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INTERPOLATION OF WEIGHTED �q SEQUENCES BY Hp FUNCTIONS

Takahiko Nakazi

Abstract. Let (zn) be a sequence of points in the open unit disc D and
ρn =

∏
m�=n |(zn − zm)(1 − z̄mzn)−1| > 0. Let a = (aj)∞j=1 be a sequence

of positive numbers and �s(a) = {(wj); (ajwj) ∈ �s} where 1 ≤ s ≤
∞. When 1 ≤ p ≤ ∞ and 1/p + 1/q = 1, we show that {(f(zn)); f ∈
Hp} ⊃ �s(a) if and only if there exists a finite positive constant γ such
that

{∑∞
n=1(anρn)−t(1 − |zn|2)t|f(zn)|t}1/t ≤ γ‖f‖q (f ∈ Hq), where

1/s + 1/t = 1. As results, we show that {(f(zj )); f ∈ Hp} ⊃ �1(a) if and
only if supn(anρn)−1(1 − |zn|2)1/p < ∞, and {(f(zn)); f ∈ H1} ⊃ �∞(a)
if and only if

∑
n(anρn)−1(1 − |zn|2)δzn is finite measure on D. These are

also proved in the case of weighted Hardy spaces.

1. INTRODUCTION

Let Hp (0 < p ≤ ∞) denote the usual Hardy space in the open unit disc D. In
this paper, we assume that a sequence (zj) in D satisfies that

∑∞
j=1(1−|zj|) < ∞,

that is, there exists a Blaschke product

B(z) =
∞∏

j=1

− z̄j

|zj |
z − zj

1 − z̄jz
.

Let

ρk,n =
n∏

j = 1
j �= k

∣∣∣∣ zk − zj

1 − z̄jzk

∣∣∣∣ , 1 ≤ k ≤ n,

ρk =
∞∏

j = 1
j �= k

∣∣∣∣ zk − zj

1 − z̄jzk

∣∣∣∣ .
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Then ρk,n ≥ ρk,n+1 and limn→∞ρk,n = ρk for k ≥ 1. We assume that ρk > 0 for
k = 1, 2, · · · .

For a positive sequence a = (aj),�s(a)denotes {(wj);wj ∈ �C and
∑∞

j=1(aj|wj|)s

< ∞} and �∞(a) denotes {(wj); wj ∈ �C and sup1≤j<∞aj |wj| < ∞}. In this
paper, we study the following problem : Find a necessary and sufficient condition
on (zj) so that {(f(zj)); f ∈ Hp} ⊃ �s(a) where 1 ≤ p ≤ ∞ and 1 ≤ s ≤ ∞.

Suppose aj = 1 for all j ≥ 1. When p = s = ∞, this was solved by L. Carleson
[1]. That is, {(f(zj)); f ∈ H∞} ⊃ �∞ if and only if infj ρj > 0. (zj) is called a
uniformly separated sequence when infj ρj > 0. When p = ∞ and 1 ≤ s < ∞, A.
K. Snyder [13] (cf. [7],[11]) proved that {(f(zj)); f ∈ H∞} ⊃ �s if and only if
infj ρj > 0. A. K. Snyder [13] and P. L. Duren and H. S. Shapiro [3] showed that
there exists a sequence (zj) which is not uniformly separated, that is, infj ρj = 0 and
has the property : {(f(zj)); f ∈ Hp} ⊃ �∞ when p �= ∞. B. A. Taylor and D. L.
Williams [14] showed that for 1 ≤ p ≤ ∞ {(f(zj)); f ∈ Hp} ⊃ �∞ if and only if
there exists a positive finite constant γ such that

