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ON ERGODIC AVERAGES AND THE RANGE
OF A CLOSED OPERATOR

Ryotaro Sato

Abstract. For a ~-th order Cesaro mean bounded linear operator 7" on a
Banach space X, we characterize the range R(A) of the operator A =T — I,
by using an A-ergodic net and its companion net which were introduced by
Dotson and developed by Shaw. Similarly, if A is the generator of a v-th order
Cesaro mean bounded Cj-semigroup (or strongly continuous cosine operator
function) of bounded linear operators on X, then we characterize the range
R(A).

1. INTRODUCTION

Let X be a Banach space and A be a (bounded or unbounded) closed operator
in X with domain D(A) and range R(A). By using ergodic theory, many authors
have studied the problem of solving the functional equation Ax = y for a given
y € X. See, for example, Alonso, Hong and Obaya [1], Assani [2], Dotson [4-
6], Krengel and Lin [10], Lin and Sine [12], Sato [14-18], Shaw [19, 20], and
Shaw and Li [21]. In particular, Shaw [19] (see also Dotson [4] and Shaw-Li
[21]) studied deeply the mean ergodic properties of an A-ergodic net {A4,} and
its companion net { B, } consisting of bounded linear operators on X, and applied
them to the problem successfully. In this paper the author intends to adapt Shaw’s
method of study in order to obtain new results and generalize some known results
in [12], [19] and [20]. In §2 some preliminary results are presented, which will
be useful to understand the general situation. In §3 we consider a (bounded or
unbounded) closed operator A. An A-ergodic net {A,} and its companion net
{B,} are defined. (Our definition of an A-ergodic net is slightly different from that

Received September 24, 2004; revised December 16, 2004.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: Primary 47A35, 47A50, 47D05, 47D09.

Key words and phrases: Banach space, ~-th Order Cesaro mean bounded operator, Closed operator,
Range and domain, Generator, Resolvent, Ch-semigroup, Cosine operator function, Ergodic net and
its companion net, Mean ergodic theorem, Cohomology equation, Coboundary.

1193



1194 Ryotaro Sato

used in [21].) Some lemmas and mean ergodic properties of these nets are obtained,
which will be used in later sections. In §4 we apply the results obtained in §3 to
the problem of the form (7' — I')x = y, where T' is a bounded linear operator on X
satisfying sup,,~o [|Ch(T)| < oo for some v > —1, Cjy(T') being the ~-th order
Cesaro mean of the operator sequence {T7}5°,. In §5 [resp. §6] we study the
problem of the form Ax = y, where A is the generator of a Cy-semigroup {73 }+>0
[resp. a strongly continuous cosine operator function {C'(t) }+>0] of bounded linear
operators on X such that sup, ||C}|| < oo for some v > 0, where C] denotes
the Cesaro mean of order v of {T;};>0 [resp. {C(t)}+>0], i-e., CP = Ty [resp.
C?=0C(t)], and

t t
oF =L [ (¢t—s)Tyds  resp. ¢ =L [ (t—s)"1C(s)ds| for v > 0.
t7 Jo t7 Jo

2. PRELIMINARY RESULTS

Let 7" be a bounded linear operator on a Banach space X. We first define its
Cesaro means C) (T) of order v # —1, —2, —3, ... as follows:

cm:(”2")_%(7_;*’“%"* (n>0).

k=0

where <(g> — 1. and <a) _ ala—1)... (a—k+1) for o € R and

k k!
k€ N ={1,2,...}. In particular, we have CO(T) = T" and C}(T) = (n +
n=yr T* for n > 0. In this paper we only consider the case v > —1, because
the other case v < —1 is not interesting (cf. Chapter Il of Zygmund [24]); and
we mainly consider the case v > 0, because a pathological result happens in the
case —1 < v < 0 (cf. Proposition 4.1 of Li-Sato-Shaw [11].) In the following we
give straightforward sufficient conditions for y € R(T'— I) and y € R(T —I), and
similarly for y € R(A) and y € R(A), where A is a closed operator. These will
become necessary conditoins when T' [resp. A] satisfies some appropriate additional
hypotheses; this will be considered in later sections.

Fact 1. Lety € X and the series 33>, r*T*y be summable for all r, with
0O<r<l1 LetO<r,<1lforalln>1,andr, T 1asn — oo. Then the
following hold:

(i) If weak-lim,, (1 —7,,) S92, 7k T y = 0, then y € R(T — I).
(i) If weak-lim,, Y32, r&T*y = z, for some z € X, then 2y € R(T — I) and
y=x9— Txg.
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Proof.

(i) We define f(r) = 372, 7FT"y for 0 < r < 1. If 2* € X* is such that
x*=0on R(T —I), then

((1=r)f(r) (1-r) Zrk —r) > My, y, ).
k=0

Since weak-lim,, .~ (1 — ) f(r,) = 0 by hypothesis, we have
0 =1lim ((1—7)f(rn), 2%) = (y, 27),

which implies y € R(T — I) by the Hahn-Banach theorem.

(i) Since f(r,) converges to x, weakly, there exists a constant M > 0 such that
| f(rn)|| < M for all n > 1. Then

flr) =Tf(rn) =350 rTry — > heo Ty
=y+(rn = 1) o i Ty =y — (1= 1) T f(rn),
and hence
1(f(rn) = Tf(rn)) =yl < (1= 7o) || T[|M — 0
as n — oo. Thus, we have

xg — Txog = weak- lién (f(rn) =Tf(rn)) =v.

On the other hand, since lim,, (1 — r,)| Spo, r¥T*y| = 0, we have y €
R(T — I) by (i), whence T*y ¢ R(T —I) for all k > 0. It follows that
f(rn) € R(T—1I) for all n > 1, and hence xy = weak-lim,, f(r,) €
R(T — I). This completes the proof.

Fact 2. Let y € X. Then the following hold:
(i) If v > —1 and weak-lim,, C}(T)y =0, then y € R(T — I).

(ii) If v > 0 and the set {nCy(T)y : n > 0} is weakly sequentially compact,
then there exists zo € R(T — I) such that y = x¢ — T'zp.

Proof.

(i) Let 2* € X™* be such that z* = 0 on R(T — I). Since (T"y, z*) = (y, =*)
forall n > 0, it follows that (C,) (T")y, =*) = (y, =*). This and the hypothesis
of (i) imply 0 = (y, «*), so that y € R(T — I) by the Hahn-Banach theorem.
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From the hypothesis of (ii) it follows that the set

{anCg(T)y:n > 0}

is weakly sequentially compact, and sup,> (v + n)y H|CH(T)y| < oc.
Thus, letting

A§:<a+n> and S&(T ZAg LT* for a€ R and n >0,
" k=0

we have (cf. Chapter 1l of Zygmund [24]) that for 0 < r < 1,

o o o o
Z r"T"y = (1—-r)"(1—r)"7 Zr”T”y = (1—1")7(2 A) L Zr”T”y
n=0 n n=0 n=0

(1—r) Zr ZAW ) (1—r)7§:r”sg(T)y
n=0 n=0

AT
(I—=r)7 Z:T”A7 L 2Ty,

1
n=0 A'V
where
A 1 2)... !
_1:(7+ )y +2)...(y+m)n! _y+n (n>0).
Aj, nly(y+1)...(v+n—1) v

Since (1 — )Y 3°%° 745" = 1 and A} ~" > 0 for all n > 0, it follows
from Theorem V.6.4 of [7] that the set {> "> [ r"T"y : 0 < r < 1} is weakly
sequentially compact. Hence we can apply (ii) of Fact 1 to complete the
proof.

