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CLIFFORD SEMIRINGS AND GENERALIZED CLIFFORD SEMIRINGS

M. K. Sen, S. K. Maity* and K. P. Shum+

Abstract. It is well known that a semigroup S is a Clifford semigroup if
and only if S is a strong semilattice of groups. In this paper, we extend this
important result from semigroups to semirings by showing that a semiring S is
a Clifford semiring if and only if S is a strong distributive lattice of skew-rings.
Also, as a further generalization, we prove that a semiring S is a genneralized
Clifford semiring if and only if S is a strong b-lattice of skew-rings. Some
results which have been recently obtained in the literature [2] are strengthened
and extended.

1. INTRODUCTION

Recall that a semiring (S, +, ·) is a type (2, 2) algebra whose semigroup reducts
(S, +) and (S, ·) are connected by distributivity, that is, a(b + c) = ab + ac and
(b + c)a = ba + ca for all a, b, c ∈ S. We call a semiring (S, +, ·) additive regular
if for every element a ∈ S there exists an element x ∈ S such that a + x + a = a.
Additive regular semirings were first studied by J. Zeleznekow [11] in 1981. We
call a semiring (S, +, ·) an additive inverse semiring if (S, +) is an additive inverse
semigroup. Additive inverse semirings were first studied by Karvellas [6] in 1974.

In our paper [9], we call an element a of a semiring (S, +, ·) completely regular
if there exists an element x ∈ S such that (i) a + x + a = a, (ii) a + x = x + a
and (iii) a(a + x) = a + x.

In fact, conditions (i) and (ii) follow immediately from the definition of com-
plete regularity when the additive reduct (S, +) of the semiring (S, +, ·) is a com-
pletely regular semigroup, however condition (iii) above is an extra condition which
makes the element a in the semiring (S, +, ·) to be completely regular. Naturally,
we call a smiring (S, +, ·) completely regular if every element a of S is completely
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regular. We notice that the condition (iii) can be replaced by the condition (iii)′

(a + x)a = a + x.
In fact, we have obtained the following theorem in [9].

Theorem 1.1. A semiring (S, +, ·) is a completely regular semiring if and only
if for all a ∈ S, there exists an element x ∈ S such that the following conditions
are satisfied:

(i) a + x + a = a

(ii) a + x = x + a
and (iii)′ (a + x)a = a + x

The following useful concept is due to M. P. Grillet [4].
A semiring (S, +, ·) is called a skew-ring if its additive reduct (S, +) is a group,

not necessarily an abelian group.
We have also obtained in [9] the following characterization theorem for com-

pletely regular elements in semirings.

Theorem 1.2. The following statements on a semiring (S, +, ·) are equivalent:

(i) a is a completely regular element of S.
(ii) There exists a unique element y ∈ V +(a) such that a(a + y) = a + y, a(y +

a) = y + a, a + (a + y)a = a, a(y + a) + a = a, a(a + y) = (a + y)a.
(iii) There exists a unique element y ∈ V +(a) such that a+y = y+a, a(a+y) =

a + y.
(iv) H+

a is a skew-ring, where H+
a is the H -class on the semigroup (S, +)

containing a ∈ S.

We denote the unique element in a completely regular semiring satisfying the
condition (iii) of the Theorem 1.2 by a ′ .

Let us call a semiring (S, +, ·) a b-lattice if its additive reduct (S, +) is a
semilattice and its multiplicative reduct (S, ·) is a band. Also, a completely regular
semiring S is called a completely simple semiring if any two elements of S are
J+-related.

Definition 1.3. A congruence ρ on a semiring S is called a b-lattice congruence
if S/ρ is a b-lattice. A semiring S is called a b-lattice Y of semirings Sα(α ∈ Y )
if S admits a b-lattice congruence ρ on S such that Y = S/ρ and each Sα is a
ρ-class.

By using the concept of b-lattice, we obtained the following characterization
theorem for completely regular semirings in [9].

Theorem 1.4. The following conditions on a semiring (S, +, ·)are equivalent:
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(A) S is completely regular semiring.
(B) Every H+ - class is a skew-ring.
(C) S is a union of skew-rings.
(D) S is a b-lattice of completely simple semirings.

As a special case of completely regular semigroup, we recall that a semigroup
S is Clifford semigroup if for each a ∈ S, there exists an element x ∈ S such that
axa = a and ae = ea, for all idempotents e of S.