∑∞
j=1

1
ρj

(1−|zj|2)|g(zj)| ≤ γ‖g‖q

for all g in Hq and 1/p + 1/q = 1.
Suppose 1 ≤ p = s ≤ ∞. When aj = (1 − |zj|2)1/p for all j ≥ 1, this was

solved by H. S. Shapiro and A. L. Shields [11]. That is, {(f(zj)); f ∈ Hp} ⊃
�p(a) if and only if infj ρj > 0. When aj = ρ2

j for all j ≥ 1, J. P. Earl [4]
showed that {(f(zj)); f ∈ H∞} contains �∞(a) always. This was pointed out
by A. M. Gleason (see [6]). On the other hand, when aj = ρj for all j ≥ 1, T.
Nakazi [10] showed that {(f(zj)); f ∈ H∞} ⊃ �∞(a) if and only if (zj) is the
union of a finite number of uniformly separated sequences. For a general weight
a = (aj), J. D. McPhail [9] gave a necessary and sufficient condition about (zj)
that {(f(zj)); f ∈ Hp} ⊃ �p(a). In fact, he studied such a problem in weighted
Hardy spaces.

In §2, we give a necessary and sufficient condition about (zj) for that {(f(zj)); f
∈ Hp} ⊃ �s(a) where 1 ≤ p ≤ ∞, 1 ≤ s ≤ ∞ and a = (aj) is arbitrary
weight. As a result, we show that {(f(zj)); f ∈ H1} ⊃ �s(a) if and only if∑∞

j=1(ajρj)−t(1−|zj|2)t < ∞ where 1/s+1/t = 1. Moreover, when 1 < p ≤ ∞
and a = (ρ−1

j ), we show that {(f(zj)); f ∈ Hp} ⊃ �p(a) if and only if (zj) is a
finite sum of uniformly separated sequences. This is a generalization of a result in
[10] for p = ∞.

In §3, when 1 ≤ p ≤ ∞, we show that {(f(zj)); f ∈ Hp} ⊃ �1(a) if and only
if supj(ajρj)−1(1 − |zj|2)1/p < ∞. As a result, a theorem of A. K. Snyder [13]
follows, that is, {(f(zj)); f ∈ H∞} ⊃ �s if and only if infj ρj > 0.

In §4, we give a necessary and sufficient condition about (zj) for that {(f(zj)); f
∈ Hp} ⊃ �∞(a). Put µ =

∑∞
j=1(ajρj)−1(1 − |zj|2)δzj . Then {(f(zj)); f ∈

H1} ⊃ �∞(a) if and only if µ is a finite measure on D, and {(f(zj)); f ∈ H∞} ⊃
�∞(a) if and only if µ is a Carleson measure on D.
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In §5, we give a necessary and sufficient condition about (zj) for that {(s(zj)f
(zj)); f ∈ Hp(W )} ⊃ �p, where Hp(W ) is a weighted Hardy space and s(zj) =
inf{∫ |f |pWdθ/2π; f(zj) = 1}. We assume only that log W is in L1. J. D. McPhail
[9] studied such a problem when W satisfies the (A p)-condition of Muckenhoupt.

Our interests in this paper are in the differences between interpolations for
�1(a) and �∞(a) and in the interpolation problems for weighted Hardy spaces. For
example, it is very easy to prove that {(f(zj)); f ∈ H∞} ⊃ �1 if and only if {zj}
is uniformly separated.

2. GENERAL RESULTS

In this section, we obtain a general result for interpolation problems for �s(a) (1 ≤
s ≤ ∞) by Hp (1 ≤ p ≤ ∞). For 1 ≤ j ≤ n, let

Bn(z) =
n∏

j=1

z − zj

1 − z̄jz
and Bnj(z) = Bn(z)

1 − z̄jz

z − zj
.

If we put bnj = Bnj(zj), then

ρj,n = |bnj| (1 ≤ j ≤ n).

Suppose for n = 1, 2, · · ·

fn(z) =
n∑

j=1

b−1
nj wjBnj(z).

Then fn is in H∞ and fn(zj) = wj (1 ≤ j ≤ n). Lemma 1 is essentially known.

Lemma 1. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Suppose wj is a complex
number for j = 1, 2, · · · . There exists a function f in H p such that f(zj) = wj

for j = 1, 2, · · · if and only if there exists a positive finite constant γ such that for
any n ≥ 1 and for all g in H q,∣∣∣∣∣∣

n∑
j=1

wj

bnj
(1 − |zj|2)g(zj)

∣∣∣∣∣∣ ≤ γ‖g‖q.

