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PARTIAL LATIN SQUARES AND THEIR GENERALIZED QUOTIENTS

L. Yu. Glebsky and Carlos J. Rubio

Abstract. A (partial) Latin square is a table of multiplication of a (partial)
quasigroup. Multiplication of a (partial) quasigroup may be considered as a
set of triples. We give a necessary and sufficient condition for a set of triples
to be a quotient of a (partial) latin square.

1. INTRODUCTION

Generalized quotient of quasigroup is a quotient with respect to an equivalence
relation which is not a congruence. Such a quotient is neither a quasigroup nor an
algebraic system. It may be thought as a multivalued algebraical system or a set
of triples. The authors of [3, 4] found useful the notion of generalized quotient in
their investigations of approximations of algebraic systems. The aim of the work is
to study in more details combinatorial structures using in [3, 4]. We also formulate
some open questions (Conjectures 1, 2, 3). The positive answer on Conjecture 1 will
essentially simplify the measure-theoretical part of the proof of the main theorem in
[4]. The construction corresponding to generalized quotient is not new. It is known
in combinatoric by the name “amalgamation” (see 2, 5, 7) but we prefer here more
algebraic terms.

Theorem 1 (A. J. W. Hilton) gives necessary and sufficient conditions for a
set of triples to be a generalized quotient of a quasigroup. Here we extend it to
generalized quotients of partial quasigroups. Investigation of generalized quotients
leads to a more general objects – 3-indexed matrices.

The article is organized as follows. In Section 2 we formulate the main results
(Theorem 2 and Theorem 3) about 3-indexed matrices. In Section 3 we define
generalized quotient partial quasigroups (GQPQ) and generalized uniformly quotient
partial quasigroups (GUQPQ), interpret results about matrices on this language, and
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discuss some connection with the theory of hypergraphs. We give an example of
a GQPQ which is not a GUQPQ and formulate some conjectures. Section 4 is
devoted to the proof of Theorem 2.

2. FORMULATION OF THE MAIN RESULTS

We shall deal with 2- and 3-indexed matrices. For positive integers n1, . . . , nk,
a k-indexed n1 × · · · × nk-matrix M is a function M : (n1) × · · · × (nk) → IR,
where (n) = {1, . . . , n}. Through this text we shall use the notation M(X) =∑

x∈X M(x), where X ⊆ (n1) × · · · × (nk) .
We shall denote by T (n1, . . . , nk) the set of all k-indexed n1×· · ·×nk-matrices

with entries being nonnegative integers.
We call an n1 × · · · × nk-line any set l ⊂ (n1) × · · · × (nk) such that in all

k-tuples in l, k − 1 indexes are fixed and the other, say the i-th index, runs over
all (ni). A line of a n1 × · · · × nk-matrix is the restriction of this matrix on a
n1 × · · · × nk-line. If l is a line of M , M(l) is its line sum.

For n1 × n2-lines we shall use the following names and notations.

l1a = {(x, a) : x ∈ (n1)} (column)

l2a = {(a, x) : x ∈ (n2)} (row)

Similarly, for n1 × n2 × n3-lines we have

l1ab = {(x, a, b) : x ∈ (n1)} (horizontal line)

l2ab = {(a, x, b) : x ∈ (n2)} (transversal line)

l3ab = {(a, b, x) : x ∈ (n3)} (vertical line)

For a function f : (n) → (n), the graph of f is the matrix Γ ∈ T (n, n) such
that

Γ(i, j) =

{
1, if f(i) = j,

0, if f(i) �= j.

It is easy to see that the following proposition holds.

Proposition 1. A matrix M ∈ T (n, n) is the graph of a permutation if and only
if every line sum of M equals 1. We shall call such a matrix to be a permutation
matrix.

An analogue of this proposition for 3-indexed matrices leads to quasigroups and
Latin squares.

Definition 1. A quasigroup (Q, �) is an algebraic system Q with a binary
operation � such that
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i) equation x � a = b has a unique solution with respect to x for all a, b ∈ Q,
ii) equation a � x = b has a unique solution with respect to x for all a, b ∈ Q.

