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TOWARD THE POINCARÉ CONJECTURE

Wen-Hsiung Lin

1. n-MANIFOLDS

Let n be a positive integer. An n-manifold M is a Hausdorff topological space
with a countable base of open sets such that M is locally the Euclidean space
Rn, that is, for each x ∈ M there exists an open neighborhood U of x and a
homeomorphism U

ϕ→ V from U onto an open subset V of Rn. A compact n-
manifold is an n-manifold which is compact as a topological space. It is clear that
any n-manifold is locally path-connected and so is a path-connected space if it is a
connected space. It is also clear that a compact n-manifold has only a finite number
of path components, each of these being a compact path-connected n-manifold.

Rn and any of its non-empty open subsets are examples of n-manifolds. These
are not compact manifolds. Let

Sn = {x = (x1, . . . , xn+1) ∈ Rn+1| ‖x‖ =
√
x2

1 + · · ·+ x2
n+1 = r > 0},

called the n-sphere (of radius r). Sn is a path-connected compact n-manifold
(note that n ≥ 1). It is easy to see that any two n-spheres of different radii are
homeomorphic.

Theorem 1.1. Any path connected compact 1-manifold is homeomorphic toS 1.

We refer to Milnor [10] for a proof of this fact.
All path connected compact 2-manifolds are also known (up to homeomor-

phisms). Call such a 2-manifold a surface. In Section 2 we describe these surfaces
from both topological viewpoint and geometric viewpoint. In section 3 we begin
with the statement of the Poincaré Conjecture which is about the topology and
geometry of 3-manifolds related to the 3-sphere S3. We will also describe some
geometric aspects of compact 3-manifolds including Thurston Geometrization Con-
jecture on such manifolds of which the Poincaré Conjecture is a special case, and
finally make some comments on a recent progress about these conjectures.
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2. SURFACES

We already know S2 (say, of radius 1) is a surface. Let P2 = S2/x∼ −
x, the space obtained from S2 by identifying each point x = (x1, x2, x3) ∈ S2

with its antipodal point −x = (−x1,−x2,−x3). Consider the closed disk D2 =
{y = (y1, y2)| ‖y‖ =

√
y2
1 + y2

2≤1} in R2 with boundary ∂D2 = S1. Up to
a homeomorphism, P2 can also be thought as the space obtained from D2 by
identifying each point y on the boundary S1 with the antipodal point −y as shown
in Figure 1. P 2 is known as the 2-dimensional real projective space.

Fig. 1.

There are many ways to show S2 and P 2 are different surfaces, that is, they are
not homeomorphic. One of these, which perhaps is the most intuitive way, is the
following. Puncture an open disk D1 from S2 and puncture an open disk D2 (say,
an open disk of radius 1

2 with center the origin in Figure 1) from P 2. S2 −D1 is a
closed disk while P 2−D2 is the Möbius band, and they are not homeomorphic since
S2 −D1 is orientable while P 2 −D2 is not. So S2 and P 2 are not homeomorphic.
We will give another way to distinguish P 2 from S2 later.

The projective space P 2 can also be thought as the orbit space S2/Z2 of the
group action Z2 = {1, T}× S2 ϕ→ S2 given by ϕ(1, x) = x and ϕ(T, x) = −x. In
general, given a finite group G and an n-manifold M . We say G acts freely on M
if there is a continuous function G×M

ϕ→M (regard G×M as the disjoint union
M ∪ M ∪ · · · ∪M︸ ︷︷ ︸

k

if |G| = k), and we write ϕ(g, x) = gx, such that

(1) 1x = x for all x ∈M where 1 is the identity of G,

(2) (gh)x = g(hx) for all g, h ∈ G, x ∈M ,

(3) gx = x for some x ∈M ⇒ g = 1.

“freely” comes from condition (3) which says that if g 	= 1, then g moves every
point of M . The orbit space M/G of such a group action is the quotient space
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of M consisting of all equivalence classes defined by the equivalence relation “∼”
on M by x ∼ y iff gx = y for some g ∈ G. Then M/G is an n-manifold. The
following is easy to prove from Linear algebra.

Proposition 2.1. Let G × S2 ϕ→ S2 be a finite group free action such that
〈gx, gy〉 = 〈x, y〉 for all g ∈ G and x, y ∈ S 2 where 〈, 〉 denotes the usual inner
product on R3. Then either |G| = 1 or |G| = 2 and, in the latter case, G×S 2 ϕ→ S2

is the group action Z2 × S2 ϕ→ S2 described above.

One can actually show from Proposition 2.1 that P2 is the only surface which
is a quotient space of S2 (besides S2 itself of course).

The next simplest surface one can think of is the product space T = S 1 × S1,
called the 2-dimensional torus (in general, the m-dimensional torus for m ≥ 2 is
S1 × · · · × S1︸ ︷︷ ︸

m

). It can be embedded in R3 with a shape which looks like a donut

or a tire as shown in Figure 2 below.
S1 can be thought as the space obtained from the closed interval [0, 1] by

identifying the end points 0 and 1 to a point. Then S1 × S1 is the space obtained
from a square in R2 by identifying the 4 edges in pairs as shown in Figure 3. We
use the symbol aba−1b−1 to denote these pairings of the 4 edges of the square. By
this representation of the torus T we denote T as T = S(aba−1b−1).

It turns out that, from the surfaces S2, P 2 and T above, one can construct all
the surfaces (up to homeomorphisms) by an operation called the “connected sum”
which is described as follows.

Fig. 2. Fig. 3.