Proof. Put for n ≥ 1

mp,n(w) = inf{‖fn + Bnh‖p; h ∈ Hp}.
Then by [2, p. 142],
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mp,n(w) = sup




∣∣∣∣∣∣
n∑

j=1

wj

bnj
(1 − |zj|2)g(zj)

∣∣∣∣∣∣ ; g ∈ Hq and ‖g‖q ≤ 1


 .

There exists a function f in H p such that f(zj) = wj for j = 1, 2, · · · if and only
if supn mp,n(w) < ∞ because the unit ball of H p is compact in the weak topology
or the weak ∗ topology. This implies the lemma.

Theorem 1. Let 1 ≤ p ≤ ∞ and 1 ≤ s ≤ ∞. {(f(zn)); f ∈ Hp} ⊃ �s(a) if
and only if there exists a finite positive constant γ such that{ ∞∑

n=1

(anρn)−t(1 − |zn|2)t|f(zn)|t
}1/t

≤ γ‖f‖q

for f in H q, where 1/p + 1/q = 1 and 1/s + 1/t = 1.

Proof. For the ‘only if’ part, since {(f(zj)); f ∈ Hp} ⊃ �s(a), by Lemma 1
there exists a positive finite constant γ such that for any n ≥ 1

sup
w ∈ �s(a)
‖w‖ ≤ 1

∣∣∣∣∣∣
n∑

j=1

wj

bnj
(1 − |zj|2)g(zj)

∣∣∣∣∣∣ ≤ γ‖g‖q (g ∈ Hq)

where w = (wj) and ‖w‖ =
(∑∞

j=1|wjaj |s
)1/s

. Hence for any n ≥ 1




∞∑
j=1

(ajρn,j)−t(1 − |zj|2)t|g(zj)|t



1/t

≤ γ‖g‖q (g ∈ Hq).

Assuming ‖g‖q = 1,
∞∑

j=1

(ajρn,j)−t(1− |zj|2)t|g(zj)|t ≤ γt.

For any ε > 0, there exists a positive integer nj for each j such that for all n ≥ nj

(ajρn,j)−t(1 − |zj|2)t|g(zj)|t − ε

2j
≤ (ajρn,j)−t(1 − |zj|2)t|g(zj)|t

because ρj,n ≥ ρj,n+1 and limn→∞ρj,n = ρj . Thus, {(f(zj)); f ∈ Hp} ⊃ �s(a)
if and only if for any ε > 0 and any n ≥ max(n1, · · · , nn)

n∑
j=1

(ajρj)−t(1 − |zj|2)t|g(zj)|t − ε ≤
n∑

j=1

(ajρj)−t(1 − |zj|2)t|g(zj)|t ≤ γt
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This implies the ‘only if’ part.
For the ‘if’ part, by Lemma 1 it is sufficient to show that there exists a finite

positive constant γ such that for all n ≥ 1

sup
w ∈ �s(a)
‖w‖ ≤ 1

sup
‖g‖q≤1

∣∣∣∣∣∣
n∑

j=1

wj

bnj
(1− |zj |2)g(zj)

∣∣∣∣∣∣ ≤ γ < ∞.

In fact, for all n ≥ 1

sup
w ∈ �s(a)
‖w‖ ≤ 1

sup
‖g‖q≤1

∣∣∣∣∣∣
n∑

j=1

wj

bnj
(1 − |zj|2)g(zj)

∣∣∣∣∣∣
≤ sup

‖g‖q≤1




n∑
j=1

(ajρj,n)−t(1 − |zj|2)t|g(zj)|t



1/t

≤ sup
‖g‖q≤1




∞∑
j=1

(ajρj)−t(1− |zj|2)t|g(zj)|t



1/t

< ∞

Corollary 1. Let 1 ≤ s ≤ ∞. {(f(zn)); f ∈ H1} ⊃ �s(a) if and only if

∞∑
n=1

(anρn)−t(1 − |zn|2)t < ∞

where 1/s + 1/t = 1. Hence, when a = (an) = (ρ−1
n ) it is always true that

{(f(zn)); f ∈ H1} ⊃ �s(a).