Example 1. There exists an example showing that (ii) of Fact 2 is not true if the
hypothesis v > 0 is replaced with v = 0. In fact, there may exist f ¢ R(T—1) such
that |nCO(T)f|| — 0 asn — 0 (and so {nCO(T)f : n > 0} is weakly sequentially
compact). To see this, we first note that, by an elementary argument, there exists a
sequence {p,}>>, of positive real numbers (for example, p, = (nlogn)~t) such

that

o0
1>p,10 as n—oo, lim np,=0, and an:oo
n—oo
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Define a measure 1 on Z by

1 if m<o0,

p({m}) = {

DPm if m>1.
We consider X = L;(Z, ), and define an operator 7' : Ly (Z, n) — L1(Z, 1) by

Tf(m)=f(m—1)  (me 2).
It is clear that | T[], = 1. If we set f = xqy, then T" f = x,,y for n >0, and

InCo(T) £l = IInT™ fll = Xyl = npn — 0

as n — oo. We next prove that f ¢ R(T — I). Assume the contrary: f = xjo1 =
Tg — g for some g € Li(Z, p). Then, since xo3(m) = g(m — 1) — g(m) for all
m € Z, it follows that g(0) +1 = g(—1) = g(—2) = ..., and g(0) = g(n) for all
n > 1. Since g € L1(Z, ), we must have 0 = g(0) + 1 =g(—-1) =g(-2) = ...,
and thus —1 = ¢(0) = g(n) for all n > 1. But, this is a contradiction, because
00 = Y0 pa = Y00 lg(n)] - p{n}) < llglh < .

Fact 3. Let A be a closed operator in X with domain D(A) and range R(A).
Let p(A) denote the resolvent set of A, and assume that 0 # \,, € p(A) for n > 1
and lim,, .o, A, = 0. Let y € X. Then the following hold:

(i) If weak-lim,, oo An(An — A) "1y =0, then y € R(A).
(i) 1f weak-lim,, .o, (A, —A) "1y = z( for some zg € X, thenzg € R(A)ND(A)
and y = —Axy.

Proof.

(i) Since y — (y — An(An — A)71y) = Au(A — A) "Ly — 0 weakly as n — oo,
and since y — A\, (A, — A)"ly = —A(\, — A)"ly € R(A), it follows that
y € R(A).

(ii) Since the hypothesis of (ii) implies sup,,>; [[(An — A) "'y < oo, we obtain
that [[A(N, — A) "ty +y| = AN — A) Yy — 0as n — oco. Thus,
by the (weak) closedness of A, we see that xyp € D(A) and —y = Awxo.
Furthermore,

zo = weak- lim (), — A)"ly = weak- lim (\, — A)"tA(—x0)

n—oo n—oo

= weak- lim A(\, — A) " (—x0).

Hence zo € R(A) N D(A), and the proof is complete.
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Example 2. There exists an example showing that the converses of (i) and (ii)
of Facts 1, 2 and 3 fail to hold. To see this, we define a measure . on Z by

1 if m <0,
p({m}) = {

(m+1)2 if m>1.

We consider X = L1(Z, ), and define, as in Example 1, an operator 7' : Ly(Z, u) —
Li(Z, ) by Tf(m) = f(m —1) for m € Z. 1t follows that |77 = (n + 1)?
for n > 0, and hence »(T") = 1, where r(T") denotes the spectral radius of 7. If
we set g = xqoy — X{-1}» then g = T'xy_1y — xq-1} € (T —I)L1(Z, p), and for
0 <r <1 we have

0 if m< -2,
o0
hy(m) = Zr”T”g(m) =¢ —1 if m=-1,
n=0 pmo— bl if m>0.

Therefore,

helli =14 Y (1 =r)rmu({m}) = 1+ (L =) Y r™(m+ 1)

m=0 m=0

>1+(1-r)27" i(m +2)(m+ )™ =1+ (1—7r)"3
m=0

so that lim,11 [|Ar]|1 = limeqy || Do 7T "gll1 = oo, and furthermore

(1) fm 1 —7) f%r"T”gul - .

Next, let A =T —I. If A > 0 then, clearly, A € p(A), and

@) A=At =((A+1)-17)! :(A+1)‘1§:

n=0

Thus, using the equality (A — A)~'Ag = A\(A — A)~1g — g, we get by (1) and (2)
that

TTL
A+ 1)

li A— A) " Agll; > lim M\ — A) " Lgll; —
im (¢ ) ng_ﬁrOl IA( ) gl =gl

(3) A > T"g
Z (A+1)n .

:1.
A0 A1
n=0

— 2 =o00.

Since g € R(T — I), we see that the converses of (i) and (ii) of Facts 1, 2 and
3 fail to hold for y = g and y = —Ag = g — T'g, respectively.
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3. GENERAL REsuLTs oN CLoOSED OPERATORS

In this section we consider a closed operator A in X with domain D(A) and
range R(A). Let {A,} be a net of bounded linear operators on X such that
@ ||[Aall < M (< o) for all o,

(b) R(An—1) C R(A) forall o, and lim,, ||z — A,z =0forall z € N(A) :=
{r € D(A) : Az = 0}.

Let P denote the operator in X defined by

D(P) ={z € X :lim A,z exists}, and Pz =lim A,z for z € D(P).
e} e}

By (a), D(P) is a closed subset of X, and P is a closed operator in X. Fur-
thermore, from (b) we see that

(4) Pr=x forall x € N(A), N(A) C R(P)nD(P), and N(P) C R(A).

We consider the following conditions:

(M1) P2=P, R(P)=N(A), and N(P)= R(A).
(M2) D(P)={x € X : {Ayz} has a weak cluster point}.

(M1) implies at once that D(P) = N(A) @ R(A). In [19], Shaw proved that
(@), (b) and the following condition (c) imply (M1) and (M2). (We note that (c)
does not follow from the above conditions (a), (b), (M1) and (M2). See Remark 6
below.)

(¢ U, R(A) C D(A), weak-lim, AAy,z =0 for all z € X, and
lim, ||AqAz| =0 for all z € D(A).

In many cases there exists another net { B, } of bounded linear operators on X
which is related to A and {A,} in the following way:

(®) R(B,) c D(A)and I — A, = AB, D B,A for all a.

It is direct that (b’) implies (b), and furthermore AA,x = A, Ax for all x €
D(A). As in Dotson [4] and Shaw-Li [21], we will call {A,} an A-ergodic net
and {B,} its companion net.

We next consider the following conditions:

(w) There exists a weakly compact operator H on X such that A,H = H A, for

all a, and R(H —I) C R(A).
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(w’) There exists a weakly compact operator H on X such that B,H = H B,, for
all o, and R(H —I) C R(A).

Lemma 1. (a),(b),(M1),(M2)and (w) imply D(P) = X.

Proof. Letz € X. Since H is weakly compact and A, Hxz = HA,x by (w),
and since ||Aqx|| < M||z| for all « by (a), it follows that {A,Hxz} has a weak
cluster point. Hence Hxz € D(P) by (M2), and then putting

zp, = PHx = liorén A Hzx,

we have x5, € R(P) = N(A) by (M1). To see that x — x;, € R(A), we notice

from (b) and (w) that R(I — A,) C R(A) forall o, and R(H —I) C R(A). Thus,
if ¥ € X* is such that * = 0 on R(A), then (xp, z*) = lim, (A Hzx, z*) =
(Hz, x*) = (x, z*), whence (x — xp, x*) = 0. It follows that z — z;, € R(A) by

the Hahan-Banach theorem, and thus (M1) completes the proof.

Lastly we consider the condition

(d) Biaz*=p(a)x* forall z*€X* such that z*=0o0on R(A), and lim,, |p(a)|=oc.

Lemma 2. Under the hypotheses (a), (b’), (M1), (W) and (d), the condition
y € R(A) is equivalent to sup,, ||Bay|| < oo.

Proof. Suppose y = Az for some z € D(A). Then Byy = BoyAz =z — Ayx
for all a by (b'), and hence sup,, ||Bay| < (1+ M)|z| by (a).

Conversely, suppose sup, ||Bay| < oo. Since H is weakly compact and
B,Hy = HB,y by (W), it follows that { B, Hy} has a weak cluster point z,, € X.
Let { BgHy} be a subnet of {B,Hy} with

(5) x, = weak- hén BgHy.