Given two path-connected n-manifolds M1 and M2. Let

Dn = {x = (x1, . . . , xn) ∈ Rn| ‖x‖ =
√
x2

1 + · · ·+ x2
n ≤ 1},
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the n-dimensional closed unit disk in Rn with boundary

∂Dn = Sn−1 = {x = (x1, . . . , xn) ∈ Rn| ‖x‖ =
√
x2

1 + · · ·+ x2
n = 1},

the (n − 1)-sphere of radius 1. Take any embeddings Dn ϕi→ Mi, i = 1, 2. (From
the definition of an n-manifold, such embeddings exist.) Let D̃n = Dn − Sn−1,
the open unit disk in Rn. Let M i = Mi − ϕi(Dn) and let M̃i = Mi − ϕi(D̃n),
i = 1, 2. Clearly, M̃i = M i ∪ ϕi(Sn−1) which is a disjoint union. Note that
ϕi(Sn−1) is homeomorphic to Sn−1 via Sn−1 ϕi→ ϕi(Sn−1), i = 1, 2. Consider the

homeomorphism ϕ1(Sn−1)
ϕ2ϕ

−1
1→ ϕ2(Sn−1). Let M1�M2 denote the quotient space

of the disjoint union M̃1 ∪ M̃2 by identifying each point x ∈ ϕ1(Sn−1) ⊂ M̃1 with
the corresponding point ϕ2ϕ

−1
1 (x) ∈ ϕ2(Sn−1) ⊂ M̃2. It is not difficult to show

the following.

Proposition 2.2.

(1) M1�M2 is also a path-connected n-manifold and the topological type of
M1�M2 is independent of the chosen embeddings D n φi→Mi, i = 1, 2.

(2) The operation “�” is commutative and associative, that is, M 1�M2
∼= M2�M1

and if M3 is another path-connected n-manifold, then (M 1�M2)�M3
∼=

M1�(M2�M3).

M1�M2 is called the connected sum of the manifolds M1 and M2. From Propo-
sition 2.2 (2) we see if Mi, i = 1, 2, . . . , k, are path-connected n-manifolds then,
up to homeomorphisms, there is a well defined n-manifold M1�M2� · · ·�Mk which
will be called the connected sum of the manifolds Mi, i = 1, . . . , k. The following
is easy to see.

Proposition 2.3. M�Sn∼=Sn�M∼=M for any path-connected n-manifold M .

Applying the connected sum operation “�” to the surfaces S2, P 2 and T we
obtain some new surfaces P 2

n and Tn described as follows.
First we note by Proposition 2.3 that it suffices to consider the connected sums

M1�M2� · · · �Mn with each Mi being either P 2 or T . Secondly, we refer to Massey
[9] for a proof of the following result.

Proposition 2.4. P 2�T ∼= P 2�P 2�P 2.

From this result we see the new surfaces obtained from P 2 and T by applying
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the connected sum operation in a finite number of times are of two types:

P 2
n = P 2� · · · �P 2︸ ︷︷ ︸

n

, n ≥ 1 with P 2
1 = P 2

and Tn = T� · · · �T︸ ︷︷ ︸
n

, n ≥ 1 with T1 = T.

In order to get a concrete picture of these new surfaces we recall from Figure 1 that
P 2

1 = P 2 is the space

Fig. 4.

that is, the space obtained from the unit closed disk D2 by identifying the two edges
of equal length on the boundary S1 = ∂D2 as shown. We shall use the symbol
S(a1a1 = a2

1) to denote P 2 = P 2
1 ; so P 2

1 = S(a2
1). Similarly, from Figure 3, we

see the torus T1 = T can be thought as the space

Fig. 5.

that is, the space obtained from D2 by identifying in 2 pairs of the 4 edges
of equal length on S1 = ∂D2 as shown, and we recall that, using this rep-
resentation, T is thus denoted by T = T1 = S(a1b1a

−1
1 b−1

1 ). It is easy to
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see, from the way that the connected sums are performed, that the new surfaces
P 2
n = P 2� · · · �P 2 and Tn = T 2� · · ·�T 2 for n ≥ 2 have similar representations as

quotient spaces of D2. Namely, for P2
n , if the boundary S1 of D2 is divided into

2n edges of equal length and identify these edges in n pairs according to the rule
a1a1a2a2 . . .anan = a2

1a
2
2 . . . a

2
n (generalizing the case n = 1) then the resulting

quotient space of D2 is P 2
n . Similarly, for Tn, if the boundary of D2 is divided

into 4n edges of equal length and identify these edges in 2n pairs according to the
rule a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . .anbna
−1
n b−1

n (generalizing the case n = 1) then the
resulting quotient space of D2 is Tn. For example, P2

2 and T2 are the spaces

Fig. 6. Fig. 7.

respectively. We still refer to [9] for proofs why the connected sums P2
n and Tn

(for n ≥ 2) can be represented by such quotient spaces of the closed unit disk D2.
Again we use S(a2

1 . . . a
2
n) and S(a1b1a

−1
1 b−1

1 . . . anbna
−1
n b−1

n ) to denote P 2
n and

Tn respectively. We also refer to [9] for an intuitive proof of the following theorem
which was already known at the end of the nineteenth century.

Theorem 2.5. Up to homeomorphisms, the only surfaces are S 2, P 2, T and
P 2
n , Tn for n ≥ 2.

Except for S2 and P 2, the surfaces T , P 2
n and Tn for n ≥ 2 are orbit spaces

R2/G for appropriate infinite discrete groups G respectively.
In order to describe these, we need to expand our notion of free group actions

G ×M
ϕ→ M , discussed earlier, to that in which the groups G are infinite and

discrete where M is a path-connected n-manifold. “discrete” means that G has the
discrete topology, that is, every point of G is open. If G is infinite and discrete
then, in addition to the three conditions (1), (2) and (3) on page 2 for the free group
action G ×M

ϕ→ M (and we still write gx to denote ϕ(g, x)), we also need the
following condition in order for the orbit space M/G to be an n-manifold.
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(4) For any two points x, y in M not in the same orbit (means �g ∈ G with gx =
y) there are open neighborhoods U of x and V of y such that U ∩GV = ∅
where GV = {gv|g ∈ G, v ∈ V }.