Clearly, a semigroup S is a Clifford semigroup if S is completely regular and
its idempotents commmute with all elements of S. Similar to the result of Clifford
semigroups, Bandelt and Petrich [1] have shown that a semiring S whose additive
reduct (S, +) is a regular semigroup can be expressed as a subdirect product of a
distributive lattice and a ring if and only if (S, +) is commutative and the following
conditions hold

(i) (a + a′)b = b(a + a′)
(ii) a(a + a′) = a + a′

(iii) a + (a + a′)b = a, for all a, b ∈ S

and (iv) If a ∈ S and b + a = b for some b ∈ S, then a + a = a.
Recall that an ideal I of a semiring S is a k-ideal of S if a ∈ I and either

a + x ∈ I or x + a ∈ I for some x ∈ S implies x ∈ I .
In view of above result, Ghosh [2] has further given a characterization for

semirings whose additive reduct (S, +) is commutative and he has consequently
defined Clifford semirings, by assuming that the additive reduct is commutative.
According to Ghosh [2], a Clifford semiring S is an additively commutative inverse
semiring such that E+(S) is a distributive sublattice as well as a k-ideal of S.
Later on, Mukhopadhyay, P. [10] has verified that an additive commutative inverse
semiring S satisfies the above conditions (i), (ii) and (iii) if and only if E+(S) is
a distributive lattice of S and the semiring S satisfies the condition (iv) if and only
if E+(S) is a k-ideal of S. Thus, we can see that E+(S) of a semiring S plays an
important role in studying the structure of semirings.

In this paper, we consider the Clifford semiring without assuming that its additive
reduct is commutative.

If S is a completely regular semiring as well as an additive inverse semiring
then E+(S) is an ideal of S but E+(S) may not be a k-ideal of S, for instance, if
we let S = {0, a, b} be a semiring with the following Cayley tables:

+ 0 a b

0 0 a b
a a 0 b

b b b b

· 0 a b

0 0 0 0
a 0 0 0
b 0 0 b
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Then we can easily see that the additive reduct (S, +) is an additive inverse
semigroup. It is also easy to see that (S, +, ·) is a completely regular semiring
because a(a + a) = a0 = 0 = a + a and b(b + b) = bb = b = b + b hold. In this
example, E+(S) = {0, b} is clearly an ideal of S but since a + b = b ∈ E+(S),
and a /∈ E+(S), E+(S) is not a k-ideal of S.

In view of the above example, we now call a completely regular semiring S a
generalized Clifford semiring if S is an additive inverse semiring whose E+(S) is
a k-ideal of S. Also, we call a completely regular semiring S a Clifford semiring
if S is an additive inverse semiring such that E+(S) is a distributive sublattice of
S as well as a k-ideal of S.

In this paper, we will show that a semiring S is a Clifford semiring if and only
if S is a strong distributive lattice of skew-rings. As an extension of this result, we
further prove that a semiring S is a generalized Clifford semiring if and only if S
is a strong b-lattice of skew-rings.

2. GENERALIZED CLIFFORD SEMIRINGS

In this section, we let (S, +, ·) be a completely regular semiring. If (S, +) is
an inverse semigroup and E+(S) is a k-ideal of the semiring (S, +, ·), then we
call (S, +, ·) a generalized Clifford semiring. We also call a semiring (S, +, ·) an
AR-semiring if its additive reduct (S, +) is a regular semigroup and in particular
we call a semiring (S, +, ·) an AI-semiring if its additive reduct (S, +) is an inverse
semigroup. For the sake of brevity, we sometimes just denote the semiring (S, +, ·)
by S.

Generalized Clifford semiring as special completely regular semiring can be
characterized by some of the conditions given by Bandelt and Petrich for AR-
semirings in [1]. The following is a characterization for generalized Clifford semir-
ings.

Theorem 2.1. An AI-semiring (S, +, ·) is a generalized Clifford semiring if
and only if the following conditions are satisfied:

(i) a + a′ = a′ + a

(ii) a(a + a′) = a + a′

(iii) If a ∈ S and a + b = b for some b ∈ S, then a + a = a.

Proof. We first suppose that the AI-semiring (S,+,·) is a generalized Clifford
semiring. Then (S,+,·) is a completely regular semiring and E+(S) is a k-ideal of
S. Hence a+a′ = a′ +a and a(a+a′) = a+a′. Let a ∈ S and a+b = b for some
b ∈ S. Then a+b+b′ = b+b′. Since E+(S) is a k-ideal of S and b+b′ ∈ E+(S),



Clifford Semirings and Generalized Clifford Semirings 437

we have a ∈ E+(S), i.e., a+a = a. This shows that all the conditions of Theorem
2.1. are satisfied.