If 2* € X* is such that z* = 0 on R(A), then
(p. ) = lim (ByHy, a*) = lim o(5) (Hy, ") and lim [¢(3)| = oo,

by (d). It follows that (Hy, =*) = 0, and hence Hy € R(A) by the Hahn-Banach
theorem. Thus PHy = 0 by (M1). Furthermore, by (&),

Hy=Hy— PHy = lién (Hy — AgHy) = lién ABgHy,
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so that (5) and the (weak) closedness of A can be applied to infer that =, € D(A)
and Hy = Ax,. Since Hy —y = Ax for some = € D(A) by (W), we conclude
that y = Hy — (Hy — y) = A(zp, — x), and this completes the proof.

Remark 1. Under the hypotheses of Lemma 2, the condition sup,, || Bay|| < oo
is equivalent to liminf, ||B,y|| < co. Indeed, if liminf, ||Bay|| < oo, then there
exists a subnet { Bgy} of the net { B,y } such that sup || Bgyl|| < co. Then, clearly,
(A, Ag, Bg) satisfies conditions (a), (b’), (M1), (W) and (d) with 5 in place of c.
It follows from Lemma 2 that y € R(A), and hence sup,, ||Bay| < oc.

Fact 4. (Cf. Theorem 1 of [20].) Let 0 # A, € p(A) for n > 1, and
lim, A\, = 0. If [Ay(An — A)7Y| < M (< o) for all n > 1, and the opera-
tor H =377, a;(b; —A)~1, where 0 # b, € p(A) and >y aj/bj # 0, is weakly
compact, then

(i) X=N(A)® R(A), and
(i) yeR(A) & sup,,>; |(An—A) "yl <00 < liminf,, o ||(A—A) " y|| < 0.

Proof. Put A, = \,(A\, —A)~tand B, = —(\, — A)~! for n > 1. By an
elementary calculation it is known (cf. [19]) that {A,} is an A-ergodic sequence
satisfying condition (c), and {B,} is its companion sequence satisfying condition
(d). Letting c = 3"7_, a;/b;, we then see that

n

¢c'H—-1= ic_l(aj/bj)[bj(bj — AT 1= e Hay/b)A(b — A) 7
j=1 j=1

so that R(c™'H —I) C R(A). Itis clear that HA, = A,H and HB,, = B, H for
all n > 1. Thus, conditions (w) and (w’) hold with ¢=' H in place of H, and hence
we can apply Lemmas 1 and 2 together with Remark 1 to complete the proof.

Remark 2. Suppose 0 € p(A). Then, since R(A) = X, Fact 4 is trivial.

Fact 5. Let T be a bounded linear operator on X such that »(7") < 1. Let0 <
r, < 1foralln > 1, and lim,, r,, = 1. If the operators 4,, = (1 —r,) > po, rkT*
satisfy || A, || < M (< oo) for all n > 1, and the operator H = Y4, axT*, where
Z]kvzl ar # 0, is weakly compact, then

(i) X =N(T—-1)®R(T 1), and
(i) yeR(T—I) < sup,s || oo riTry|| <oo < liminf, oo | S peg riT*y|
< 0Q.

Proof. Putting A =T — T and A\, = (1 —r,)/r, (hence r,, = (A, +1)7!
and 1 —r, = A\,(\, +1)71), we see, as in Example 2 (cf. (2)), that A, =
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An(An — A)~L It follows that {A4,,} is an A-ergodic sequence satisfying (c), and
that {—(\,—A) "1} = {—r, Y o2, rET*} is its companion sequence satisfying (d).
Furthermore, if we set ¢ = > az, then

N N k—1
cTH-I=) clap(TF-1)=(T-1)) ¢ la(d T,
k=1 k=1 j=0

and so R(c™'H — I) C R(A). Thus, as in Fact 4, Lemmas 1 and 2 and Remark 1
can be applied to establish Fact 5.

The following result may be of independent interest in view of Theorem 2.3 of
[9] and Theorem 3.3 of [21].

Fact 6. Let H be a weakly compact operator on X such that R(H) C
D(A),AH D HAand R(H —1I) C R(A). Then A(U N D(A)) C R(A), where U
is the closed unit ball of X.

Proof. Let z, € UN D(A), n = 1,2,..., and y € X be such that
lim,, .o ||Az, —y| = 0. Since H is weakly compact, there exists a subsequence
{n;}32, and a point =, € X such that x, = weak-lim; Hz,;. Then we have
lim; AHwz,, = lim; HAz,, = Hy, since lim; ... ||Az,, —y|| = 0, and thus,
from the (weak) closedness of A we see that x, € D(A) and Az, = Hy. On the
other hand, since R(H — I) C R(A) by hypothesis, there exists z € D(A) such
that Hy —y = Ax. Thus, y = Hy — (Hy — y) = A(z, — x), and this completes
the proof.

Lemma 3. Under the hypotheses (a), (b’), (M1) and (d) the following hold:

(¢) Ify € A(R(A)N D(A)), then lim, B,y exists.

(i) If {Byy} has a weak cluster point x € X, then x = lim,, Bay, x € R(A)N
D(A) and y = Ax.

Proof.

(i) Suppose y = Az, where z € R(A)ND(A). Then B,y = BoAzx =z — Az
by (b'), and lim, Boy = = — lim, Apx = © — Pz = x by (ML), since
x € R(A).

(i) Let2* € X™* be such that z* = 0 on R(A). Since (Byy, z*) = p(a)(y, =*)
and lim,, |¢(«)| = oo by (d), the relation

0 =liminf [(Bay, 2*) — (x, %)| = liminf |p(a)(y, ") — (x, )|
implies (y, z*) = 0. Consequently y € R(A). Denoting by {Bgy} a subnet
of {B,y} such that z = weak-limg Bgy, and then using (b’), (M1) and
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the (weak) closedness of A, we see that = € D(A) and y = y — Py =
limg (y — Agy) = weak-limg ABgy = Az. Furthermore,

x = weak- hén Bgy = weak- hén BgAx = weak- hén ABgz € R(A),

so that x € R(A) N D(A), and hence lim, B,y = = by the above proof of
(i). This completes the proof.

From the proof of (i) of the above lemma we see that if y = Az for some
x € R(A)ND(A), then z = lim,, B,y ; it follows that to every y € A(R(A)ND(A))
there corresponds a unique = € R(A) N D(A) such that y = Ax.

Remark 3. Under the hypotheses (a), (b’), (M1) and (d), we have: y €
A(D(P)ND(A)) &y € A(R(A)ND(A)) © lim, B,y exists < {B,y} has a
weak cluster point, so that, in particular, if D(A) C D(P), then y € A(R(A) N
D(A)) is equivalent to y € R(A). Indeed, by Lemma 3 it suffices to show that
y € A(D(P)N D(A)) implies y € A(R(A) N D(A)). For this purpose, suppose
y = Ax for some z € D(P) N D(A). Since D(P) = N(A) ® R(A) by (M1), we
then have = = z; + x5 with z; € N(A) and 25 € R(A). Then it follows that
x9 =x—x1 € D(A),and hencey = Az = Az 1+ Axy = Azy € A(R(A)ND(A)).

This completes the proof.