In such a case, we say G acts properly discontinuously on M .
Now we describe T , P 2

n and Tn for n ≥ 2 as orbit spaces R2/G as follows. First
we describe this for T = S1×S1. Consider the set of integers Z = {0,±1,±2, . . .}
as the infinite cyclic group in the usual way. Z acts on R = R1 by ϕ(m, x) = m+x
for m ∈ Z, x ∈ R1, that is, a translation action. It is easy to see that (4) is satisfied
for this action and that the resulting orbit space R/Z is S 1. From this one sees
that T = S1 × S1 ∼= R2/Z × Z where Z × Z acts on R2 by ϕ((m, n), (x, y)) =
(m + x, n + y) which is also a translation action. This translations group action
can be seen more clearly from the representation S(a1b1a−1

1 b−1
1 ) for T as follows.

Recall that T = S(a1b1a
−1
1 b−1

1 ) is the space

Fig. 8.

that is, the space obtained from a square in R2 with the 4 edges identified in 2 pairs
as shown in the figure. We may take this square to be the square in R2 with vertices
(0, 0), (0, 1), (1, 0) and (1, 1). In R2, a1 corresponds to the translation R2 A→ R2

given by A(x, y) = (x, y+1) and b1 corresponds to the translation R2 B→ R2 given
by B(x, y) = (x+ 1, y). These translations are isometries of the Euclidean space
R2 relative to the usual metric on R2, that is, the usual inner product on R2. We use
ds2 = dx2

1+dx2
2 to denote this standard metric. In what follows when we write ds2

we will mean that it stands for the standard metric for R2. Let G be the group of
isometries of R2 generated by A and B (relative to ds2). Clearly, G is isomorphic
to the free abelian group Z×Z on the generators A and B. So T can be considered
as the orbit space R2/G where G = Z × Z is the group of all the isometries
(x, y) → (m + x, n + y) of R2. Finally from theoretic group theory, the group
G = Z× Z can also be understood from the representation T = S(a1b1a

−1
1 b−1

1 ) as
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follows. Let F be the free group (not free abelian group) on two generators, also
denoted by a1 and b1. Let N be the smallest normal subgroup of F containing the
commutator [a1, b1] = a1b1a

−1
1 b−1

1 ∈ F . Then it is easy to see that the quotient
group F/N is isomorphic to the free abelian group G = Z × Z. Thus T is the
orbit space R

2

F/N . This outcome of the group G = Z × Z from the representation
T = S(a1b1a

−1
1 b−1

1 ) will be a model for treating the remaining surfaces P 2
n and Tn

for n ≥ 2 as orbit spaces R2/G for appropriate G that follow.
We will discuss the surface P 2

2 = P 2�P 2 and the surfaces P 2
n for n ≥ 3 and

Tm for m ≥ 2 separately because P2
2 has a similar situation as that for the torus T

above while P 2
n for n ≥ 3 and Tm for m ≥ 2 do not. Just what “similar situation”

is will be clear in a moment.
It can be shown (see [9]) that P 2

2 is homeomorphic to the Klein bottle K which
is the space

Fig. 9.

that is, the space obtained from a square in R2 by identifying the 4 edges in 2 pairs
as shown in the figure. We may take this square to be the square in R2 with the
4 vertices (±1

2 ,±1
2). Then a corresponds to the translation R2 A→ R2 given by

A(x, y) = (x, y + 1). But now b corresponds to the map R2 B→ R2 which is the
composite

B : (x, y) B1→ (x+ 1, y) R→ (x+ 1,−y)
with B1 a translation and R a reflection. So A and B are also isometries of
R2 relative to ds2. It is easy to see that there is the relation AB = BA−1, or
equivalently, the relation ABAB−1 = 1 (1 = idR2). Let G2 be the group of
isometries of R2 generated by A and B relative to ds2; so G2 is a group having
two generators A and B subject only to the relation ABAB−1 = 1. Then, analogus
to T ∼= R2/Z × Z above, P2

2 is homeomorphic to the orbit space R2/G2. Note
that, from the representation P 2

2 = K = S(abab−1) above, if we let F2 be the
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free group on the generators a and b and consider the smallest normal subgroup
N of F2 containing the element abab−1 ∈ F2 then the quotient group F2/N is
isomorphic to G2. Thus F2/N acts on R2 as a group of isometries (relative to ds2)
and P 2

2
∼= R

2

F2/N
.

By “P2
2 has a similar situation as that for T ” that was mentioned earlier, we mean

that both P 2
2 and T are orbit spaces R2/G for appropriate groups G of isometries

of R2 relative to ds2.
We proceed to consider the surfaces

P 2
n = S(a2

1a
2
2 . . .a

2
n) for n ≥ 3

and
Tm = S(a1b1a

−1
1 b−1

1 . . . ambma
−1
m bm) for m ≥ 2.