Conversely, suppose that an AI-semiring (S, +, ·) satisfies the given conditions
(i), (ii) and (iii) of Theorem 2.1. Now by conditions (i) and (ii), we immediately
see that S is a completely regular semiring. Since S is an AI-semiring, it follows
that E+(S) is an ideal of S. To show E+(S) a k-ideal, let e, f + e ∈ E+(S).
Then, we have f + e + f + e = f + e, i.e., f + (f + e) + e = f + e. Hence, we
obtain f + (f + e) = f + e. Now, by the given condition f + f = f , we see that
f ∈ E+(S). Similarly from e, e + f ∈ E+(S), we can still show that f ∈ E+(S).
Hence E+(S) is a k-ideal of S. The proof is completed.

By using Theorem 2.1., we construct an example of generalized Clifford semir-
ing.

Example 2.2. Let T be a b-lattice and R a skew-ring . Construct the direct
product of T and R and denote it by S. Then, we can check that E+(S) =
T ×{0R}, where 0R is the zero element of the skew-ring R. We can also check that
(S, +, ·) is a semiring whose additive reduct (S, +) is clearly an inverse semigroup.
Now let (a, u) ∈ S = T × R. Then, we have (a, u)′ = (a,−u). Now (a, u) +
(a, u)′ = (a, u) + (a,−u) = (a, 0) = (a, u)′ + (a, u) and (a, u)((a, u)+ (a, u)′) =
(a, u)(a, 0) = (a, 0) = (a, u) + (a, u)′. Suppose, that (a, u) + (b, v) = (b, v) for
some (b, v) ∈ S where (a, u) ∈ S. Then a + b = b and u + v = v. This leads to
u = 0, and consequently (a, u) + (a, u) = (a, u).

In order to construct a generalized Clifford semiring, we present a construction
method which is analogous to the construction method of strong semilattice of
semigroups. However, instead of using semilattice as a frame, we use a b-lattice T

and instead of using semigroups as an ingredient, we use semirings. We also note
that for all a, b ∈ T , we always have a+b+ab = a+b. We now give the following
definition.

Definition 2.3. Let T be a b-lattice and {Sα : α ∈ T} be a family of pairwise
disjoint semirings which are indexed by the elements of T . For each α ≤ β in T , we
now embed Sα in Sβ via a semiring monomorphism φ

α,β
satisfying the following

conditions

(1.1) φα,α = ISα , the identity mapping on Sα

(1.2) φα,β φβ,γ = φα,γ if α ≤ β ≤ γ

(1.3) Sαφα,γ Sβφβ,γ ⊆ Sαβφαβ,γ if α + β ≤ γ, i.e., α+ β + αβ ≤ γ

On S =
⋃

α∈T

Sα we define addition + and multiplication . for a ∈ Sα, b ∈ Sβ , as

follows:



438 M. K. Sen, S. K. Maity and K. P. Shum

(1.4) a + b = aφ
α,α+β

+ bφ
β,α+β

and

(1.5) a.b = c ∈ Sαβ such that cφαβ,α+β = aφα,α+β .bφβ,α+β

Same as the notation of strong semilattice of semigroups, we denote the above
system by S =< T, Sα, φ

α,β
> and call it the strong b-lattice T of the semirings

Sα, α ∈ T .

Theorem 2.4. With the above notation in Definition 2.3., the system S =<
T, Sα, φ

α,β
> is a semiring.

Proof. We first show that the operation of multiplication ′·′ defined above
is well defined. For this purpose, we let a ∈ Sα and b ∈ Sβ, with α, β ∈ T .
Then, by (1.3), there exists an element c ∈ Sαβ satisfying (1.5) and the uniqueness
of the element follows directly from the injectivity of the mapping φ

αβ,α+β
. The

associativity of the addition is clear. We only need to prove the associativity of
the multiplication. For this purpose, we let a ∈ Sα, b ∈ Sβ and c ∈ Sγ , with
α, β, γ ∈ T . Let x = a.b and d = x.c = (a.b).c. Then by definition, we have
xφαβ,α+β = aφα,α+β bφβ,α+β and dφαβγ,αβ+γ = xφαβ,αβ+γ cφγ,αβ+γ .
Applying φ

αβ+γ,α+β+γ
to both sides of the second equation, we get

dφ
αβγ,α+β+γ

= xφ
αβ,α+β+γ

cφ
γ,α+β+γ

Applying φα+β,α+β+γ to both sides of the first equation, we get

xφ
αβ,α+β+γ

= aφ
α,α+β+γ

bφ
β,α+β+γ

.