4. THE RANGE OF THE OPERATOR T — I

In this section we consider a bounded linear operator 7" on X. Let v > —1,
and suppose the Cesaro means Cj;(T') of order ~ satisfy

(6) sup [|Co(T)l| = M (< o).
It follows (cf. Chapter 11l of Zygmund [24]) that »(7") < 1, and that

() sup [|(1—7) Y r*T¥| < sup ICR ()| < M

0<r<1 =0 n>

for all a with v < a < 0.
We use the following fundamental equation (this can be easily checked from
Chapter 111 of Zygmund [24]):

(07

® (T 1CHT) =

[Chi (T) = 1]
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fora #20,—1,—-2,..., and n > 0. By this, if we set

MC”“(T) for n >0,

N A=T-1, A,=C)THT), and B, =

n+1

then

—(n+1)

10) AB, = B,A =
(10) v 42

(T-1)CP(T)=1-C)I(T) =1~ A,

and ||A,|| < M for all n > 1, by (7). Furthermore, using (6) and the relations

7+l

1 A A=AA, = (T -1 o't = L=
(11) n n=( )C i1 (T) s

n+1 [072—1—2 (T) - I]v

we get lim, o |[A,A| = 0. Thus {4,} is an A-ergodic sequence satisfying
condition (c), and {B,} is its companion sequence. To see that {B,} satisfies
condition (d), suppose z* € X* is such that z* = 0 on R(A). Then, for x € X we
have

*\ _ _(n+1) v+2 x\ _(n+1) %
(12) (an,x>—< o Cl™(T)x, z* ) = o (x, z%),
whence B} z* = ¢(n)z*, with o(n) = —(n + 1)/(~v + 2). This proves that {B,, }
satisfies (d). Therefore it follows from the preceding section that if we set

D(P) ={z € X :lim A,z exists}, and Pz =lim A,z for x € D(P),
then (M1) and (M2) hold with A,, in place of A,.

Before continuing the argument the author thinks it would be appropriate to
mention the necessity of introducing condition (6) for our discussion. As is well-
known (cf. [8], [11]), if T" is a positive linear operator on a Banach lattice, then
sup,>q ||CL(T)|| < oo is equivalent to supg.,.q [[(1 —7) > o, 7*T*|| < co. Of
course, this equivalence is strongly due to the positivity of 7', and if we do not
assume the positivity of 7', the situation is quite different. To see this, the following
results (cf. [11]) would be interesting; and furthermore by (i) below it seems that
the only case v > 0 is of interest.

(i) There exists an example of a positive linear isometry 7" on an L-space such
that sup,,~q ||Cn (T)|l1 = oo for all v with —1 < v < 0. (Here, we have
sup,>q ||CA(T) |1 = 1 for all v > 0, because ||T||; = 1.)

(if) If 0 < v < 1, then there exists an example of positive linear operator 7" on
an Ly-space such that sup,,~q [|Ca(T)||1 = oo, but sup,~q [|C2(T)|1 < oo
for all o > . - -
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(iif) If k£ is a positive integer, then there exists an example of a bounded linear
operator 7' on X such that sup,,>¢ ||CH(T))|| < oo, but sup,,>q 1CE(T)|| = o0
for all g with —1 < 8 < k.

(iv) There exists an example of a bounded linear operator 7" on X, with »(7T") = 1,
such that sup,,~q [|(1 = r) > oo, r*T%| < oo, but |CE(T)|| = oo for all 3
with —1 < 8 < 0.

We continue the argument. The next result is a direct consequence of Lemma 3
and Remark 3 (see also (7) and the proof of Fact 5).

Theorem 1. (Cf. Theorems 2.3 and 2.4 of [19].) Let v > —1, and suppose (6)
holds. Then the following conditions are equivalent:

(1) y e (T -1)(D(P));

(i) y e (T = D(R(T - 1));

(i) lim, nCy 2y exists;
(iv) {nC’J“y} has a weak cluster point;
(v) limypy Doo0, r*Thy exists;

(vi) {332, r*T*y} has a weak cluster point as r 1 1.

Relating to the above theorem, the next result may be of independent interest.

Lemma4. If0<a< (<ooandy e X, then the following hold:

(7) SUp,>0 |(n+1)CHT)y|| = M < oo implies

a+1
sup [|(n+ 1Sl < (6v 1) ay
n>0
and 00
Lk o+ 1
sup rT < M ;
S 1> yll o

k=0
(7i) strong [resp. weak]-lim,, oo nCS(T)y = x implies
strong [resp. weak]- lim nC?(T)y = fa 'z,

and

o
strong [resp. weak]-lim > r*T*y = o a.
rT1l par
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Proof. To see the first inequality of (i), we notice that A%/A%~! = (a +n)/a
for all n > 0. Thus we have, using the relation CS(T) = S3(T)/AS (cf. §2), that

1 A a+n
(e} T (e} — (e} T
|| = | iscaen| = | ez
a+n a—+n a+1
a1 )H(n+ )CR (T )yH_a(nH) < —NM
and so, since (cf. Chapter Il of [24])
1 a 1 -1 15 (T)y
S y Aﬂ Aa a— )
and since

n
AGTT =N AT AR, where ADTR TN >0 and AR > 0,
k=0

we find that

Ay

Al
f—a—1 ja—1

ﬂ T ZA Ay

TL

1 Cg (T)y

5 | st

n

CE(T)yH =

Sg(T)y

1
Aa1 Sa—i—

(07

M

for all n > 0. Then

-+ Do = |24 D 2L ey |

B+n g
Bn+1) a+1 a+1
= B+n  « M= (@Bvi) o
This proves the first inequality. The second inequality of (i) can be proved as in
the proof of (ii) of Fact 2, and hence we may omit the details.
The proof of (ii) is similar to that of (i) with a slight modification, and hence
we also omit the details.

M.

Remark 4. Let~ > —1, and suppose (6) holds. Then we have the following:

(i) For every 8 with 8 > ~, we have lim,_.o ||(T — I)Ca(T)|| = 0 (cf. the
proof of Lemma 1 of [3]); thus by putting

(T), and B, = Mcﬂ“m for n >0,

Al =P

n n+1
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we get another A-ergodic sequence {4/} satisfying condition (c), and its
companion sequence {B,,} satisfying condition (d). It follows that the con-
dition y € (T — I)(D(P)) is equivalent to the existence of the limit lim,, .~
nCﬁ“(T)y, with 8 > ~. Apparently, this condition is stronger than (iii) in
Theorem 1, by Lemma 4. On the other hand, the conditiony € (T—1I)(D(P))
does not imply the existence of the limit lim,, nCJ“(T)y, in general. In
fact, if v = 0, let T' be a unitary operator on a Hilbert space H. Then T is
mean ergodic, and (n + 1)C(T)(T — Iz = T"" o — x for x € H. Here,
the existence of the limit lim,, .., 7" *'2 cannot be expected, in general. As
a counter-example for the case v = 1, we can take a bounded linear oper-
ator T' on a reflexive Banach space X such that sup,,~, ||CL(T)| < oo,
and also such that limsup, .. n '|T"z| > 0 for some z € X (cf.
[8] or [11]). Then clearly lim, .., C}(T)z fails to exist, but we have

D(P)=N(T—-1)® R(T—1)= X, since X is reflexive. By (8)
(n+ DCUTNT ~ Dz = 2[Cp (T — 4],

whence the limit lim,, o, nC2(T)y, with y = (T — I)z, does not exist.
If y = (T — I)x for some = € X, then, by (8)

v+1
n—+1

an'H (T)y = an'H (TYT -z =n [Cg_H(T)x — ],

and thus we have sup,,~ InCY ™ (T)y|| < co. But here, if 0 < ¢ < 1, then
we cannot obtain the inequality sup,,~q [|nCh ™ (T)y|| < oo, in general. In
fact, if 7" is a bounded linear operator on X such that sup,,~, |CE(T)|| <
oo, Where k is a positive integer, and also such that sup,, 1c8(T)| =
oo for all g with —1 < 8 < k, then to each 6 with 0 < § < 1 there
corresponds € X so that sup,,>q [|CA~°(T)z|| = cc. Then, we must have
supy,>q [InCy =0 (T)(T = Ia|| = oo, by (8).