Let Fn (resp. Fm) be the free group on n generators a1, . . . , an (resp. on 2m gener-
ators a1, . . . , am, b1, . . . , bm). Let N ⊂ Fn (resp. N ⊂ Fm) be the smallest normal
subgroup containing a2

1a
2
2 . . .a

2
n ∈ Fn (resp. the smallest normal subgroup con-

taining the product of commutators [a1, b1][a2, b2] . . . [am, bm] = a1b1a
−1
1 b−1

1 . . .
ambma

−1
m b−1

m ∈ Fm). Let Gn = Fn/N and Gm = Fm/N . So Gn is the group
generated by n elements a1, a2, . . . , an subject only to the relation a2

1a
2
2 . . . a

2
n = 1

andGm is the group generated by 2m elementsa1, a2, . . . , am, b1, b2, . . . , bm subject
only to the relation a1b1a

−1
1 b−1

1 . . . ambma
−1
m b−1

m = 1. We refer to the references
[2] and [15] for what we are going to say about the topology and geometry of
the surfaces P 2

n for n ≥ 3 and Tm for m ≥ 2 via the groups Gn = Fn/N and
Gm = Fm/N respectively.

One can show that there are (free) group actionsGn×R2 ϕn→ R2 andGm×R2 ϕm→
R2 such that P 2

n
∼= R2/Gn and Tm ∼= R2/Gm. For n ≥ 3 and m ≥ 2 these groups

Gn and Gm are not groups of isometries of R2 relative to the standard metric ds2.
The reason is the following. Let M be a surface obtained from a regular 2k-gon Q
in R2 by identifying the 2k edges of Q in k pairs such that the 2k vertices of Q are
identified to a single point in M . If k ≥ 3 then the angle sum of the polygon Q is
2k(π − 2π

2k ) = 2kπ − 2π which is bigger than 2π = 360◦! Nevertheless, one can
construct a new metric ds2 on R2, and this was invented in 19th century primarily
by Gauss, Bolyai and Lobachevskii, such that

(*)
at each point x ∈ R2 the metric ds2 is defined at the tangent space
Tx(R2) ∼= R2 with any geodesic triangle �x around x having angle sum
S(�x) less that 180◦ and, when x moves away from the origin, S(�x)
tends to zero.

The new metric ds2 is described as follows. For each point x ∈ R2 the metric
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ds2 on the tangent space Tx(R2) = R2 is given by

(**) ds2 =
4

(1 − r2)2
(dx2

1 + dx2
2) where r =

‖x‖
1 + ‖x‖ .

R2 with this new metric ds2 is called the 2-dimensional hyperbolic space and is
denoted by H2. Since H2 has the property in (*), any surface M obtained from a
regular 2k-gon Q in R2 as described above is embedded in H2 in a very nice way.
In particular, this holds for the surfaces P 2

n
∼= R2/Gn = H2/Gn for n ≥ 3 and

Tm ∼= R2/Gm = H2/Gm for m ≥ 2, and in these cases, the groups Gn and Gm
are transformation groups of isometries of H2, that is, the transformation groups of
R2 relative to the new metric ds2.

The hyperbolic space H2, with metric ds2 given by (**), is well known to have
constant curvature (Gaussian curvature) which is −1 (see reference [2]). Passing
to orbit spaces we see P 2

n = H2/Gn and Tm = H2/Gm (for n ≥ 3, m ≥ 2) also
have negative constant curvature −1. It is also known that R2 with the standard
metric ds2 has zero constant curvature. So the orbit spaces T = R2/Z × Z and
P 2

2 = R2/G2 discussed earlier also have zero constant curvature. Finally, we also
recall that the unit 2-sphere S 2 in R3 with the metric induced from the standard
metric ds2 = dx2

1 + dx2
2 + dx2

3 on R3 has constant curvature +1. So P2 = S2/Z2

also has constant curvature +1. We summarize all surfaces in terms of this geometry
as follows:

(1) S2 and P 2 = S2/Z2 have constant curvature +1,

(2) T = R2/Z × Z and P 2
2 = R2/G2 have zero constant curvature,

(3) P 2
n = H2/Gn for n ≥ 3 and Tm = H2/Gm have constant curvature −1.

By Theorem 2.5, the surfaces in (1), (2), (3) above exhaust all the possibilities
of surfaces up to homeomorphisms. How can one tell they are different topological
types one another? To answer this question we have to consider the fundamental
groups of these surfaces. We refer to [9] for the basic theory on the fundamental
group π1(X) of any path-connected topological space X . These include Proposition
2.6, Example 2.7 and Theorem 2.8 that follow. In the remainder of this section all
spaces to be considered are assumed to be path-connected spaces.

For each space X there is associated a group π1(X), called the fundamental
group of X . The association “X → π1(X)” has the following properties, called
the functorial properties. For any continuous function X f→ Y of spaces, there is a
natural induced homomorphism π1(X)

f∗→ π1(Y ) such that:

(1) π1(X)
f∗=id→ π1(X) if X f→ X is the identify map.
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(2) For any compositeX f→ Y
g→ Z of spaces, the composite π1(X)

f∗→ π1(Y )
g∗→

π1(Z) is equal to π1(X)
(gf)∗→ π1(Y ).

From these properties one easily proves the following property.

Proposition 2.6. If X f→ Y is a homeomorphism then the induced homomor-
phism π1(X)

f∗→ π1(Y ) is an isomorphism.

Thus the fundamental group π1(X) is a topological invariant of X .
A space X is said to be simply connected if π1(X) = ∗, that is, if its funda-

mental group π1(X) is the trivial group. We have the following examples of simply
connected spaces.

Example 2.7.

(1) Rn for n ≥ 1 and any convex subset of Rn are simply connected.

(2) The n-sphere Sn is simply connected for all n ≥ 2.

A basic theorem in the theory of the fundamental groups is the following.

Theorem 2.8. Let X be a path-connected space. Suppose U and V are path-
connected open subsets of X such that X = U ∪ V and U ∩ V 	= ∅. If U and V
are simply connected and if U ∪V is path-connected then X is simply connected.