Thus, we obtain dφ
αβγ,α+β+γ

= aφ
α,α+β+γ

bφ
β,α+β+γ

cφ
γ,α+β+γ

. Similarly, we can
show that eφαβγ,α+β+γ = aφα,α+β+γ bφβ,α+β+γ cφγ,α+β+γ , where e = a.(b.c). Since
the mapping φ

αβγ,α+β+γ
is injective, we have d = e. Hence, we have (a.b).c =

a.(b.c). Finally we prove the distributivity of the semiring S =< T, Sα, φα,β >.
Let a ∈ Sα, b ∈ Sβ, c ∈ Sγ with α, β, γ ∈ T . Let d = a.(b + c) = a.(bφβ,β+γ +
cφγ,β+γ). Then dφ

α(β+γ),α+β+γ
= aφ

α,α+β+γ
(bφ

β,β+γ
+ cφ

γ,β+γ
)φ

β+γ,α+β+γ
=

aφ
α,α+β+γ

(bφ
β,α+β+γ

+ cφ
γ,α+β+γ

) = aφ
α,α+β+γ

.bφ
β,α+β+γ

+ aφ
α,α+β+γ

cφ
γ,α+β+γ

.
Let e = a.b and f = a.c. Then, we have eφ

αβ,α+β
= aφ

α,α+β
.bφ

β,α+β
and

fφαγ,α+γ = aφα,α+γ .cφγ,α+γ . Then, (e+f)φ
α(β+γ),α+β+γ

= aφα,α+β+γ .bφβ,α+β+γ +
aφ

α,α+β+γ
.cφ

γ,α+β+γ
. Since φ

α(β+γ),α+β+γ
is injective, we have d = e + f i.e.,

a.(b + c) = a.c + b.c. The proof of the other distributive law is similar. Thus, S is
indeed a semiring.

Theorem 2.5. A semiring S is a generalized Clifford semiring if and only if
S is a strong b-lattice of skew-rings.
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Proof. First we suppose that S is a generalized Clifford semiring. Then S is a
completely regular semiring. Then by Theorem 1.4, S can be regarded as a b-lattice
T of completely simple semirings Rα(α ∈ T ), where T = S/J+ and Rα is a
J +-class in S containing a. Let a ∈ S =

⋃

α∈T

Sα. Then a ∈ Rα, for some α ∈ T .

Also, we have a + a′ ∈ Rα. Thus Rα contains some additive idempotents. Let e
and f be two additive idempotents in Rα. Then eJ +f . Since Rα is completely
simple semiring, (Rα, +) is a completely simple semigroup and so eD+f . Also,
since S is an AI-semiring as well as a completely regular semiring, we have e = f .
This shows that each Rα contains a single additive idempotent, so that (Rα, +) is
a group and hence (Rα, +, ·) is a skew-ring. In other words, we have shown that
S is a b-lattice T of skew-rings Rα.

Let α, β ∈ T be such that α ≤ β. Then, we define φα,β : Rα −→ Rβ by

aφα,β = a + 0β a ∈ Rα,

where 0β is the zero element of the skew-ring Rβ.
We first show that φα,β is injective. For this purpose, let a, b ∈ Rα be such

that aφα,β = bφα,β i.e., a + 0β = b + 0β. then, we have b′ + a + 0β = b′ + b + 0β.
However, this leads to b′ + a ∈ E+(S) , as E+(S) is a k-ideal of S. Also,
b′ + a ∈ Rα. Hence b′ + a = 0α = a + a′ = b + b′ i.e., b′ + a = b′ + b. This leads
to b + b′ + a = b + b + b′ i.e., a = a + a′ + a = b.
Consequently, we obtain a = b, and this shows that φα,β is injective. To show that
φα,β is a monomorphism, we let a ∈ Rα . Then, aJ+α. Also by 0βJ+β , we
have a0βJ +αβ, i.e., a.0β = 0αβ. Similarly, we have 0β .a = 0βα. Also, we can
easily see that 0α + 0β = 0(α+β). Now, let a, b ∈ Rα. Then, aφα,β + bφα,β =
a + 0β + b + 0β = a + b + 0β = (a + b)φα,β.