This definition implies immediately the following

Proposition 2. A matrix M ∈ T (n, n, n) is the graph of a quasigroup operation
� on (n) (M(i, j, k) = 1, if i � j = k and M(i, j, k) = 0 otherwise) if and only if
every line sum of M equals 1. We shall call such a matrix to be a Latin square.

For 2-indexed matrices the following lemma is well-known (e.g.[6]).

Lemma 1. Let M ∈ T (n, n). Let each line sum of M equals k, where k > 0.
Then

supp(M) ⊇ supp(P )

for a permutation matrix P .

This Lemma easily implies

Lemma 2. Let M ∈ T (n, n). Let each line sum of M equals k, where k > 0.
Then

M = P1 + P2 + · · ·+ Pk,

where each Pi is a permutation matrix.

One may formulate the following “generalization” of Lemma 1

(A) Let M ∈ T (n, n, n). Let each line sum of M equals k, with k > 0. Then

supp(M) ⊇ supp(L),

for a Latin square L.

Statement (A) is not true. Indeed, consider the 3× 3× 3 matrix M , see Fig. 1.
Every line sum of M equals 2. The existence of the odd cycle C in M (marked bold)
implies that supp(M) �⊇ supp(L) for any Latin square L. Indeed, let supp(M) ⊇
supp(L) for some Latin square L. Then supp(L) has to contain only one dot marked
of every line of C. But this is impossible because C is an odd cycle.

Remark. A set of triples, as a hypergraph may not have a (dual) König
property. On the contrary, any set of pairs is a balanced hypergraph and satisfies
a (dual) König property, i.e. ρ = ᾱ; see Section 3 and [1]. Nevertheless, there is
some connection of matrices described in statement (A) with Latin squares through
quotients.
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Fig. 1.

Let M : (n1) × · · · × (nk) → IR be a k-indexed matrix and σ = {P1, . . . , Pr}
be an (ordered) partition of (ni). We define the quotient matrix

M◦iσ : (n1) × · · · × (ni−1) × (r)× (ni+1) × · · · × (nk) → IR,

by the formula

M◦iσ(x1, . . . , xi, . . . , xk) = M({x1} × · · · × Pxi × · · · × {xk}).

Example. Let

M =




0 3 3 1
5 2 4 0
1 1 0 1
2 3 5 0




and σ = {{1, 2}, {3, 4}}. Then

M ◦1 σ =
(

5 5 7 1
3 4 5 1

)
, M ◦2 σ =




3 4
7 4
2 1
5 5




and
(M ◦1 σ) ◦2 σ = (M ◦2 σ) ◦1 σ =

(
10 8
7 6

)
.

Let L ∈ T (n, n, n) be a Latin square, σ = {P1, P2, . . . , Pk} be a partition of
(n) and M = ((L ◦1 σ) ◦2 σ) ◦3 σ ∈ T (k, k, k). Then it is easy to check that

M(ltij) = |Pi| · |Pj|,
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for every k × k × k-line ltij, t = 1, 2, 3 and i, j ∈ (k). It was proved by Hilton [5,
2] that the inverse statement is also true.

Theorem 1. [A. J. W. Hilton] Let M ∈ T (k, k, k) and r1, r2, . . . , rk be positive
integers such that

M(ltij) = rirj

for t = 1, 2, 3 and i, j ∈ (k). Then M = ((L ◦1 σ) ◦2 σ) ◦3 σ for a Latin square
L ∈ T (n, n, n) and a partition σ = {P1, . . . , Pk} of (n) such that |Pi| = ri and
n =

∑
i ri.

In the paper we generalize this theorem for partial Latin squares (and partial
quasigroups).

Definition 2. Let Q be a finite set and S ⊆ Q × Q. A partial S-quasigroup
on Q is a partial binary operation � on Q such that

i) S ⊆ Dom(�).
ii) equation x � a=b has at most one solution with respect to x for all a, b∈Q.

iii) equation a�x = b has at most one solution with respect to x for all a, b ∈ Q.

It is known that any partial quasigroup Q can be extended to a quasigroup
Q′ ⊃ Q, |Q′| � 2|Q|.