From this theorem one easily infers that the n-sphere Sn for n ≥ 2 are simply
connected as given in Example 2.7 (2). Indeed, the open subsets

U = {x = (x1, . . . , xn+1) ∈ Sn|xn+1 > −1
2
}

V = {x = (x1, . . . , xn+1) ∈ Sn|xn+1 <
1
2
}

of Sn satisfy the conditions in the theorem, so Sn is simply connected for n ≥ 2.
This no longer is true for S1. Indeed, we have π1(S1) ∼= Z, the infinite cyclic
group of integers. To see this, we recall that S1 is the orbit space R1/Z. Then
π1(S1) ∼= Z follows from the following theorem which is also a basic theorem in
the theory of π1.

Theorem 2.9. Suppose Y is a simply connected space and supposeG×Y ϕ→ Y
is a discrete group action (properly discontinuously). Consider the orbit space Y/G
which is clearly a path-connected space. Then π1(Y/G) ∼= G.
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Now consider the surfaces

S2, P 2 = S2/Z2, T = R2/Z × Z, P 2
2 = R2/G2,

P 2
n = H2/Gn = R2/Gn for n ≥ 3, and
Tm = H2/Gm = R2/Gm for m ≥ 2

in (1), (2) and (3) above.

Since S2 and R2 are simply connected, from Theorem 2.9 we infer π1(S2) = 0,
π1(P 2) = Z2, π1(T ) = Z × Z, π1(P 2

n) = Gn for n ≥ 2 and π1(Tm) = Gm for
m ≥ 2. From Proposition 2.6 we see that in order to prove these surfaces are of
different topological types it suffices to show Z2, Z×Z, Gn for n ≥ 2 and Gm for
m ≥ 2 are non-isomorphic groups one another. It suffices to compare the groups
Z× Z, Gn and Gm one another since these are infinite groups while Z2 is a group
of order 2.

For any group H let [H,H ] denote the commutator subgroup of H , that is, the
subgroup generated by all the commutators [g, h] = ghg−1h−1 in H . It is easy to
see [H,H ] is a normal subgroup of H . The quotient group H/[H,H ] is an abelian
group, and this is easy to see. We shall denote H/[H,H ] by A(H) (“A” means
abelianization). If H is finitely generated then A(H) is a finitely generated abelian
group and so is isomorphic to a finite direct sum with each factor either the infinite
cyclic group Z or a finite cyclic group Zk, by the fundamental theorem on finitely
generated abelian groups. Finally note that if H f→ G is a group isomorphism

then it induces a group isomorphism A(H)
f→ A(G). Thus if A(H) and A(G) are

non-isomorphic groups then H and G are non-isomorphic groups.
Let G1 denote Z × Z. Clearly A(G1) ∼= G1 = Z × Z since Z × Z is abelian.

We recall that

G2 is a group on two generators a and b subject only to the relation
abab−1 = 1,
Gn, for each n ≥ 3, is a group on n generators a1, a2, . . . , an subject only
to the relation a2

1a
2
2 . . . a

2
n = 1,

and

Gm, for eachm ≥ 2, is a group on 2m generators a1, a2, . . . , am, b1, b2, . . . ,

bm subject only to the relation a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . ambma
−1
m b−1

m =
1.

It is not difficult to show from these structures that

A(Gn) ∼= Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
n−1

⊕Z2 for n ≥ 2,
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A(Gm) ∼= Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
2m

for m ≥ 2.

Since these groups together with A(G1) = Z ⊕ Z are non-isomorphic groups one
another it follows that G1, Gn for n ≥ 2 and Gm for m ≥ 2 are non-isomorphic
groups one another. This completes the proof that the surfaces S2, P 2 = S2/Z2,
P 2
n = R2/Gn for n ≥ 2 and Tm = R2/Gm for m ≥ 2 are of different topological

types one another.
In concluding this section we remark that the concept of the fundamental groups

of path-connected spaces was invented by Poincaré at the end of 19th century. This
invention is intimated to his famous conjecture on a fundamental question about the
topology of the 3-sphere S3 in terms of the fundamental group, and this is described
in the next section.

3. THE POINCARÉ CONJECTURE

In this section any 3-manifold is meant a path-connected compact 3-manifold.
In 1904 Poincaré made the following conjecture.

Poincaré Conjecture 3.1. Any simply connected 3-manifold is homeomorphic
to the 3-sphere S3.

If all (compact) 3-manifolds can be classified, like the 2-dimensional case in the
previous section, then one can immediately conclude whether the conjecture is true
or false. Despite many efforts by many prominent mathematicians in the passing
nearly 100 years, this famous conjecture remains open, not even to mention the
classification of all 3-manifolds. However, recent progress work by Perelman, based
on Hamilton’s work in the 80’s and 90’s, might end this situation, not only solving
the Poincaré conjecture in the affirmative but also classifying all 3-manifolds. We
refer to three excellent survey articles on this progress which are the References
[1], [8] and [11]. Here we just describe some topological and geometric aspects
of the problem relating to this conjecture, largely from the viewpoint of Thurston
Geometrization Conjecture. In particular, we will give a minor touch on Perelman
and Hamilton’s ideas.

We begin by giving some examples of 3-manifolds. The 3-sphere S3 (of radius
1) that appears in 3.1 is of course the most prominent example of a 3-manifold.
Analogous to the 2-dimensional case, we can also consider the orbit space S3/Z2 =
P 3, the 3-dimensional projective space where Z2 = {1, T} acts on S3 also by
T (x) = −x. Unlike 2-dimensional case, there are some other orbit spaces of the
form S3/G besides P 3. This will be discussed later. From all the surfaces in section
2, one can construct a family of 3-manifolds as follows. For each surface M , the
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product M × S1 is an example of a 3-manifold. These manifolds are different
(non-homeomorphic) for different M ’s. Also, they are different from orbit spaces
of the form S3/G, in particular, different from S3 and P 3. These are easy to see
(just look at their fundamental groups). These product 3-manifolds include S 2×S1,
P 2 × S1, T 3 = T × S1 = S1 × S1 × S1, the 3-dimensional torus, etc. Analogous
to T = S1 × S1 = R2/S1 × S1, T 3 is the orbit space R3/Z × Z × Z. There are
many other examples and this will be discussed below.