Also, aφα,βbφα,β = (a+0β)(b+0β) = ab+a0β+0βb+0β = ab+0αβ+0βα+0β

= ab + 0β = (ab)φα,β.
Thus, we have proved that, φα,β is a monomorphism.

Clearly, φα,α = IRα and φα,βφβ,γ = φα,γ if α ≤ β ≤ γ . For α, β, γ ∈ T
with α + β ≤ γ , let a ∈ Rα and b ∈ Rβ. Note that in T , we always have
α + β = α + β + αβ. Then aJ +α and bJ +β, and thereby, we have abJ+αβ
and (a + b)J+(α + β). These implies that ab ∈ Rαβ and a + b ∈ Rα+β . Now,
aφα,γbφβ,γ = (a+0γ)(b+0γ) = ab+a0γ+0γb+0γ = ab+0αγ+0γβ+0γ = ab+0γ

(as αγ ≤ γ and γβ ≤ γ) = (ab)φαβ,γ, hence we get Rαφα,γRβφβ,γ ⊆ Rαβφαβ,γ if
α+β ≤ γ . Also, we can derive that aφα,α+β + bφβ,α+β = a+0α+β + b+0α+β =
a+ b+0α+β = a+ b and aφ

α,α+β
bφ

β,α+β
= (a+0

α+β
)(b+0

α+β
) = ab+a0

α+β
+

0α+β + 0α+β = ab + 0α+β = (ab)φαβ,α+β . Thus, we have proved that S is a strong
b-lattice of skew-rings.

Conversely, let S =< T, Rα, φ
α,β

> be strong b-lattice T of skew-rings Rα(α ∈
T ). Then, S is clearly an AI-semiring and of course , a completely regular semiring.
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It remains to show that E+(S) is a k-ideal of S. But this follows from the fact that
the semigroup (S, +) is a strong semilattice of groups (Rα, +) on the semilattice
Y = (T, +) , where all the structure mappings φ

α,β
are one-to-one and hence (S, +)

is E-unitary which implies E+(S) is a k-ideal of S. Thus, our proof is completed.
We now recall that a subdirect product algebra T is a subalgebra of a direct

product of algebras such that the projection mapping from the algebra T to each of
its components is surjective.

Lemma 2.6. Let S =< T, Sα, φ
α,β

> be a strong b-lattice T of semirings S α,

α ∈ T and θ a binary relation on S defined by aθb if and only if aφ α,α+β = bφβ,α+β

( a ∈ Sα, b ∈ Sβ ). Then θ is a congruence on S and S is a subdirect product of
T and S/θ.

Proof. Clearly, the relation θ defined in Lemma 2.6. is reflexive and sym-
metric. To show that θ is transitive, we let a ∈ Sα, b ∈ Sβ and c ∈ Sγ , where
α, β, γ ∈ T . Also, we assume that aθb and bθc . Then we have aφα,α+β+γ =
bφβ,α+β+γ = cφγ,α+β+γ . Hence, it follows that aφα,α+γ = cφγ,α+γ , since the map-
ping φα+γ,α+β+γ is injective. Thus aθc and so θ is transitive. Now, assume that
aθb. Then, we have aφα,α+β = bφβ,α+β. This leads to aφα,α+β+γ + cφγ,α+β+γ =
bφβ,α+β+γ+cφγ,α+β+γ and so (a+c)φα+γ,(α+γ)+(β+γ) = (b+c)φβ+γ,(α+γ)+(β+γ),
i.e., (a+ c)θ(b+ c). By using a symmetric argument, we also have (c+a)θ(c+ b).
Again let x = ac and y = bc . Then, we have xφαγ,α+γ = aφα,α+γ cφγ,α+γ , i.e.,
xφ

αγ,α+β+γ
= aφ

α,α+β+γ
cφ

γ,α+β+γ
= bφ

β,α+β+γ
cφ

γ,α+β+γ
= yφ

βγ,α+β+γ
.

Consequently, we have xφαγ,αγ+βγ = yφβγ,αγ+βγ and so xθy . This shows that
(ac)θ(bc).
Similarly, we can prove that (ca)θ(cb). Thus, θ is indeed a congruence on the
semiring S.