Theorem 2. (Cf. Corollary 2 of [12].) Let v > —1, and suppose (6) holds. If
the operator H = S5, a;T*, where 3", a), # 0, is weakly compact, then

(4)

X=N(T-1)® R(T—-1),and

(it) y € R(T—1) < sup,>q InCYH(T)y|| < 0o < liminf, oo [|[RCRT2(T)y||
<00 & SUPgyeq || Yopeo TFTFY|| <00 & liminfgy || Y po, r*TFy|| < cc.
Proof.
(i) By virtue of (7), this follows from (i) of Fact 5.
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(if) By (ii) of Remark 4 and (i) of Lemma 4, we see that

y € R(T —1) = sup ||[nCIT(T)y|| < co = liminf ||nC)2y|| < oo;

and liminf, . ||nC)™2y|| < 0o = y € R(T — I) follows from Lemma 2
and Remark 1. The remaining parts follow immediately from Fact 5. This
completes the proof.

Remark 5. It is interesting to note that the condition sup,,~o ||[nC ™ (T)y|| <
oo does not imply y € R(T — I), in general. Indeed, it is known (cf. [12]) that
there exists an example of a mean ergodic linear contraction T° on X such that
sup,,>q |[nCL(T)y|| < oo does not imply y € R(T — I). Clearly, T satisfies (6),
with v = 0 and M = 1, in this case. (See also Facts 4 and 5.)

Theorem 3. (Cf. Theorem 2.3 of [9].) Let v > —1, and suppose (6) holds.
Then the following conditions are equivalent:
(i) {y € X :sup,zo [[nCa™ (T)y|| < o0} = R(T — I);
(ti) (T—1)UCR(T—1),whereU ={zxe X :|z| <1},
(iii) {y € X :liminf,qqy || Yoo, r*Thy|| < 0o} = R(T - I).

Proof.
(i) = (ii). For every x € U we have, by (8),

InCYFHTNT = Dl < (v + DICT (T — @l < (v + 1)(M + 1),
and so
(T-DU c {ye X :sup [nCT™ Tyl < (v + DM + 1)}
Hence, (i) implies that (T'— I)U C R(T — I).

(i) = (iii). Putting A=T —T and A = (1 —r)/r for 0 < r < 1 (cf. the proof
of Fact 5), we have

AAN=A) T =0=r)) T and (A - AT =) TR
k=0 k=0

so that supy~q [[A(A— A)~Y| < M by (7), and hence {\(A — A)~!} s is an A-
ergodic net satisfying (c), and {—(\ — A)~!} s is its companion net satisfying (d).
In particular, we have that || AAX(A—A) 7| = AT = AXA—=A) "D < A(1+M) | 0
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as A | 0. Thus we can apply Theorem 3.3 of Shaw-Li [21] to infer that (ii) is
equivalent to

(i) {y € X : supge, 1 || 52, ™ THyl| < 00} = R(T = 1),
which is also equivalent to (iii) (cf. Remark 1).

(iii) = (i). By (i) of Lemma 4 and (ii) of Remark 4 we see that (iii) implies
(i). This completes the proof.

5. THE RANGE oF THE GENERATOR A of A Cy-SEMIGROUP OF OPERATORS

In this section we consider a Cy-semigroup {7;} = {T}}+>0 of bounded linear
operators on X. Thus Ty = I, Ty = TyTs for ¢, s > 0, and for every z € X the
mapping ¢ — Tz is strongly continuous on [0, co). Its generator A is defined by

Tix —x Tix —

exists}, and Az = lim
t

for z € D(A).
10

D(A) = Xl
(A)={zeX:lim

Then it is known (cf. e.g. [13]) that A is a densely defined closed operator in X.
For a > 0 we define the Cesaro means C¢*, t > 0, of order « of {T;} by

Tt if = 0,
Cta = t
at_o‘/ (t—s)*"Tyds if a>0.
0

In particular, we have C}z = t~! [/ Tsx ds for = € X. By Fubini’s theorem, and
then by an induction argument on n we easily see that
(i) if 0 < o, B < o0, then for every x € X

/0 ‘(1 5P [ /0 (s 1)1 g ds] ds
/Ot(t— 51 [/Os(s—r)o‘_ldr] is

(if) if » > 1 is an integer, then for every z € X

(14) Clz =nlt™ /Ot [/0 (/0 ( y (/0_ Tsnxdsn> ) d33> dSQ] dsy.

Furthermore, if 0 < o < 8 < o0, then for every z € X

(13) CotPy =

(15) sup || Tyz]| > sup [|Cfz]| > sup [|CYx]).
t>0 t>0 t>0

Let v > 0, and assume that

(16) sup |G| = M (< o0).
t>0
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We then choose a positive integer n so that v < n. By (15) we have ||C]']| < M
for all ¢ > 0. Thus, by (14), for A € C with R\ > 0 we can define a bounded
linear operator R(\) on X by

ROz =" [ e [ (g T dsn) <) dsa) dsa b e

for x € X.

(17)

On the other hand, if R\ > max {0, wo} (wo denotes the growth order of {7;}),
then, using Fubini’s theorem n times we have

A=Atz = / e MTwdt = RNz for z € X,
0

so that (A — A)~! = R()). And, since the operator-valued function A — R()) is
analytic on { : R\ > 0}, it follows by analytic continuation that
(18)  {A:RA>0}Cp(A), and (A — A)~t = R()\) for A with R\ > 0.

It also follows from (14) and (17) that for every x € X

(19) sup [[A(A— A) x| = sup [AR(N)z|| < sup ||CPl],
A>0 A>0 t>0
and thus
(20) sup |[A(A — A) 7Y = sup |[AR(N)| < M.
A>0 A>0

We now use the fundamental equation (it is interesting to compare this with
(8)):
a+1

(21) OOt A c ACHT = ——lcr -1 (t>0, a>0),

which is due to Shaw [19] for the special case o« = 1. This can be proved as
follows. By (13), or using Fubini’s theorem directly, we observe that

t s
a/ (t—s)>! </ T,x dr) ds if >0,
0 0

t
/ (t —s)*Tsxds =
0 t

0

Tsx ds if a=0.

Thus, if z € X and o > 0, then by the closedness of A we see that C* ™z € D(A),
and

a+1

t 1 t 5
ACO T = pres, A/O (t—s)*Tsxds = % /0 (t—s)*tA </0 T,z dr) ds
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ala+1) [* e at+l .,
:(ta?/o(t—s) YT —x)ds = " [Cy — I]x.

By a similar calculation, if z € D(A) and o > 0, then C* Az = (a+ 1)t~ [C¥ —
I)x. Hence, (21) holds for the case o« > 0. The special case « = 0 is a basic property
of a Cyp-semigroup.

By (15) and (21), if we set

—t
+1 +2
(22) Ay=C/", and B;= mCZ for ¢ >0,

then
- Suprso Al < M, BiAC AB,=T- A,
A A C AA =2 0] — 1], and limy_oo [|AA = 0.

Hence {4;} is an A-ergodic net satisfying condition (c), and {B;} is its com-
panion net. It is also easily checked that {B;} satisfies condition (d). Now we
define

D(P)={zxeX: tlim Asz exists}, and Pz = tlim Az for z € D(P).
—00 —00

Then, (M1) and (M2) hold; and we have N(A) = {z € X : Tyxz = « for all t > 0}
and R(A) = {Tyx —z :x € X, t > 0}. The proof of the next result is similar to
that of Theorem 1; hence we may omit the details.

Theorem 4. (Cf. Theorem 3.4 of [19].) Let v > 0, and suppose (16) holds.
Then the following conditions are equivalent:

(i) y € A(D(P)YND(A)); (ii) y € A(R(A)ND(A)); (iii) limy oo tC7 2y
exists; (iv) {tC] "y} has a weak cluster pointas t — oo; (v) limyjo(A—A) 1y
exists; (vi) {(A — A)~'y} has a weak cluster point as \ | 0.

The next result may be regarded as a continuous version of Lemma 4.