From the geometric analysis of surfaces in §2, it is natural to consider, in 3-
dimensional case, three particular families of such manifolds. Namely, the families
of 3-manifolds of constant curvatures +1, 0, and −1 respectively. In general, such
manifolds are said to have constant curvature which may not be equal to any of
these values, but when rescaled in Riemannian metric, can be adjusted to have +1,
0 and −1 as the constant curvature values respectively. Also, here we assume that
any 3-manifold is a smooth (C∞) manifold, and this actually is a theorem by the
works of Moise, Munkres, Hirsh and Smale in the 50’s and 60’s. Similar to the
2-dimensional case, 3-manifolds of constant curvature +1 are orbit spaces of the
form S3/G1, those of constant curvature 0 are orbit spaces of the form R3/G2 and
those of constant curvature −1 are orbit spaces of the form H3/G3. Again this is
a classical theorem which essentially is due to Killing and Hopf. Here G1, G2, H3

and G3 are described as follows. G1 is any finite subgroup of the orthogonal group
O(4) which is the symmetry group of S3 in R4 relative to the standard metric ds2
(G1 has to be finite since S3 is compact and S3/G1 is a 3-manifold). G2 is any
properly discontinuous group of isometries of R3 relative to the standard metric ds2
so that the orbit space R3/G2 is a compact 3-manifold. H3 is the 3-dimensional
hyperbolic space which is R3 with the new metric ds2 given by

ds2 =
4

(1− r2)2
ds2

analogous to the 2-dimensional case H2 in §2, and finally, G3 is any properly discon-
tinuous group of isometries of H3 relative to ds2 so that the orbit space H3/G3 is also
a compact 3-manifold. Spaces of the form S3/G1 are called elliptic 3-manifolds,
those of the form R3/G2 are called 3-dimensional Euclidean manifolds and those of
the form H3/G3 are called 3-dimensional hyperbolic manifolds. Classification of
elliptic 3-manifolds and that of 3-dimensional Euclidean manifolds are completely
understood. See Thurston [15] for an excellent geometric treatise on these facts.
The classification of 3-dimensional hyperbolic manifolds is not completely known
yet and is still an active area of research.

We describe at least one example of an interesting elliptic 3-manifold S3/D∗

where D∗ is a group of order 120, and so S3/D∗ is different from P 3. This
example is of historical in connection with the Poincaré conjecture and is known as
the Poincaré 3-manifold.
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In order to describe this 3-manifold we recall that the skew-field H of quaternions
is a 4-dimensional vector space over R on the standard basis 1, i, j and k. Elements
in H, called quaternions, are written as q = a+ bi+ cj + dk with a, b, c, d ∈ R. H
is an algebra over R with multiplication determined by the rules i2 = j2 = k2 =
−1 = −1 + 0i + 0j + 0k, ij = −ji = k, jk = −kj = i and ki = −ik = j, and
with 1 = 1+0i+0j+0k as the identity of the multiplication. H is a normed linear
algebra over R with norm ‖ ‖ given by

‖q = a+ bi+ cj + dk‖ =
√
a2 + b2 + c2 + d2

so that ‖q1q2‖ = ‖q1‖‖q2‖ for all q1, q2 ∈ H. For each q = a+ bi+ cj + dk 	= 0,
which is equivalent to ‖q‖ > 0 , q−1 = q

‖q‖2 = 1
‖q‖2 (a − bi − cj − dk) is the

multiplicative inverse of q so that q−1q = qq−1 = 1. This shows H is a skew-
field, noting that the multiplication in H is not commutative (ij 	= ji, for example).
S3 ⊂ R4 ∼= H can be considered as the subset of H consisting of all quaternions
q = a + bi + cj + dk with ‖q‖ =

√
a2 + b2 + c2 + d2 = 1, equivalently, ‖q‖2 =

a2 + b2 + c2 + d2 = 1. The multiplication in H induces a multiplication

S3 × S3 → S3

(q1, q2) → q1q2

in S3 since ‖q1q2‖ = ‖q1‖‖q2‖ = 1. Also for each q ∈ S3 its inverse q−1 also lies
in S3 since 1 = ‖1 = qq−1‖ = ‖q‖‖q−1‖ and ‖q‖ = 1 implies ‖q−1‖ = 1. So S3

is a topological group under this multiplication which is clearly continuous in the
variables q1 and q2. Actually S3 is a Lie group.

Now consider, for each q ∈ S3, the conjugate map

S3 ϕ(q)→ S3

x→ qxq−1
(*)

which, not only is a group isomorphism (this is easy to see), but is also an isometry
as ‖ϕ(q)(x) = qxq−1‖ = ‖q‖‖x‖‖q−1‖ = 1. This defines a map S3 ϕ→ O(4),
the symmetry group of S3. We recall that the rotation group SO(4) is one of the
two path-component of O(4) that contains the identity I4 ∈ O(4). Since S3 is
path-connected and ϕ(1) = I4 it follows that ϕ is S3 ϕ→ SO(4). S3 ϕ→ SO(4) is a
group homomorphism since

ϕ(g1g2)(x) = g1g2x(g1g2)−1 =g1g2xg−1
2 g−1

1 =g1(ϕ(g2)(x))g−1
1 =ϕ(g1)ϕ(g2)(x).