Finally, we define a mapping Ψ : S −→ T × S/θ by aΨ = (α, aθ), where
a ∈ Sα.
Clearly Ψ is a homomorphism. Also Ψ is injective and the projection homomor-
phisms map SΨ onto T and S/θ respectively. Therefore, S is a subdirect product
of T and S/θ.

Theorem 2.7. A semiring S is an AI-semiring and is a subdirect product of
a b-lattice and a skew-ring if and only if S =< T, R α, φ

α,β
>, where the latter is

a generalized Clifford semiring.

Proof. First, we suppose that the semiring S is an AI-semiring and is a
subdirect product of a b-lattice T and a skew-ring R. Then we may consider
S ⊆ T ×R. For each α ∈ T, let Rα = ({α}×R)∩S. Then Rα is a skew-ring for
each α ∈ T and S =

⋃

α∈T

Rα. Now for each pair α, β ∈ T with α ≤ β, we define
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φα,β : Rα −→ Rβ by (α, r)φα,β = (β, r).
Then clearly φα,β is a monomorphism satisfying the conditions φα,α = IRα and
φα,βφβ,γ = φα,γ if α ≤ β ≤ γ .
Let α, β, γ ∈ T such that α + β ≤ γ . Let a = (α, r) ∈ Rα and b = (β, r′) ∈
Rβ. Then, we have a + b = (α, r) + (β, r′) = (α + β, r + r′) ∈ Rα+β and
ab = (α, r)(β, r′) = (αβ, rr′) ∈ Rαβ. Now (aφα,γ)(bφβ,γ) = (γ, r)(γ, r′) =
(γ, rr′) = (αβ, rr′)φαβ,γ = (ab)φαβ,γ. Therefore, Rαφα,γRβφβ,γ ⊆ Rαβφαβ,γ if
α + β ≤ γ . Also, a + b = (α, r) + (β, r′) = (α + β, r + r′) = (α + β, r) + (α +
β, r′) = aφα,α+β + bφβ,α+β and (aφ

α,α+β
)(bφ

α,α+β
) = (α + β, r)(α + β, r′) =

(α + β, rr′) = (ab)φαβ,α+β. Therefore, S is a strong b-lattice of skew-rings Rα

i.e., S =< T, Rα, φα,β >.
Conversely, let S =< T, Rα, φα,β >. Then, by Lemma 2.6., S is a subdirect

product of T and S/θ. Now S/θ, being a homomorphic image of a completely
regular semiring is a completely regular semiring. If e, f ∈ E+(S), say e ∈
Rα, f ∈ Rβ. Then, we have e θ (eφα,α+β) = (fφβ,α+β) θ f , i.e., eθ = fθ. This
shows that S/θ has just one additive idempotent so that (S/θ, +) is a group and
hence (S/θ, +, ·) is a skew-ring. In other words, S is a subdirect product of a
b-lattice T and a skew-ring S/θ.

3. CLIFFORD SEMIRINGS AND CHARACTERIZATIONS

In this section, we will study completely regular semiring S which is AI-semiring
in which E+(S) is a distributive lattice as well as a k-ideal of S. We first give the
following definition of Clifford semirings.

Definition 3.1. Let S be a completely regular semiring. Then S is called a
Clifford semiring if S is an AI-semiring and E+(S) is a distributive sublattice of
S as well as a k-ideal of S.

One can easily see that every Clifford semiring is a generalized Clifford semiring,
however, the converse is not necessarily true. This is evident if we let (S, +, ·) be
a semiring such that (S, +) is a semilattice and (S, ·) is a left zero semigroup, then
(S, +, ·) is clearly a generalized Clifford semiring, but according to our definition,
S is not a Clifford semiring.

We now classify the Clifford semirings.

Theorem 3.2. An AI-semiring S is a Clifford semiring if and only if the
following conditions hold:

(i) a + a′ = a′ + a

(ii) a(a + a′) = a + a′

(iii) (a + a′)b = b(a + a′)
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(iv) a + (a + a′)b = a, for all a, b ∈ S

and (v) If a ∈ S and a + b = b for some b ∈ S then a + a = a.
Proof. First, we suppose that S is a Clifford semiring. Then by Theorem 2.1.,

we see that the conditions (i), (ii) and (v) are satisfied. To prove that the conditions
(iii) and (iv) also hold, we let a, b ∈ S. Since E+(S) is a distributive lattice of
S, we have (a + a′)(b + b′) = (b + b′)(a + a′) so that (a + a′)b + (a + a′)b′ =
b(a+a′)+b′(a+a′). This is equivalent to (a+a′)b+(a+a′)b = b(a+a′)+b(a+a′)
i.e., (a+a′)b = b(a+a′). Also, we have (a+a′)+ (a+a′)(b+ b′) = (a+a′) i.e.,
(a + a′) + (a + a′)b = a + a′. This leads to a + (a + a′)b = a. Thus, conditions
(iii) and (iv) are satisfied.