Lemma5. Let~ > 0, and suppose (16) holds. If 1 <a << occandy € X,
then the following hold:
(1) supssq [[ECRy|| = M < oo implies
sup [[tC}y| < Ba~'M, and sup [[(A— A)"ly|| < a ' M;
t>0 A>0

(7i) strong [resp. weak]-lim; ., tCf'y = = implies

strong [resp. weak]- lim tCly = Baa,
—00
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and

strong [resp. Weak]-l/i\rl% A=A ly=ala

Proof. To prove this lemma, we use the Beta function B(p, ¢), where p, g > 0.
By the relations

t — 5P (s —r)1lds = o —(s+7r))Pls? 1 g
/r<t><>d/0<t<+>> d

1
= (t—r)rtot / (1 =8P 's? ds = (t = )" B(p,q)
0

for 0 < r <, it follows that
t t t
B(f - a,a) / (t =) Ty dr = / </ (t—s)P— (s — r)o‘_lds> T,y dr
0 0 T
t s
= / (t —s)f—ot (/ (s =) Ty dr) ds (by Fubini’s theorem)
0 0

t s / (3 - r)a_lTry dr
/ (t —s)f—ot </ (s — r)O‘_er> 0 ds ifa>1,
= 0 0 (s —r)* 2dr

0
t s
/(t—s)ﬂ_2 </ Trydr> ds if a=1.
0 0
Thus, if o > 1, then

B
th-1 0

¢
tCPy = (t —r)P Ty dr

t s 8(3 — ) My dr
a tﬂ—lB(ﬁﬁ— o, Q) /0 (t—s)'! (/0 (s — r)o‘_er) /0 8(3 - r)a_;; ds.

0

Here we have, as above,

/Ot(t — g)fe-t (/08(3 — r)a—2dr> ds=B(8 —a,a—1) /ot(t _ )82y

B —a,a—1)t871
(B-1) ’




Range of a Closed Operator 1213

and

_a—l

/ (s — ) Ty dr
0
s - La—1
/ (s — ) 2dr 5
0

/ (s — ) Ty dr
0

a—1 a—1
= psceyl <
It follows that
— — 1)t8-1 -1
8.1 < Ié; B(B—a,a-1""" «a _ g1

for all ¢ > 0. On the other hand, if o = 1, then

t t s
6. __ DB AP p _
tCy y_tg—_l/o (t_r)ﬂ ! rY dr_tg_l BB — 1, 1)/0 (t_s)ﬂ 2 </0 Ty d?") ds,

and

IsCly| = H/OSTrydr <M.

Thus,
B—1
8.1 < p Ut _
Htct y“ S P IBG-11) g1l =M
for all ¢ > 0. This proves the first inequality of (i).
To prove the second inequality of (i), we observe from (14), (17) and (18) that

if n > max{v, a} and A > 0, then

(A= A)ly =" /OOO e {/Ot [/081(. . .(/08"_1 T, ydsy)...) dSQ] dsl} dt

o0 tn
=" / e M gt Clydt.
0 n:

Therefore,

_ P gt
Tewry lyusx/o —

n—1 (o] n—1 /
t M

[tCTy|| dt < )\”/ e M Mdt=—,

0 n! n

n!

where M’ := sup,-, |[tCPy||; we note that M’ < na ‘M < oo by the first
inequality of (i). This completes the proof of the second inequality of (i).

The proof of (ii) is similar to that of (i) with a slight modification, and hence
we omit the details.

Theorem 5. Let v > 0, and suppose (16) holds. If the operator H =
ff a(t)T; dt, where a(t) is a real-valued continuous function on the interval [a, 5]
with ff a(t) dt # 0, is weakly compact, then
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(i) X = N(A) @ R(A), and
(i1) y € R(A) < sup;op [tC) Y|l < 00 liminf;_s [[1C7 2y < oo

& supyso ||[(A— A)_lyH < 0o & liminfy|g ||(A — A)_lyH < 00.

Proof. We may assume that ff a(t) dt = 1. Then, using the closedness of A,
we have

(H—I)x:/ja(t)[Ttx—x] dt:/ja(t)A (/0thde> dt
:A/ja(t) (/0thde> dt

for all z € X, so that R(H — I) C R(A). By this, together with the fact that
C/H = HC/ and (A — A)™'H = HA— A)~! forall n > 0, t > 0 and
A > 0, we see that conditions (w) and (w’) hold for (A, {A:}, {B:}), and also
for (A, {A(A— A)~1}, {(A — A)~1}). Therefore, (i) follows from Lemma 1; and
(it) follows from (21) with « = -, Lemmas 5 and 2, and Remark 1.

Example 3. There exists an example of a mean ergodic C,-semigroup {7;} of
linear isometries on X such that sup, |[tCly|| < oo does not imply y € R(A).
To see this, let X = Cy(R) be the space of all scalar-valued continuous functions
f on the real line R such that lims_, o f(s) =0 = lims—~ f(s). By the norm

(24) IF1l = sup{[f(s)] : s € R},

X becomes a Banach space. Let {T;} = {T};}:+>0 be the Cp-semigroup of linear
isometries on X defined by

(25) T.f(s) = f(t+s) for s € R.

It is immediate that lim, . b} fob Tif dt|| = 0 for every f € X. Thus {T;} is
a mean ergodic semigroup. Let g be the function in X defined by

s if 0<s<1,
g(s)=4q 2—s if 1 <s<2
0 otherwise.

Then, a simple calculation shows that

t
/ Tug du
0

sup [[tC; g|| = sup <1
t>0 t>0



Range of a Closed Operator 1215

But we have g ¢ R(A). To see this, assume the contrary: g = Ah for some
h € D(A). Then, since D(A) = {f € Co(R) : f' € Cy(R)}, and since Af = [’
for f € D(A), we have g = K. It follows that A(0) — h(s) = fso g(t) dt for
all s < 0, so that h(s) = h(0) for all s < 0, by the definition of g. Therefore
h(0) = lims,_ o h(s) = 0. This implies that for all s > 2

s 2
h(s):h(0)+/0 o(t) dt:/o g(t)dt =1,

which is a contradiction, because we must have lims o, h(s) = 0. On the
other hand, it is clear that {7} satisfies (16), with v+ = 0 and M = 1. (In-
cidentally we remark that by putting 7 = T we have sup,,~, ||[RCL(T)g| =
sup,>o | S37_o T*g|| < 1. But, we also have g ¢ R(T—1I). Indeed, if g = (T—1I)h
for some h € Co(R), then h(s) = —g(s) + Th(s) = —g(s) + h(1+s) < h(1+s)
for all s € R, by the definition of g. Since h € Cy(R), this is possible only when
h =0 on R. But, since g # 0, we must have h # 0, and hence this is impossible.
Clearly, T is a mean ergodic linear isometry on Cy(R). Cf. Remark 5.)

By virtue of (21) with o = v and Lemma 5, the next theorem can be proved
by essentially the same argument as that of Theorem 3, and hence we omit the
details. (From Theorem 3.3 of [21] (see also Theorem 2.3 of [9]) we see that if
Supysq [[A(A—A) 71| < oo, then the condition A(U N D(A)) C R(A) is equivalent
to that R(A) is an F,-set.)

Theorem 6. Let v > 0, and suppose (16) holds. Then the following conditions
are equivalent:
(i) {y € X :suppsg 1G]yl < o0} = R(A);
(i) A(UND(A)) C R(A),where U ={z € X : ||z|| <1};
(iii) {y € X :liminfyo |(A — A)7ly|| < oo} = R(A).

6. THE RANGE OF THE GENERATOR A OF A STRONGLY CoNTINUoUs CoSINE OPERATOR
FuncTioN

In this section we consider a strongly continuous cosine operator function {C(t)} =
{C(t)}t=0. Thus, C(0) =1, C(t+s)+C(t —s) =2C(t)C(s) for t > s > 0, and
limg_; |C(s)z — C(t)x|| =0 for t > 0 and z € X. Its generator A is defined by

_ Lo 2[C(t)r —a]
D(A)={ze X: 1;1%1 e exists}
and ol
Az = lim ACWw = a] for x € D(A).

t10 12
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It is known (cf. e.g. Sova [22]) that A is a densely defined closed operator in
X. As in §5, we define the Cesaro means Cy*, t > 0, of order o > 0 of the cosine
operator function {C(t)} by

C(t) if =0,

Y = t
at_o‘/ (t—s5)2"1C(s)ds if a>0.
0

In particular, we have Cla =t~ [ C(s)xds for z € X.

