TAIWANESE JOURNAL OF MATHEMATICS Vol. 9, No. 3, pp. 433-444, September 2005 This paper is available online at http://www.math.nthu.edu.tw/tjm/

CLIFFORD SEMIRINGS AND GENERALIZED CLIFFORD SEMIRINGS

M. K. Sen, S. K. Maity* and K. P. Shum⁺

Abstract. It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. In this paper, we extend this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. Also, as a further generalization, we prove that a semiring S is a genneralized Clifford semiring if and only if S is a strong b-lattice of skew-rings. Some results which have been recently obtained in the literature [2] are strengthened and extended.

1. INTRODUCTION

Recall that a semiring $(S, +, \cdot)$ is a type (2, 2) algebra whose semigroup reducts (S, +) and (S, \cdot) are connected by distributivity, that is, a(b + c) = ab + ac and (b + c)a = ba + ca for all $a, b, c \in S$. We call a semiring $(S, +, \cdot)$ additive regular if for every element $a \in S$ there exists an element $x \in S$ such that a + x + a = a. Additive regular semirings were first studied by J. Zeleznekow [11] in 1981. We call a semiring $(S, +, \cdot)$ an additive inverse semiring if (S, +) is an additive inverse semigroup. Additive inverse semirings were first studied by Karvellas [6] in 1974.

In our paper [9], we call an element a of a semiring $(S, +, \cdot)$ completely regular if there exists an element $x \in S$ such that (i) a + x + a = a, (ii) a + x = x + a and (iii) a(a + x) = a + x.

In fact, conditions (i) and (ii) follow immediately from the definition of complete regularity when the additive reduct (S, +) of the semiring $(S, +, \cdot)$ is a completely regular semigroup, however condition (iii) above is an extra condition which makes the element a in the semiring $(S, +, \cdot)$ to be completely regular. Naturally, we call a smiring $(S, +, \cdot)$ completely regular if every element a of S is completely

Accepted December 31, 2003.

Communicated by Pjek-Hwee Lee.

²⁰⁰⁰ Mathematics Subject Classification: 16A78, 20M07.

Key words and phrases: Completely regular semiring, Clifford semiring, Generalized Clifford semiring, Skew-ring, b-lattice.

^{*}The research is supported by CSIR, India.

⁺This research is partially supported by a UGC(HK) grant #2060176 (2001/03).

regular. We notice that the condition (iii) can be replaced by the condition (iii)'(a + x)a = a + x.

In fact, we have obtained the following theorem in [9].

Theorem 1.1. A semiring $(S, +, \cdot)$ is a completely regular semiring if and only if for all $a \in S$, there exists an element $x \in S$ such that the following conditions are satisfied:

(i)
$$a + x + a = a$$

(ii) $a + x = x + a$
and (iii)' $(a + x)a = a + x$

The following useful concept is due to M. P. Grillet [4].

A semiring $(S, +, \cdot)$ is called a skew-ring if its additive reduct (S, +) is a group, not necessarily an abelian group.

We have also obtained in [9] the following characterization theorem for completely regular elements in semirings.

Theorem 1.2. The following statements on a semiring $(S, +, \cdot)$ are equivalent:

- (i) a is a completely regular element of S.
- (ii) There exists a unique element $y \in V^+(a)$ such that a(a+y) = a+y, a(y+a) = y+a, a + (a+y)a = a, a(y+a) + a = a, a(a+y) = (a+y)a.
- (iii) There exists a unique element $y \in V^+(a)$ such that a + y = y + a, a(a+y) = a + y.
- (iv) H_a^+ is a skew-ring, where H_a^+ is the \mathcal{H} -class on the semigroup (S, +) containing $a \in S$.

We denote the unique element in a completely regular semiring satisfying the condition (iii) of the Theorem 1.2 by a'.

Let us call a semiring $(S, +, \cdot)$ a b-lattice if its additive reduct (S, +) is a semilattice and its multiplicative reduct (S, \cdot) is a band. Also, a completely regular semiring S is called a completely simple semiring if any two elements of S are \mathcal{J}^+ -related.

Definition 1.3. A congruence ρ on a semiring S is called a b-lattice congruence if S/ρ is a b-lattice. A semiring S is called a b-lattice Y of semirings $S_{\alpha}(\alpha \in Y)$ if S admits a b-lattice congruence ρ on S such that $Y = S/\rho$ and each S_{α} is a ρ -class.

By using the concept of b-lattice, we obtained the following characterization theorem for completely regular semirings in [9].

Theorem 1.4. The following conditions on a semiring $(S, +, \cdot)$ are equivalent:

- (A) S is completely regular semiring.
- (B) Every \mathcal{H}^+ class is a skew-ring.
- (C) S is a union of skew-rings.
- (D) S is a b-lattice of completely simple semirings.