Conversely, suppose that all the above conditions (i) - (v) hold. Then by Theorem
2.1., we see that S is a generalized Clifford semiring. To see that S is a Clifford
semiring, it remains to show that E+(S) is a distributive lattice of S.

Clearly e2 = e and e + f = f + e for all e, f ∈ E+(S). Let e, f ∈ E+(S).
Then we have e = a + a′ and f = b + b′ for some a, b ∈ S . Now, by (a + a′)b =
b(a + a′), we deduce that (a + a′)b + (a + a′)b′ = b(a + a′) + b′(a + a′), and so
(a + a′)(b + b′) = (b + b′)(a + a′) i.e., ef = fe. Again, by a + (a + a′)b = a, we
have a′ + a + (a + a′)b = a′ + a, and so a + a′ + (a + a′)b + (a + a′)b′ = a + a′,
or equivalently, (a + a′) + (a + a′)(b+ b′) = (a + a′) i.e., e + ef = e. This proves
that E+(S) is a distributive lattice of S. Hence, S is a Clifford semiring. Thus the
proof is completed.

Finally, we give the following interesting characterization theorem for Clifford
semiring, in fact, this is the main result of our paper.

Theorem 3.3. A semiring S is a Clifford semiring if and only if S is a strong
distributive latice of skew-rings.

Proof. We first suppose that S is a Clifford semiring. Then S is a generalized
Clifford semiring. Hence, by Theorem 2.5., S is a strong b-lattice T of skew-rings
Rα(α ∈ T ), where T = S/J+ and Rα is a J +-class of (S, +) containing a.
We now show that the J +-relation is a distributive lattice congruence on S. Let
a, b ∈ S. Then we deduce the following equalities:
ab = (a + a′ + a)b = (a + a′)b + ab = b(a′ + a) + ab [ by (i) and (iii) of Theorem
3.2. ] = ba′ + ba + ab and ba = b(a + a′ + a) = b(a + a′) + ba = (a′ + a)b + ba
[ by (i) and (iii) of Theorem 3.2.] = a′b + ab + ba. This shows that abJ +ba.

Also, a = a+(a+a′)b = (a+a′)+(a+ab)+a′b and a+ab = (a+a′)+a+ab.
Hence, (a+ab)J+a as well. Consequently, the J+-relation is a distributive lattice
congruence on S and hence S/J+ is a distributive lattice. This implies that S is a
strong distributive lattice T of skew-rings Rα(α ∈ T ).

Conversely, let S =< D, Rα, φα,β > be a strong distributive lattice D of skew-
rings Rα(α ∈ D). Since every distributive lattice is also a b-lattice, it follows from
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Theorem 2.5 that S is a generalized Clifford semiring. To complete our proof, it
suffices to prove that (a + a′)b = b(a + a′) and a + (a + a′)b = a for all a, b ∈ S.

Let a, b ∈ S. Suppose that a ∈ Rα and b ∈ Rβ. Since S is a generalized
Clifford semiring, we can let a′ be the inverse element of a in the skew-ring Rα. Let
(a+a′)b = c and a+a′ = 0α in Rα.Then, we have cφαβ,α+β = 0αφα,α+βbφβ,α+β =
0α+βbφβ,α+β = 0α+β. Also, we let b(a + a′) = d. Then, we have dφβα,β+α =
bφβ,β+α0αφα,β+α = bφβ,β+α0β+α = 0β+α.
Since D is a distributive lattice, we have cφαβ,α+β = dφβα,β+α = dφαβ,α+β.
Again, from injectivity of φαβ,α+β, we have b(a + a′) = (a + a′)b. Similarly, we
can also show that a + (a + a′)b = a. Thus, S is a Clifford semiring.

By using the above theorem, we immediately obtain the following corollary.

Corollary 3.4. Let (S, +, ·) be an AI-semiring whose additive reduct (S, +)
is commutative. Then (S, +, ·) is a Clifford semiring if and only if S is a strong
distributive lattice of rings.
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