Let v > 0, and assume that (16) holds (i.e. sup;q [|C} ]| = M < o). As
observed in §5, if n is a positive integer with n > ~, then, since ||C}*|| < M for
all t > 0, we can define a bounded linear operator R(\?) on X, for A € C with
RA > 0, by

(26) R()\Z)x:)\”_l/oooe_’\t {/Ot [/01< . ( Osn_b(sn)x dsn> . ) dSQ] dsl} dt

for x € X. Then we have, as in §5, that
27) {N2:RA >0} Cp(A), and (N2 —A)"'=R(\?) for A with RA >0
(cf. e.g. [22], [23]). Since
(28) sup [|]A(A — A)~'z]| = sup [[AR(A)z]| < sup ||CPz||

A>0 A>0 t>0
for every z € X, we have
(29) sup [|A(A = A)7Y| =sup AR\ < M.

A>0 A>0

In this section the following equation is fundamental (cf. (21)):

(a+2)(a+1)

(30) CPTPA C ACYTE = 3

[Cta_l] (t>0,0¢20),

which is due to Shaw [19] for the special case o = 2. To prove this we first note
by Fubini’s theorem that

/Ot(t )2t O(s)eds = (a + 1) /Ot(t - s)a(/os C(r)a dr) ds

(a+ 1)04/0 (t — s)o‘_l(/os(s —u)C(u)xdu)ds if a>0,

/t(t —5)C(s)x ds if a=0.
0



Range of a Closed Operator 1217

Then, for z € X and a > 0, we see by the closedness of A that C*™22 € D(A),
and

2 t
ACOT2y = ?;:2 A/ (t — )T C(s)x ds
0

_(e+2)(at+la [f o ) —u)C(u)z du) ds
- L= oad | - wetedn d

D [ (cee - ds

2 1
_la+Dlat]) igo‘ D ier e,
where the third equality comes from Lemma 2.14 of [22]. By a similar calculation,
if 2 € D(A) and a > 0, then C*T2 Az = (a+2)(a+1)t~2 [C§ —I]2. This proves
(30) for the case oo > 0. The special case oo = 0 is a basic property of a strongly
continuous cosine operator function.
By (30), together with the fact that sup,~ ||C(¢)z|| > sup,sq ||Cx|| > supssg

HCfo for 0 < a < f <ooand z € X, it follows that if we set

—$2

31 A =C)"™, and Bp=—
e R [OR )

cytt for ¢>0,

then
sup;~ [|[Adl S M, BACABy =1— Ay,
(32)
AAC AA =00 (00 1] and Timyo [|AA] = 0.

t2
Hence {A,} is an A-ergodic net satisfying condition (c), and { B, } is its companion
net satisfying condition (d). Let

D(P)={zxeX: tlim Asz exists}, and Pz = tlim Az for z € D(P).
—00 —00

Then, as in §5, (M1) and (M2) hold. The following are standard and easily checked:
N(A)={z e X : C(t)z=xz forall t > 0},and R(A)={C(t)x—x : x€ X, t > 0}.

Using these we have the next result, which corresponds to Theorem 4. Since
the proof is essentially the same as that of Theorem 1, we may omit it here.

Theorem 7. (Cf. Theorem 3.7 of [19].) Let v > 0, and suppose (16) holds.
Then the following conditions are equivalent:

(i) y € A(D(P)ND(A)); (i) y € AR(A)ND(A)); (iii) limy_o0 t2C7 Ty
exists; (iv) {t2C7* "y} has a weak cluster pointas ¢ — co; (v) limyjo(A—A4)"ly
exists; (vi) {(A— A)~'y} has a weak cluster point as \ | 0.
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Lemma 6. Lety > 0, and suppose (16) holds. If 2 < a < # < oo and
y € X, then the following hold:

(i) supysq [[E2C8y|| = M < oo implies

MM, and  sup H()\—A)_IZ/H < ;M;
ala—1) A>0 «Q

sup |[2C7y| <
up [t°Cryll < (@—1)

(ii) strong [resp. weak]-lim; ., t2C¢y = x implies

IR 20, ﬁ(ﬁ
strong [resp. weak] gl_)rgo t"Cry = ala— z,
and 1
Rr A S P S
strong [resp. weak] 1;11% A=Ay alo = 1) x.

Proof. From the proof of Lemma 5 we see that

t s
(33) t2Ctﬁy = tﬁﬁ—Q.B(ﬁ _1 o) /0 (t—s)P—t </ (s — )7 C(r)y dr) ds.

0

Thus, if o > 2, then

28, /8 ! _ \B—a—1
to‘ﬁ*BW—aﬂLA“ °)

(Ais_rpa%ﬁ>ﬁj%@7i;§gﬁdr@

Here
(s = 1) 10y dr 8
l s =222 [e=ncwyar
_ Oc—3d 0
/0 (s—r) i 2r .
= 2 s2osyl < =S
o
and . \
tﬂ—QB(ﬁﬁ— o) /0 (t— s)ﬁ_o‘_1 </0 (s — r)o‘_?’dr> ds
B .B(ﬁ—aa—Q).tﬂ_2: BB -1)

T ¥ 2B(B—a,a)
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Hence we have

BE-1  a—2  BE-D)
a-1-2 a 2= a-1a

for all ¢ > 0. On the other hand, if o = 2, then

1£2C)y| < M

and .
/ (s —r)C(r)ydr|| = 27YsC2y|| < 271 M.
0
Thus,
=2 1 —1)
208,11 < p ot BV BB M
IECyl = =g =22 5-2 2 2 '

This proves the first inequality of (i).
To prove the second inequality of (i), we note that if n > max{vy, a} and A > 0,
then

(A2 —A)~ 1y = R(\?)y

U /OOO e {/Ot [/081(. . .(/08"_1 Clsn)ydsn) .. .) dSQ] dsl} dt

_ ! /0 e_’\t%nydt (cf. (14))

)\n—l
ol

o
/ e M2 (£2Cny) dt,
0

where [|[t2CPy|| < n(n — 1)a"(a —1)"tM for all t > 0 by the first inequality of
(i), and

D A 1 1
/ e M2t = —T(n—1) = ———.
n! Jo n! n(n —1)

Thus we have
. 1 n(n —1)M M
1A )l = nn—1) ala—1) ala—1)’

which proves the second inequality of (i).
The proof of (ii) is similar to that of (i), and hence we may omit it.

The next two theorems correspond to Theorems 5 and 6, respectively.

Theorem 8. Let v > 0, and suppose (16) holds. If the operator H =
ff a(t)C(t) dt, where a(t) is a real-valued continuous function on the interval

[av, B] with ff a(t) dt # 0, is weakly compact, then



1220 Ryotaro Sato

(i) X = N(A) @ R(A), and
(i1) y € R(A) < sup;eq [2C7 2yl < 0o < liminf, o [[2C7 Y|l < oo
& supysg (A = A) 7yl < oo & liminfyo [|(A — 4) Myl < co.

Proof. As in the proof of Theorem 5 we may assume that ff a(t)dt = 1. Then,
using the closedness of A and Lemma 2.14 of [22], we find that for all x € X

(H - Do = /j a(B[C(t)z — o] dt = /j a(t)A </Ot(t _ $)C(s)a ds) dt

:A/j alt) /Ot(t—s)C(s)xdsdt,

so that R(H — I) C R(A). By this, together with (30) with & =~ and Lemma 6,
the present theorem follows as in Theorem 5.

The proof of Theorem 9 below is essentially the same as that of Theorem 3,
and so we may omit the details.