As a special case of completely regular semigroup, we recall that a semigroup S is Clifford semigroup if for each $a \in S$, there exists an element $x \in S$ such that axa = a and ae = ea, for all idempotents e of S.

Clearly, a semigroup S is a Clifford semigroup if S is completely regular and its idempotents commute with all elements of S. Similar to the result of Clifford semigroups, Bandelt and Petrich [1] have shown that a semiring S whose additive reduct (S, +) is a regular semigroup can be expressed as a subdirect product of a distributive lattice and a ring if and only if (S, +) is commutative and the following conditions hold

(*i*)
$$(a + a')b = b(a + a')$$

$$(ii) \ a(a+a') = a+a'$$

(iii) a + (a + a')b = a, for all $a, b \in S$

and (iv) If $a \in S$ and b + a = b for some $b \in S$, then a + a = a.

Recall that an ideal I of a semiring S is a k-ideal of S if $a \in I$ and either $a + x \in I$ or $x + a \in I$ for some $x \in S$ implies $x \in I$.

In view of above result, Ghosh [2] has further given a characterization for semirings whose additive reduct (S, +) is commutative and he has consequently defined Clifford semirings, by assuming that the additive reduct is commutative. According to Ghosh [2], a Clifford semiring S is an additively commutative inverse semiring such that $E^+(S)$ is a distributive sublattice as well as a k-ideal of S. Later on, Mukhopadhyay, P. [10] has verified that an additive commutative inverse semiring S satisfies the above conditions (i), (ii) and (iii) if and only if $E^+(S)$ is a distributive lattice of S and the semiring S satisfies the condition (iv) if and only if $E^+(S)$ is a k-ideal of S. Thus, we can see that $E^+(S)$ of a semiring S plays an important role in studying the structure of semirings.

In this paper, we consider the Clifford semiring without assuming that its additive reduct is commutative.

If S is a completely regular semiring as well as an additive inverse semiring then $E^+(S)$ is an ideal of S but $E^+(S)$ may not be a k-ideal of S, for instance, if we let $S = \{0, a, b\}$ be a semiring with the following Cayley tables:

		a				a	
0	0	a	b	0	0	0	0
a	a	0	b	a	0	0	0
b	b	b	b	b	0	$\begin{array}{c} 0 \\ 0 \end{array}$	b

Then we can easily see that the additive reduct (S, +) is an additive inverse semigroup. It is also easy to see that $(S, +, \cdot)$ is a completely regular semiring because a(a + a) = a0 = 0 = a + a and b(b + b) = bb = b = b + b hold. In this example, $E^+(S) = \{0, b\}$ is clearly an ideal of S but since $a + b = b \in E^+(S)$, and $a \notin E^+(S)$, $E^+(S)$ is not a k-ideal of S.

In view of the above example, we now call a completely regular semiring S a generalized Clifford semiring if S is an additive inverse semiring whose $E^+(S)$ is a k-ideal of S. Also, we call a completely regular semiring S a Clifford semiring if S is an additive inverse semiring such that $E^+(S)$ is a distributive sublattice of S as well as a k-ideal of S.

In this paper, we will show that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. As an extension of this result, we further prove that a semiring S is a generalized Clifford semiring if and only if Sis a strong b-lattice of skew-rings.

2. GENERALIZED CLIFFORD SEMIRINGS

In this section, we let $(S, +, \cdot)$ be a completely regular semiring. If (S, +) is an inverse semigroup and $E^+(S)$ is a k-ideal of the semiring $(S, +, \cdot)$, then we call $(S, +, \cdot)$ a generalized Clifford semiring. We also call a semiring $(S, +, \cdot)$ an AR-semiring if its additive reduct (S, +) is a regular semigroup and in particular we call a semiring $(S, +, \cdot)$ an AI-semiring if its additive reduct (S, +) is an inverse semigroup. For the sake of brevity, we sometimes just denote the semiring $(S, +, \cdot)$ by S.

Generalized Clifford semiring as special completely regular semiring can be characterized by some of the conditions given by Bandelt and Petrich for ARsemirings in [1]. The following is a characterization for generalized Clifford semirings.

Theorem 2.1. An AI-semiring $(S, +, \cdot)$ is a generalized Clifford semiring if and only if the following conditions are satisfied:

- (*i*) a + a' = a' + a
- (*ii*) a(a + a') = a + a'
- (iii) If $a \in S$ and a + b = b for some $b \in S$, then a + a = a.