Proposition 3. A matrix M ∈ T (n, n, n) is the graph of a partial S-quasigroup
operation on (n) if and only if every line sum of M is no more than 1 and

M(l3ij) = 1

for every (i, j) ∈ S. We shall call such a matrix to be a partial S-Latin square.

Let L ∈ T (n, n, n) be a partial S-Latin square, σ = {P1, . . . , Pk} be a partition
of (n), and M = ((L ◦1 σ) ◦2 σ) ◦3 σ ∈ T (k, k, k). Then it is easy to verify that

M(ltij) � |Pi| · |Pj|
for every k × k × k-line ltij , t = 1, 2, 3, i, j ∈ (k) and

M(l3ij) = |Pi| · |Pj|,
if Pi × Pj ⊆ S.

Theorem 2. Let M ∈ T (k, k, k), S ⊆ (k) × (k) and r1, . . . , rk be positive
integers such that

M(ltij) � rirj
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for t = 1, 2, 3, and
M(l3ij) = rirj,

for (i, j) ∈ S.
Then M = ((L ◦1 σ) ◦2 σ) ◦3 σ for a partial S ′-Latin square L ∈ T (n, n, n), a
partition σ = {P1, . . . , Pk} of (n) such that |Pi| = ri, n =

∑
i ri, and

S ′ =
⋃

(i,j)∈S

Pi × Pj.

If we substitute S = (k)× (k) in Theorem 2 we get Theorem 1. (If for all vertical
lines one has equalities then one has equalities for all lines.) The uniform partial
case of Theorem 2, where r1 = · · · = rk = r, may be generalized for real-valued
matrices.

Theorem 3. Let M : (k) × (k) × (k) → IR+, β ∈ IR+ and S ⊆ (k) × (k)
such that

M(ltij) � β

for t = 1, 2, 3 and i, j ∈ (k), and

M(l3ij) = β,

for (i, j) ∈ S.
Then supp(M) = supp(((L ◦1 σ) ◦2 σ) ◦3 σ) for a partial S ′-Latin square L ∈
T (n, n, n), a partition σ = {P1, . . . , Pk} of (n) such that |Pi| = |Pj| for every
i �= j, and

S ′ =
⋃

(i,j)∈S

Pi × Pj.

Proof. Let M and β satisfy the conditions of the theorem. We can write
equalities and strict inequalities separately. Consider non-zero elements of M and
β as variables. Then this system of equalities and (strict) inequalities has a rational
solution. Multiplying this solution by a proper integer, we construct a matrix M ′ ∈
T (k, k, k), supp(M ′) = supp(M), satisfying the conditions of Theorem 2.

As we see, the crucial step in the proof of Theorem 3 is to show the existence
of a rational solution. For the non-uniform case these equations will be nonlinear
(quadratic). So, general consideration cannot prove that the existence of a real
solution implies the existence of a rational one. We don’t know so far if a non-
uniform version of Theorem 3 is valid:
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Conjecture 1. Let M : (k) × (k) × (k) → IR+, β1, ..., βk ∈ IR+ and S ⊆
(k) × (k) such that

M(ltij) � βiβj

for t = 1, 2, 3 and i, j ∈ (k), and

M(l3ij) = βiβj,

for (i, j) ∈ S.
Then supp(M) = supp(((L ◦1 σ) ◦2 σ) ◦3 σ) for a partial S′-Latin square L ∈
T (n, n, n), a partition σ = {P1, . . . , Pk} of (n) such that

S ′ =
⋃

(i,j)∈S

Pi × Pj.

In fact, we don’t know if it is true for S = (k) × (k).

3. GENERALIZED QUOTIENT QUASIGROUP

Let Q be a finite set and σ an equivalence relation on Q which we shall identify
with the partition of Q by equivalence classes. So, σ = {Q1, Q2, ..., Qk}. Let
X ⊆ Qr. Define weak (X/wσ ⊆ {1, 2, ...k}r) and strong (X/sσ ⊆ {1, 2, ...k}r)
quotient of X :

X/wσ = {< i1, i2, ..., ik > : Qi1 × Qi2 × · · · × Qik ∩ X �= ∅}
X/sσ = {< i1, i2, ..., ik > : Qi1 × Qi2 × · · · × Qik ⊆ X}

For example, if � ⊆ Q3 is a quasigroup operation on Q and σ – a congruence
relation (i.e. it preserves the operation �) then �/wσ = �/sσ = �/σ is a quotient
quasigroup operation.