Theorem 9. Let v > 0, and suppose (16) holds. Then the following conditions
are equivalent:
(i) {y € X :supysq 207" ?y|| < oo} = R(A);
(i) A(UND(A)) C R(A),whereU ={z e X : ||z <1};
(iii) {y € X :liminfyo |(A — A)7ly|| < oo} = R(A).
Example 4. There exists an example of a mean ergodic cosine operator function
{C(t)} of linear contractions on X such that sup,~ ||[t?C?y|| < co does not imply

y € R(A). To see this, as in Example 3, let X = Co(R) and T;f(s) = f(t + s)
for ¢, s € R. Define

(34) Ot) = (T, + T_4) /2 (t>0).

Then {C(t)} becomes a strongly continuous cosine operator function on X with
IC()|| <1 forall ¢ >0 (cf. [22]). It is clear that limy_..c b~Y|| 3 C(£)f dt]| = 0
for every f € X. Thus {C(t)} is mean ergodic. Define a function ¢ in X by

s if 0<s<1,

2—s ifl1<s<3

s—4 if3<s<4

(35) g(s) = ’

Y

0 otherwise.
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Then, for t > 0 and v € R, we have

t2C%g(u) /(/ C(r )ds:/ot (/:Sg(r)dr)ds.

It follows from the definition of g that [2C?g(u)| < 4 for all u € R. Hence,
supsq [[t2C2g| < 4. But we have g ¢ R(A). To see this, assume the contrary:
g = Ah for some h € D(A). Since D(A) = {f € Co(R) : f" € Cy(R)} and
Af = f"for f € D(A) (cf. e.g. Example 2.27 of [22]), we then have g = Ah = R
Here ' € Cy(R) by Landau s inequality (cf. e.g. page 8 of [13]). On the other

hand, by the relation A/ (u) = Jo 9(s) ds for u € R and the definition of g,

we have h/(u) = h'(0 ) for aII u > 4. It follows that 2/(0) = limy, . h'(u) = 0.
Hence, h/(u) = h'(u) = J3'9(s)ds = 0 for all v < 0, because g = 0 on

(—o0, 0]. Consequently we have B = 0 on (—oo, 0], ¥ >00n (0,4),and ¥’ =0
n [4, oo). Thus

h(u) — h(0) :/Ouh’(s) ds—0 forall u<0,

and since lim,,_~, h(u) = 0, we have h = 0 on (—oo, 0]. Similarly, h € Cy(R)
and A’ = 0 on [4, oo) imply that » = 0 on [4, o). Since ' > 0 on (0, 4), this
implies that 0 = h(u) fo W (s)ds = [, h’ )ds > 0 for all u > 4, a
contradiction. It is clear that {C( )} satlsfles (16), W|th 7 =0and M = 1.

Remark 6. Let {C(t)} be the same as in the above example. If we define
Ay =C}, and By = —(t2/6)C3 for t > 0, then B;LA C AB; =1—C} =1 — A,
so that {A;} is an A-ergodic net with ||A,|| < 1, and {B;} is its companion
net satisfying condition (d). We already observed that Pf := limy .o, A:f =
limy—oo t1 [7C(s)fds = 0 for all f € X = Cy(R). It follows that (M1) and
(M2) hold. But here we would like to note that condition (c) does not hold for
{A;}. In fact, if g is the function in Cy(R) defined by (35), then

1 s+t

Agl) =5 [ gtdr  (seR)
s—t

Thus, (A:9)'(s) = (2t) 1 (g(s +1t) — g(s —t)) for all s € R. But, since g is not

differentiable at the point 0 € R by its definition, we find that A;g ¢ D(A) for all

t > 0. Therefore, R(A;) ¢ D(A) for all ¢ > 0, and this implies that (c) does not

hold for {A;}.

7. CoNCLUDING REMARKS

In this section we would like to mention the following two theorems without
proof. By these theorems we may understand the necessity of introducing the bound-
edness condition (16) for Cy-semigroups and strongly continuous cosine operator
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functions in order to study our problem. The proofs of these theorems and more
will appear in a forthcoming joint paper with Jeng-Chung Chen and Sen-Yen Shaw.

Theorem 10. Let 0 <« < 1. Then there exists a Cy-semigroup {7;} [resp. a
strongly continuous cosine operator function {C(t)}] of positive linear operators
on an L-space such that sup,. [|C/|l1 = oo, but sup,-, HCle < oo for all
8> .

Theorem 11. Let k£ > 1 be an integer. Then there exists a C-semigroup {7}
[resp. a strongly continuous cosine operator function {C(¢)}] of bounded linear
operators on X such that sup,., ||CF|| < oo, but sup,-, ||C§|| = oo for all a,
with 0 < o < k.

ACKNOWLEDGMENT

The author would like to express his sincere thanks to the referee, who corrected
the original proof of Lemma 4 and made the paper readable.

REFERENCES

1. A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real
coboundary cocycles in IP-spaces, 0 < p < oo, Studia Math., 138 (2000), 121-
134,

2. 1. Assani, A note on the equation y = (I — T')x in L', lllinois J. Math., 43 (1999),
540-541.

3. Y. Derriennic, On the mean ergodic theorem for Cesaro bounded operators, Collog.
Math., 84/85 (2000), Part 2, 443-455.

4. W. G. Dotson, Jr., An application of ergodic theory to the solution of linear functional
equations in Banach spaces, Bull. Amer. Math. Soc., 75 (1969), 347-352.

5. W. G. Dotson, Jr., On the solution of linear functional equations by averaging iteration,
Proc. Amer. Math. Soc., 25 (1970), 504-506.

6. W. G. Dotson, Jr., Mean ergodic theorems and iterative solution of linear functional
equations, J. Math. Anal. Appl., 34 (1971), 141-150.

7. N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, Inter-
science, New York, 1958.

8. R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal.,
61 (1985), 1-14.

9. V. Fonf, M. Lin and A. Rubinov, On the uniform ergodic theorem in Banach spaces
that do not contain duals, Studia Math., 121 (1996), 67-85.



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Range of a Closed Operator 1223

. U. Krengel and M. Lin, On the range of the generator of a Markovian semigroup,
Math. Z., 185 (1984), 553-565.

Y.-C. Li, R. Sato and S.-Y. Shaw, Boundedness and growth orders of means of
discrete and continuous semigroups of operators, preprint.

M. Lin and R. Sine, Ergodic theory and the functional equation (I — Tz = y, J.
Operator Theory, 10 (1983), 153-166.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer-Verlag, New York, 1983.

R. Sato, A remark on real coboundary cocycles in L*°-space, Proc. Amer. Math.
Soc., 131 (2003), 231-233.

R. Sato, On solvability of the cohomology equation in function spaces, Studia Math.,
156 (2003), 277-293.

R. Sato, Ergodic properties of continuous parameter additive processes, Taiwanese J.
Math., 7 (2003), 347-390.

R. Sato, Solvability of the functional equation f = (7" — I)h for vector-valued
functions, Collog. Math., 99 (2004), 253-265.

R. Sato, On the range of a closed operator in an L -space of vector-valued functions,
Comment. Math. Univ. Carolinae, 46 (2005), 349-367.

S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal.,
87 (1989), 428-441.

S.-Y. Shaw, On the range of a closed operator, J. Operator Theory, 22 (1989), 157-
163.

S.-Y. Shaw and Y.-C. Li, On solvability of Ax = y, approximate solutions, and
unifrom ergodicity, Rend. Circ. Mat. Palermo (2) Suppl., 68 (2002), Part 1, 805-
8109.

M. Sova, Cosine operator functions, Rozprawy Math., 49 (1966), 1-47.

C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order
differential equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 75-96.

A. Zygmund, Trigonometric Series. Vol. 1, Cambridge Univesity Press, Cambridge,
1959.

Ryotaro Sato

Department of Mathematics,

Okayama University,

Okayama 700-8530,

Japan

E-mail: satoryot@math.okayama-u.ac.jp