Proof. We first suppose that the AI-semiring $(S,+,\cdot)$ is a generalized Clifford semiring. Then $(S,+,\cdot)$ is a completely regular semiring and $E^+(S)$ is a k-ideal of S. Hence a + a' = a' + a and a(a + a') = a + a'. Let $a \in S$ and a + b = b for some $b \in S$. Then a + b + b' = b + b'. Since $E^+(S)$ is a k-ideal of S and $b + b' \in E^+(S)$,

we have $a \in E^+(S)$, i.e., a + a = a. This shows that all the conditions of Theorem 2.1. are satisfied.

Conversely, suppose that an AI-semiring $(S, +, \cdot)$ satisfies the given conditions (i), (ii) and (iii) of Theorem 2.1. Now by conditions (i) and (ii), we immediately see that S is a completely regular semiring. Since S is an AI-semiring, it follows that $E^+(S)$ is an ideal of S. To show $E^+(S)$ a k-ideal, let $e, f + e \in E^+(S)$. Then, we have f + e + f + e = f + e, i.e., f + (f + e) + e = f + e. Hence, we obtain f + (f + e) = f + e. Now, by the given condition f + f = f, we see that $f \in E^+(S)$. Similarly from $e, e + f \in E^+(S)$, we can still show that $f \in E^+(S)$. Hence $E^+(S)$ is a k-ideal of S. The proof is completed.

By using Theorem 2.1., we construct an example of generalized Clifford semiring.

Example 2.2. Let T be a b-lattice and R a skew-ring. Construct the direct product of T and R and denote it by S. Then, we can check that $E^+(S) = T \times \{0_R\}$, where 0_R is the zero element of the skew-ring R. We can also check that $(S, +, \cdot)$ is a semiring whose additive reduct (S, +) is clearly an inverse semigroup. Now let $(a, u) \in S = T \times R$. Then, we have (a, u)' = (a, -u). Now (a, u) + (a, u)' = (a, u) + (a, -u) = (a, 0) = (a, u)' + (a, u) and (a, u)((a, u) + (a, u)') = (a, u)(a, 0) = (a, 0) = (a, u) + (a, u)'. Suppose, that (a, u) + (b, v) = (b, v) for some $(b, v) \in S$ where $(a, u) \in S$. Then a + b = b and u + v = v. This leads to u = 0, and consequently (a, u) + (a, u) = (a, u).

In order to construct a generalized Clifford semiring, we present a construction method which is analogous to the construction method of strong semilattice of semigroups. However, instead of using semilattice as a frame, we use a b-lattice T and instead of using semigroups as an ingredient, we use semirings. We also note that for all $a, b \in T$, we always have a+b+ab = a+b. We now give the following definition.

Definition 2.3. Let T be a b-lattice and $\{S_{\alpha} : \alpha \in T\}$ be a family of pairwise disjoint semirings which are indexed by the elements of T. For each $\alpha \leq \beta$ in T, we now embed S_{α} in S_{β} via a semiring monomorphism $\phi_{\alpha,\beta}$ satisfying the following conditions

(1.1) $\phi_{\alpha,\alpha} = I_{S_{\alpha}}$, the identity mapping on S_{α}

(1.2)
$$\phi_{\alpha,\beta}\phi_{\beta,\gamma} = \phi_{\alpha,\gamma}$$
 if $\alpha \le \beta \le \gamma$

(1.3)
$$S_{\alpha}\phi_{\alpha,\gamma}S_{\beta}\phi_{\beta,\gamma} \subseteq S_{\alpha\beta}\phi_{\alpha\beta,\gamma} \text{ if } \alpha+\beta\leq\gamma, i.e., \alpha+\beta+\alpha\beta\leq\gamma$$

On $S = \bigcup_{\alpha \in T} S_{\alpha}$ we define addition + and multiplication. for $a \in S_{\alpha}, b \in S_{\beta}$, as follows:

(1.4)
$$a+b = a\phi_{\alpha,\alpha+\beta} + b\phi_{\beta,\alpha+\beta}$$

and

(1.5)
$$a.b = c \in S_{\alpha\beta}$$
 such that $c\phi_{\alpha\beta,\alpha+\beta} = a\phi_{\alpha,\alpha+\beta}.b\phi_{\beta,\alpha+\beta}$

Same as the notation of strong semilattice of semigroups, we denote the above system by $S = \langle T, S_{\alpha}, \phi_{\alpha,\beta} \rangle$ and call it the strong b-lattice T of the semirings $S_{\alpha}, \alpha \in T$.

Theorem 2.4. With the above notation in Definition 2.3., the system $S = \langle T, S_{\alpha}, \phi_{\alpha,\beta} \rangle$ is a semiring.

