hence, h′(u) = h′(u) − h′(0) =

∫ u
0 g(s) ds = 0 for all u ≤ 0, because g = 0 on

(−∞, 0]. Consequently we have: h′ = 0 on (−∞, 0], h′ > 0 on (0, 4), and h′ = 0
on [4, ∞). Thus

h(u)− h(0) =
∫ u

0
h′(s) ds = 0 for all u < 0,

and since limu→−∞ h(u) = 0, we have h = 0 on (−∞, 0]. Similarly, h ∈ C0(R)
and h′ = 0 on [4, ∞) imply that h = 0 on [4, ∞). Since h′ > 0 on (0, 4), this
implies that 0 = h(u) − h(0) =

∫ u
0 h′(s) ds =

∫ 4
0 h′(s) ds > 0 for all u > 4, a

contradiction. It is clear that {C(t)} satisfies (16), with γ = 0 and M = 1.

Remark 6. Let {C(t)} be the same as in the above example. If we define
At = C1

t , and Bt = −(t2/6)C3
t for t > 0, then BtA ⊂ ABt = I − C1

t = I − At,
so that {At} is an A-ergodic net with ‖At‖ ≤ 1, and {Bt} is its companion
net satisfying condition (d). We already observed that Pf := limt→∞ Atf =
limt→∞ t−1

∫ t
0 C(s)f ds = 0 for all f ∈ X = C0(R). It follows that (M1) and

(M2) hold. But here we would like to note that condition (c) does not hold for
{At}. In fact, if g is the function in C0(R) defined by (35), then

Atg(s) =
1
2t

∫ s+t

s−t
g(r) dr (s ∈ R).

Thus, (Atg)′(s) = (2t)−1(g(s + t) − g(s − t)) for all s ∈ R. But, since g is not
differentiable at the point 0 ∈ R by its definition, we find that A tg �∈ D(A) for all
t > 0. Therefore, R(At) �⊂ D(A) for all t > 0, and this implies that (c) does not
hold for {At}.

7. CONCLUDING REMARKS

In this section we would like to mention the following two theorems without
proof. By these theorems we may understand the necessity of introducing the bound-
edness condition (16) for C0-semigroups and strongly continuous cosine operator



1222 Ryotaro Sato

functions in order to study our problem. The proofs of these theorems and more
will appear in a forthcoming joint paper with Jeng-Chung Chen and Sen-Yen Shaw.

Theorem 10. Let 0 < γ < 1. Then there exists a C0-semigroup {Tt} [resp. a
strongly continuous cosine operator function {C(t)}] of positive linear operators
on an L1-space such that supt>0 ‖Cγ

t ‖1 = ∞, but supt>0 ‖Cβ
t ‖1 < ∞ for all

β > γ .

Theorem 11. Let k ≥ 1 be an integer. Then there exists a C0-semigroup {Tt}
[resp. a strongly continuous cosine operator function {C(t)}] of bounded linear
operators on X such that sup t>0 ‖Ck

t ‖ < ∞, but supt>0 ‖Cα
t ‖ = ∞ for all α,

with 0 ≤ α < k.
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