Definition 3. Let σ = {Q1, Q2, ..., Qk} be an equivalence relation on Q. We
shall call σ to be uniform iff all Qi have the same cardinality.

Let (Q, �) be a quasigroup. A set �/wσ will be called a generalized quotient
quasigroup (GQQ). For uniform σ a set �/wσ will be called a generalized uniformly
quotient quasigroup (GUQQ).

Let (Q, �) be an S-quasigroup (S ⊆ Q2) and σ be an equivalence relation on
Q (not necessarily a congruence). A set �/wσ will be called a S/sσ-generalized
quotient partial quasigroup (S/sσ-GQPQ) or a S/sσ-generalized uniform quotient
partial quasigroup (S/sσ-GQUPQ) in the case of uniform σ.

Theorem 2 and Theorem 3 have the following obvious interpretation:
H ⊆ (k)3 is a S-GQPQ (S-GUQPQ) if and only if there exists a matrix M ,
supp(M) = H , satisfying conditions of Theorem 2 (Theorem 3).
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Now we give an interpretation of our results on the language of hypergraphs.
A set of triples H ⊆ (k)3 has a natural structure of a hypergraph if we consider
lines as edges. Precisely, with H we associate hypergraph (V, E) with V = H and
E = {l ∩ H : l − line}. Several useful numeric characteristic of hypergraphs are
known. We are interested in 3 of them: the covering number ρ, the independent
number ᾱ and the fractional independent number α∗, for the general definition; see
[1]. For the case of a set of triples H ⊆ (k)3 these numbers have the following
meaning:
ρ(H) is the minimum number of lines, covering H , i.e. ρ(H) = min{|R| :
R is a set of lines, and H ⊆ ∪R};
ᾱ(H) = max{|X | : X ⊆ H and |X ∩ l| � 1 for every line l}
α∗(H) = max{M(H) : M : (k)× (k)× (k) → IR+, supp(M) ⊆ H and M(l) �
1 for any line l}.
From the theory of hypergraphs (see [1]), it follows that ᾱ(H) � α∗(H) � ρ(H).
One immediately verifies the following

Proposition 4. H ⊆ (k)3 contains an S-quasigroup if and only if ᾱ(H ∩ (S×
(k))) = |S|.

Without loss of generality one can put β = 1 in Theorem 3. This implies

Proposition 5. H ⊆ (k)3 contains an S-GUQPQ if and only if
α∗(H ∩ (S × (k))) = |S|. Matrix M on Fig. 2 is an example of a GQQ which
does not contain a GUQQ.

Fig. 2.

The numbers show that the set marked by black dots is a GQQ if we put r1 = 1,
r2 = 2 and r3 = 2 in Theorem 1. On the other hand if the set were a GUQQ one
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could put numbers, such that sums along every line are the same. To see that it is
impossible one can try to put numbers along the odd cycle C (marked bold).

We wonder if the following conjectures are true.

Conjecture 2. If H ⊆ (k)3 contains an S-GQPQ then ρ(H ∩ S × (k)) = |S|.

Conjecture 3. If ρ(H ∩ S × (k)) = |S| then H ⊆ (k)3 contains an S-GQPQ.

4. PROOF OF THEOREM 2

We shall need the following proposition which is a reformulation of De Werra’s
theorem on balanced edge-coloring of a finite bipartite graph.

Proposition 6. Let M ∈ T (n, m) and k ∈ N. Then M = M1+M2+· · ·+Mk,
such that

• Mi ∈ T (n, m),
• ∀i, j, k, r |Mi(k, r)− Mj(k, r)| � 1,

• ∀i, j, k |∑m
r=1 Mi(k, r)− ∑m

r=1 Mj(k, r)| � 1, and |
n∑

r=1
Mi(r, k)

−
n∑

r=1
Mj(r, k)| � 1.