Proof. The first part is clear by Theorem 1. When a = (ρ−1
n ), {(f(zn)); f ∈

H1} ⊃ �s(a) if and only if
∑∞

n=1(1− |zn|2)t < ∞. This implies the second part.

Corollary 2. Let 1 ≤ p ≤ ∞, 1 ≤ s ≤ ∞ and a = (ρ−1
n ). {(f(zn)); f ∈

Hp} ⊃ �s(a) if and only if there exists a finite positive constant γ such that
{ ∞∑

n=1

(1− |zn|2)t|f(zn)|t
}1/t

≤ γ‖f‖q

for f in H q, where 1/p + 1/q = 1 and 1/s + 1/t = 1. When 1 < p ≤
∞, {(f(zn)); f ∈ Hp} ⊃ �p(a) if and only if (zn) is a finite sum of uniformly
separated sequences.
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Proof. The first part is clear by Theorem 1. The second part follows from the
first one and [8].

In Corollary 2, when 1 < p ≤ ∞ and 1 < s ≤ ∞ and s > p, if {(f(zn)); f ∈
Hp} ⊃ �s(a) then (zn) is a finite sum of uniformly separated sequences but the
converse is not true. When s < p, if (zn) is a finite sum of uniformly separated
sequences then {(f(zn)); f ∈ Hp} ⊃ �s(a) but the converse is not true.

3. INTERPOLATIONS FOR �1(a)

�1(a) is the smallest sequence space among �p(a) (1 ≤ p ≤ ∞) for the same
a = {aj}. Then the inlerpolations for �1(a) are very special as the following shows.

The case of p = ∞ in Corollary 3 was proved by A. Snyder [13] (see [7], [11]).
Corollary 4 is due to O. Hatori [7].

Theorem 2. Let 1 ≤ p ≤ ∞. {(f(zn)); f ∈ Hp} ⊃ �1(a) if and only if

sup
n

(anρn)−1(1 − |zn|2)1/p < ∞.

Proof. By Theorem 1, {(f(zn)); f ∈ Hp} ⊃ �1(a) if and only if there exists
a finite positive constant γ such that

sup
n

(anρn)−1(1− |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in Hq. For each n, sup‖f‖q=1|f(zn)| = (1 − |zn|2)−1/q by [2, p144] and
so the theorem follows.

Corollary 3. Let 1 ≤ p ≤ ∞. {(f(zn)); f ∈ Hp} ⊃ �1 if and only if
supn

1
ρn

(1 − |zn|2)1/p < ∞. Hence if p = ∞, {(f(zn)); f ∈ H∞} ⊃ �1 if and
only if infn ρn > 0.

Corollary 4. Let 1 ≤ p ≤ ∞. {((1− |zn|2)1/pf(zn)); f ∈ Hp} ⊃ �1 if and
only if infn ρn > 0.

Proof. Note that {((1 − |zn|2)1/pf(zn)); f ∈ Hp} ⊃ �1 if and only if
{(f(zn)); f ∈ Hp} ⊃ �1(a) and a = ((1− |zn|2)1/p).

Corollary 5. Let 1 ≤ p ≤ ∞. For any (zn), {(f(zn)); f ∈ Hp} ⊃ �1(a)
where a = (ρ−1

n ).