It is easy to see that the group S3 has center {±1}. From this one sees that
kerϕ = {±1}. Consider the rotation group SO(3) which is a subgroup of SO(4)
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via the embedding

SO(3) → SO(4)

A→
(

1 0
0 A

)
.

Since ϕ(1) = I4, it follows that S3 ϕ→ SO(4) maps S3 into SO(3). So ϕ is actually
a map S3 ϕ→ SO(3) which is still a group homomorphism with kerϕ = {±1}. We
refer to 2.7.4 and 2.7.7 in [15] for the fact that S 3 ϕ→ SO(3) is onto. We conclude
that the conjugate map in (*) gives rise to

(**) a group epimorphism S3 ϕ→ SO(3) with kerϕ = {±1}.

Proposition 3.2. (1) For any finite group G ⊂ SO(3), the inverse image
G∗ = ϕ−1(G) is a finite subgroup of S 3 with |G∗| = 2|G| where ϕ is as in (∗∗).
(2) Any finite subgroup H of S 3 is a group of isometries of S 3 via the (free) group
action H × S3 ψ→ S3 given by ψ(h, x) = hx.

Proof. (1) is a standard result in group theory. To see (2) note that ‖ψ(h, x)‖ =
‖hx‖ = ‖h‖‖x‖ = 1 for any h ∈ H ⊂ S3 and any x ∈ S3 and note that hx = x

for some x ∈ S3 implies h = 1.

Finite subgroups of SO(3) are completely known, and for this we refer to [15]
or [17]. By Proposition 3.2 we thus see that all finite subgroups of S3 can be
classified and that each such a finite group H gives rise to an elliptic 3-manifold
S3/H . We should remark, however, that not every elliptic 3-manifold S3/Γ arises
this way; as we have already noted earlier, S3/Γ is an elliptic 3-manifold if and
only if Γ is a finite subgroup of O(4). All such finite subgroups are also known,
again see Thurston [15].

The Poincaré 3-manifold is a particular example S3/D∗ of Proposition 3.2.
D ⊂ SO(3) is the symmetry group of the dodecahedron as shown in the figure.
D is called the dodecahedral group and D∗ = ϕ−1(D) is called the binary do-
decahedral group. It can be shown that D has order 60 and is isomorphic to the
alternating subgroup A5 of the symmetric group S5 on 5 letters and that D∗ is
isomorphic to the special linear group SL(2,Z5), that is, the multiplicative group
of 2 × 2 matrices of determinant 1 with coefficients in the field Z5. It can also
be shown that SL(2,Z5) is a perfect group, that is, it is equal to its commutator
subgroup [SL(2,Z5), SL(2,Z5)]. For all of these, see [17]. We conclude that the
binary dodecahedral group D∗ is perfect, that is, D∗ = [D∗, D∗].
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Fig. 10.

For this paragraph and the next we assume the readers are familiar with two no-
tions in basic algebraic topology. First, for any path-connected compact orientablen-
manifold M , the integral homology groups Hj(M) and cohomology groups Hk(M)
satisfy H0(M) = Hn(M) = Z and Hn−i(M) ∼= Hi(M) for 0 ≤ i ≤ n. Secondly,
for any path-connected topological space X , if π1 = π1(X) is the fundamental
group then the first integral homology H1(X) is the abelianization of π1, that is,
H1(X) ∼= A(π1) = π1/[π1, π1].

S3 is well known to be an orientable 3-manifold, and since π1(S3) = 0, it
follows that H1(S3) = 0 and this implies H0(S3) = H3(S3) = Z and Hi(S3) = 0
for i = 1, 2. Any orientable 3-manifold M with H0(M) = H3(M) = Z and
Hi(M) = 0, i = 1, 2, is called a homology 3-sphere. It is easy to see that any
elliptic 3-manifold S3/Γ is orientable (see [15]). In particular, S 3/D∗ is orientable.
Now, since π1(S3/D∗) = D∗ (by Theorem 2.9) and D∗ = [D∗, D∗], it follows that
H1(S3/D∗) = 0. So the Poincaré 3-manifold S3/D∗ is a homology 3-sphere.

The original version of Poincaré conjecture (around 1900) is that any 3-manifold
which is a homology 3-sphere is homeomorphic to the 3-sphere S3. Later on
Poincaré found an example of a homology 3-sphere M3, which about a quarter
century later was recognized by Threlfall and Seifert to be the dodecahedral space
S3/D∗ and is definitely not homeomorphic to S3. So he corrected his conjecture
to the version stated in Poincaré Conjecture 3.1 at the outset of this section. Thus
the Poincaré 3-manifold S3/D∗ is the starting point in the history of the Poincaré
conjecture.

And the Poincaré dodecahedral space S3/D∗ is not just the beginning history
of the Poincaré conjecture, it is still an important space not just in geometry and
topology but also in cosmology! For this see [16].

We already noted that the following three families of 3-manifolds
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(1) elliptic 3-manifolds S3/G1,
(2) 3-dimensional Eulidean manifolds R3/G2 and
(3) 3-dimensional hyperbolic manifolds H3/G3

are precisely the 3-manifolds of constant curvatures +1, 0 and −1 respectively.
Unlike the 2-dimensional case in which these types of 2-manifolds exhaust all pos-
sibilities of surfaces, there are 3-manifolds which do not belong to one of the types
1, 2 and 3. For example, S2×S1 and P 2×S1 are such examples, and this is roughly
seen as follows. Since S2 is simply connected, the fundamental group π1(S2×S1)
is isomorphic to π1(S1) = Z (in general, π1(X × Y ) ∼= π1(X) × π(Y )). Since
elliptic 3-manifolds have finite fundamental groups it follows that S 2 × S1 can not
be an elliptic 3-manifold. In some sense, the infinite cyclic group Z is a “one-
dimensional” object, namely, it has rank 1 as a free abelian group. So R2/Z is not
a compact 3-manifold no matter what action of Z on R3 is. This implies S 2×S1 is
neither a 3-dimensional Euclidean manifold R3/G2 nor a 3-dimensional hyperbolic
manifold H2/G3. Similar proof applies to P2 × S1 since P 2 is an elliptic surface
(this remark is crucial as, for example, T × S1 = S1 × S1 × S1 = R3/Z × Z × Z
is a 3-dimensional Euclidean manifold).