Proof. A proof of De Werra’s theorem may be found in [2]. To obtain our
reformulation one may associate a matrix M to a bipartite graph: {1, 2, . . . , n} –
the vertexes of one part, {1, 2, . . . , m} – the vertexes of the other part, M(ij) is
the number of edges from i to j.

Let M ∈ T (m, n). Let the sum of row i of M be denoted by ri and let the
sum of column j of M be denoted by sj . We call the vector

R = (r1, . . . , rm)

the row sum vector and the vector

S = (s1, . . . , sn)

the column sum vector of M .
The vectors R and S determine the class

C(R, S)
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consisting of all matrices of size m by n, whose entries are nonnegative integers,
with row sum vector R and column sum vector S.

Let R = (r1, r2, · · · , rm), S = (s1, s2, · · ·sn), I ⊆ (n). Denote by C′I(R, S)
the union of all C(R′, S ′) such that R′ � R, S′ � S and si = s′i for i ∈ I .

Lemma 3. Let M ∈ C ′
I(kR, kS) such that |R| = |S|. Then

M = Q′
1 + Q′

2 + · · ·+ Q′
k,

where Q′
i ∈ C ′

I(R, S) for every i = 1, 2, . . . , k.

Proof. It follows immediately from Proposition 6.

Let M ∈ T (k, k, k), S ⊆ (k) × (k) and r1, . . . , rk be positive integers such
that M(ltij) � rirj for t = 1, 2, 3, and M(l3ij) = rirj for (i, j) ∈ S. Take
n = r1 + r2 + · · · + rk and a partition σ = {P1, P2, . . . , Pk} of (n) such that
|Pi| = ri. We shall consecuently construct M1 ∈ T (k, k, n), M2 ∈ T (k, n, n) and
M3 ∈ T (n, n, n) such that

i) M = M1◦3σ, M1 = M2◦2σ, M2 = M3◦1σ;
ii) M1(l3ij) = rirj if (i, j) ∈ S, M1(l3ij) � rirj , and M1(ltij) � ri for t = 1, 2;

iii) M2(l3ij) = ri for (i, j) ∈
⋃

(i,k)∈S

{i} × Pk , M2(l3ij) � ri, M2(l2ij) � ri, and

M2(l1ij) � 1;

iv) M3(ltij) � 1 for t = 1, 2, 3, and M3(l3ij) = 1 if (i, j) ∈
⋃

(i,j)∈S

Pi × Pj .

Construction of M1.

For every c fixed, M′
c = M(·, ·, c) ∈ T (k, k) such that M ′

c(l
t
i) � rirc for i ∈ (k)

and t = 1, 2. So, by Lemma 3 we can write

M(·, ·, c) = Qα1 + · · ·+ Qαrc
,

such that Qαm ∈ T (k, k) and Qαm(lti) � ri for i ∈ (k) and t = 1, 2. One can
choose αi such that {α1, α2, . . . , αrc} = Pc. Doing the same for all c, we shall
have matrices Q1, . . . , Qn ∈ T (k, k). Let M1(a, b, c) = Qc(a, b).
Construction of M2.

For every c fixed, M′
c = M1(·, c, ·) ∈ T (k, n) such that M ′

c(l1i ) � rirc, M ′
c(l2i ) �

rc, and M ′
c(l

1
i ) = rirc for (i, c) ∈ S. By Lemma 3, we can write

M1(·, c, ·) = Qα1 + · · ·+ Qαrc
,
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such that Qαm ∈ T (k, n), Qαm(l2i ) � 1, Qαm(l1i ) � ri, and Qαm(l1i ) = ri if
(i, c) ∈ S.

One can choose αi such that {α1, α2, . . . , αrc} = Pc. Doing the same for all c,
we shall have matrices Q1, . . . , Qn ∈ T (k, n). Let M2(a, c, b) = Qc(a, b).

Construction of M3 is similar. It is clear that L = M3 satisfies the theorem.
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