Let (bj) be a uniformly separated sequence in D such that 0 < Rebj ↗ 1 and
Im bj ↘ 0. For j ≥ 1, put z2j−1 = bj and z2j = b̄j. Let B be the Blaschke product
associated with {zn}. Then for each j
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B =
z − bj

1− b̄jz

z − b̄j

1 − bjz
B1jB2j

where B1j (or B2j) is a Blaschke product with zeros {b�}��=j (or {b̄�}��=j). Then

ρ2j−1 =
∣∣∣∣ bj − b̄j

1 − b̄jbj

∣∣∣∣ ∏
��=j

∣∣∣∣ bj − b�

1− b̄�bj

∣∣∣∣∏
��=j

∣∣∣∣ bj − b̄�

1 − b�bj

∣∣∣∣
and

ρ2j =
∣∣∣∣ b̄j − bj

1− b̄j b̄j

∣∣∣∣ ∏
��=j

∣∣∣∣ b̄j − b�

1 − b̄�b̄j

∣∣∣∣ ∏
��=j

∣∣∣∣ b̄j − b̄�

1 − b�b̄j

∣∣∣∣ .

Hence ρ2j−1 = ρ2j for j ≥ 1 and

δ2 |b̄j − bj|
1 − |bj|2 ≤ ρ2j = ρ2j−1 ≤ |b̄j − bj|

1− |bj|2 (j ≥ 1)

where

0 < δ = min


inf

j

∏
��=j

∣∣∣∣ bj − b�

1− b̄�bj

∣∣∣∣ , inf
j

∏
��=j

∣∣∣∣ bj − b̄�

1 − b�bj

∣∣∣∣

 .

Hence
(1 − |zn|2)1+1/p

|zn − z̄n| ≤ (1 − |zn|2)1/p

ρn
≤ δ−2 (1 − |zn|2)1+1/p

|zn − z̄n| .

Thus {(f(zn)); f ∈ Hp} ⊃ �1 if and only if supn(1− |zn|2)1+1/p/|zn − z̄n| < ∞.

4. INTERPOLATIONS FOR �∞(a)

�∞(a) is the largest sequence space among �p(a) (1 ≤ p ≤ ∞) for the same
a = (aj). Then the interpolations for �∞(a) are special as the following shows.
The case of p = ∞ of Corollary 6 is known in [10].

Theorem 3. Let 1 ≤ p ≤ ∞ and 1/p+1/q = 1, {(f(zn)); f ∈ Hp} ⊃ �∞(a)
if and only if there exists a finite positive constant γ such that∑

n

(anρn)−1(1 − |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in H q. When p = 1, {(f(zn)); f ∈ H1} ⊃ �∞(a) if and only if µ =∑
n(anρn)−1(1−|zn|2)δzn is a finite measure on D. When p = ∞, {(f(zn)); f ∈

H∞} ⊃ �∞(a) if and only if µ =
∑

n(anρn)−1(1−|zn|2)δzn is a Carleson measure
on D.
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Corollary 6. Let 1 ≤ p ≤ ∞ and 1/p+1/q = 1 and a = (ρ−1
n ). {(f(zn)); f ∈

Hp} ⊃ �∞(a) if and only if there exists a finite positive constant γ such that
∑
n

(1− |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in H q.

(1) When p = 1, for any (zn), {(f(zn)); f ∈ H1} ⊃ �∞(a).

(2) When p = ∞, {(f(zn)); f ∈ H∞} ⊃ �∞(a) if and only if (zn) is a finite
union of uniformly separated sequences.

(3) When 1 < p < ∞, there exists a sequence (zn) in D such that {(f(zn)); f ∈
Hp} ⊃ �∞(a) and (zn) is not a union of finitely many uniformly separated
sequences. If

∑∞
n=1(1 − |zn|2)1/p < ∞, then {(f(zn)); f ∈ Hp} ⊃ �∞(a).

Suppose that (zn) is the sequence in D which was used in the end of Section
3, and 1 ≤ p < ∞. If 0 < γ1 ≤ (1−|zn|2)1+1/p−ε

|zn−z̄n| ≤ γ2 < ∞ for some 0 < ε < 1/p,
then {(f(zn)); f ∈ Hp} ⊃ �∞. This was proved by B. A. Taylor and D. L.
Williams [14].