Thurston calls each of the types 1, 2 and 3 above a geometric structure with
(O(4), S3), (Γ1,R

3) and (Γ2,H
3) as the model geometries called elliptic model,

Euclidean model and hyperbolic model respectively. Here Γ1 (resp. Γ2) is the full
group of isometries of R3 (resp. H3) relative to ds2 (resp. ds2). In late 1970’s, based
on previous works by many outstanding geometers and topologists on this subject,
he proposed five other geometries and conjectured that any 3-manifold (recall that
this means a compact 3-manifold) can be completely described in terms of these
total 8 geometries. This conjecture will be described more precisely below. We
refer to Thurston [15] for these extra 5 geometries which will not be described here.
We just remark that S2 × S1 and H2 × S1 are representatives for two of these
geometries. We also remark that these extra 5 geometries are all well understood in
the sense that their classifications are completely known as in the cases of elliptic
and Euclidean geometries. So among the total 8 geometries proposed by Thurston
only the hyperbolic geometry still remains to be classified (this we already remarked
earlier).

Thurston conjecture can be stated as follows.

Thurston Geometrization Conjecture 3.3. Any 3-manifold can be decom-
posed in an essential unique way by disjoint embedded 2-spheres (via connected
sum) and tori T into pieces each one having one of these 8 geometries.

The “decomposition” referred to in the statement above comes from a classical result
on the standard two-stage decomposition of any closed 3-manifold M . The first de-
composition is the connected sum decomposition of M into irreducible 3-manifolds
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(a 3-manifold is irreducible if any embedded 2-sphere bounds a 3-ball.) The sec-
ond decomposition is the Jaco–Shalen–Johannson torus decomposition, which says
that any irreducible 3-manifold N has a canonical minimal collection of disjointly
embedded incompressible tori (meaning that π1(T ) of each such a torus T is a
subgroup of π1(N )) such that each component of the 3-manifold removed by these
tori is either “torus-irreducible” or “Seifert fibered.” We refer to [1], [11] for more
details on this and also for the precise meaning of “essential unique way by these
geometric pieces” in the statement 3.3 above. Here we just give a simple example
to explain this. If M is a 3-manifold which already has one of these 8 geomet-
ric structures, say M = P3 (which has elliptic geometry) and if N is another
3-manifold also having one of these geometric structures, say N = S2 × S1. Then
M�N = P 3�(S2 × S1) is the only decomposition of the manifold L = M�N in
terms of the elliptic geometry on the piece P3 and the (S2 × S1)-geometry on the
piece S2 × S1.

If Thurston conjecture can be shown true then all 3-manifolds can be classified
provided those of hyperbolic geometry can be classified (because the classifica-
tions of the remaining 7 geometries are known). Pertaining to Poincaré conjecture,
Thurston conjecture implies the following that characterizes elliptic 3-manifolds.

Corollary 3.4. [to Thurston Conjecture] A 3-manifold is an elliptic 3-manifold
if and only if it has finite fundamental group.

This immediately implies Poincaré conjecture since S3 is the only elliptic 3-
manifold with π1 = 0.

From Riemannian geometry viewpoint, Thurston geometrization conjecture es-
sentially asserts that for any 3-manifold M there exists a “best possible” metric
to fit the picture of the geometry of M described in the conjecture. The space of
metrics on M is M = C∞(M,R6) which is a huge space. How can one choose
the “best possible” one? The Ricci flow introduced by Hamilton in 1982 (see [3]
and also [4-7]) is an initial successful attempt to make a best choice for some of
the 3-manifolds. Ricci flow is an evolution equation, that is, a differential equation,
that involves Ricci curvatures parametrized in time variable t in the metric space
M. The reason to consider Ricci curvature is that the Riemannian curvature and the
Ricci curvature are determined each other algebraically in dimension 3 and the latter
is easier to work with, for example, it is a symmetric bilinear form and behaves
nicely if it is positive when considering Ricci flow. Hamilton tried to apply his
technique (Ricci flow) to more general 3-manifolds hoping to solve the geometriza-
tion conjecture. But there are difficulties, primarily from singularities that may
arise. These singularities correspond to the passages from one geometry to another
geometry in Thurston geometrization picture. Recent works ([12-14]) by Perelman
are essentially an attempt to solve these singularities by introducing some functional



1128 Wen-Hsiung Lin

analysis on the space of metrics M to interpret Ricci flow. Perelman’s works are
very deep. Much of his works has been validated by experts. So the classification
of all 3-manifolds as suggested by Thurston seems to be possible in sight. We refer
to [8] for a detailed survey on all of these developments from Thurston to Hamilton
and then to Perelman.

It appears, from the development of the theory on 3-manifolds in the passing
100 years, that Poincaré conjecture, which is so simple in statement, has to be
waited for its solution till the complete classification of all 3-manifolds is known.
Can it be solved simply from the topological assumption π1 = 0? More generally,
can Corollary 3.4 be proved without all the machineries that lead the complete
classification of all 3-manifolds? With these questions we end this exposition of
the Poincaré conjecture.
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