5. WEIGHTED HARDY SPACE

Let W be a nonnegative function in L1 with log W ∈ L1 and 1 ≤ p <

∞. Hp(W ) denotes the closure of the set of all analytic polynomials in Lp(W ) =
Lp(Wdθ/2π). Hp(W ) is called a weighted Hardy space. For b ∈ D, put

s(b) = s(b, p, W ) = inf
{∫

|f |pWdθ/2π; f(b) = 1
}

.

Let h be an outer function in H p such that |h|p = W .

Lemma 2. For 1 ≤ p < ∞ and b ∈ D,

s(b, p, W ) = (1− |b|2) exp(logW )∼(b)

= (1 − |b|2) |h(b)|p,

where (logW )∼(b) denotes the Poisson integral of log W at b.

Proof. It is well known (cf. [5, p136]) that s(0, p, W ) = exp
∫ 2π
0 log Wdθ/2π.

It is easy to show the lemma using f(b) = f◦φb(0), where φb(z) = (z+b)/(1+ b̄z).
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Lemma 3. Suppose (zj) is a sequence of points in D. For 1 ≤ p < ∞
and 1 ≤ s < ∞, {(s(zj, p, W )1/pf(zj)); f ∈ Hp(W )} ⊃ �s if and ony if
{(F (zj)); F ∈ Hp} ⊃ �s(a), where a = (aj) and aj = s(zj , p, W )1/p/|h(zj)|.

Proof. Since H p(W ) = h−1Hp, f ∈ Hp(W ) if and only if f = h−1F and
F ∈ Hp. For each j, s(zj)1/pf(zj) = wj if and only if F (zj) = h(zj)wj/s(zj)1/p

if and only if F (zj) = ζj , wj = ajζj. (wj) ∈ �p if and only if (ζj) ∈ �s(a). Now
the lemma follows.

Theorem 4. Let 1 ≤ p < ∞, 1 ≤ s ≤ ∞, and 1/p + 1/q = 1/s + 1/t = 1.
Then, {(s(zn, p, W )1/pf(zn)); f ∈ Hp(W )} ⊃ �s if and only if

{ ∞∑
n=1

1
ρt

n

s(zn, p, W )t/q|g(zn)|t
}1/t

≤ γ‖g‖Hq(W )

for g in H q(W ).

Proof. By Lemma 3, {(s(zn)1/pf(zn)); f ∈ Hp(W )} ⊃ �s if and only if
{(F (zn)); F ∈ Hp} ⊃ �s(a), where an = s(zn)1/p/|h(zn)|. By Theorem 1, this
is equivalent to saying that there exists a finite positive constant γ such that

{ ∞∑
n=1

1
ρt

n

1
at

n

(1− |zn|2)t|G(zn)|t
}1/t

≤ γ‖G‖q

for G ∈ Hq. Since Hq(W ) = h−p/qHq, g ∈ Hq(W ) if and only if g = h−p/qG

and G ∈ Hq. Hence ‖g‖Hq(W ) = ‖G‖Hq and for each n ≥ 1

a−t
n (1− |zn|2)t|G(zn)|t

= s(zn)−(t/p)|h(zn)|t(1− |zn|2)t|h(zn)|pt/q|g(zn)|t

= s(zn)−(t/p)(1 − |zn|2)t|h(zn)|t(q+p)/q|g(zn)|t

= s(zn)−(t/p)s(zn)t|g(zn)|t

= s(zn)t/q|g(zn)|t.

This implies the theorem.

Corollary 7. Let 1 < p < ∞ and 1/p+1/q = 1. Then {(s(zn, p, W )1/pf(zn)); f ∈
Hp(W )} ⊃ �1 if and only if supn

1
ρn

exp p−2
p (logW )∼(zn) < ∞. When p = 2,

this is equivalent to inf nρn > 0.
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Proof. By Theorem 4, {(s(zn, p, W )1/pf(zn)); f ∈ Hp(W )} ⊃ �1 if and
only if

sup
n

1
ρn

s(zn, p, W )1/qs(zn, q, W )−1/q < ∞.

Now Lemma 2 implies the corollary.
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