Proof. We first show that the operation of multiplication '.' defined above is well defined. For this purpose, we let $a \in S_{\alpha}$ and $b \in S_{\beta}$, with $\alpha, \beta \in T$. Then, by (1.3), there exists an element $c \in S_{\alpha\beta}$ satisfying (1.5) and the uniqueness of the element follows directly from the injectivity of the mapping $\phi_{\alpha\beta,\alpha+\beta}$. The associativity of the addition is clear. We only need to prove the associativity of the multiplication. For this purpose, we let $a \in S_{\alpha}, b \in S_{\beta}$ and $c \in S_{\gamma}$, with $\alpha, \beta, \gamma \in T$. Let x = a.b and d = x.c = (a.b).c. Then by definition, we have $x\phi_{\alpha\beta,\alpha+\beta} = a\phi_{\alpha,\alpha+\beta}b\phi_{\beta,\alpha+\beta}$ and $d\phi_{\alpha\beta\gamma,\alpha\beta+\gamma} = x\phi_{\alpha\beta,\alpha\beta+\gamma}c\phi_{\gamma,\alpha\beta+\gamma}$. Applying $\phi_{\alpha\beta+\gamma,\alpha+\beta+\gamma}$ to both sides of the second equation, we get

$$d\phi_{\alpha\beta\gamma,\alpha+\beta+\gamma} = x\phi_{\alpha\beta,\alpha+\beta+\gamma}c\phi_{\gamma,\alpha+\beta+\gamma}$$

Applying $\phi_{\alpha+\beta,\alpha+\beta+\gamma}$ to both sides of the first equation, we get

$$x\phi_{\alpha\beta,\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma}b\phi_{\beta,\alpha+\beta+\gamma}.$$

Thus, we obtain $d\phi_{\alpha\beta\gamma,\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma}b\phi_{\beta,\alpha+\beta+\gamma}c\phi_{\gamma,\alpha+\beta+\gamma}$. Similarly, we can show that $e\phi_{\alpha\beta\gamma,\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma}b\phi_{\beta,\alpha+\beta+\gamma}c\phi_{\gamma,\alpha+\beta+\gamma}$, where e = a.(b.c). Since the mapping $\phi_{\alpha\beta\gamma,\alpha+\beta+\gamma}$ is injective, we have d = e. Hence, we have (a.b).c = a.(b.c). Finally we prove the distributivity of the semiring $S = \langle T, S_{\alpha}, \phi_{\alpha,\beta} \rangle$. Let $a \in S_{\alpha}, b \in S_{\beta}, c \in S_{\gamma}$ with $\alpha, \beta, \gamma \in T$. Let $d = a.(b+c) = a.(b\phi_{\beta,\beta+\gamma} + c\phi_{\gamma,\beta+\gamma})$. Then $d\phi_{\alpha(\beta+\gamma),\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma}(b\phi_{\beta,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma}) = a\phi_{\alpha,\alpha+\beta+\gamma}.b\phi_{\beta,\alpha+\beta+\gamma} + a\phi_{\alpha,\alpha+\beta+\gamma}c\phi_{\gamma,\alpha+\beta+\gamma}$. Let e = a.b and f = a.c. Then, we have $e\phi_{\alpha\beta,\alpha+\beta} = a\phi_{\alpha,\alpha+\beta+\gamma}.b\phi_{\beta,\alpha+\beta+\gamma} + a\phi_{\alpha,\alpha+\beta+\gamma}.c\phi_{\gamma,\alpha+\beta+\gamma}$. Then, $(e+f)\phi_{\alpha(\beta+\gamma),\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma}.b\phi_{\beta,\alpha+\beta+\gamma} + a\phi_{\alpha,\alpha+\beta+\gamma}.c\phi_{\gamma,\alpha+\beta+\gamma}$. Since $\phi_{\alpha(\beta+\gamma),\alpha+\beta+\gamma}$ is injective, we have d = e + f i.e., a.(b+c) = a.c + b.c. The proof of the other distributive law is similar. Thus, S is indeed a semiring.

Theorem 2.5. A semiring S is a generalized Clifford semiring if and only if S is a strong b-lattice of skew-rings.

Proof. First we suppose that S is a generalized Clifford semiring. Then S is a completely regular semiring. Then by Theorem 1.4, S can be regarded as a b-lattice T of completely simple semirings $R_{\alpha}(\alpha \in T)$, where $T = S/\mathcal{J}^+$ and R_{α} is a \mathcal{J}^+ -class in S containing a. Let $a \in S = \bigcup_{\alpha \in T} S_{\alpha}$. Then $a \in R_{\alpha}$, for some $\alpha \in T$.

Also, we have $a + a' \in R_{\alpha}$. Thus R_{α} contains some additive idempotents. Let e and f be two additive idempotents in R_{α} . Then $e\mathcal{J}^+f$. Since R_{α} is completely simple semiring, $(R_{\alpha}, +)$ is a completely simple semigroup and so $e\mathcal{D}^+f$. Also, since S is an AI-semiring as well as a completely regular semiring, we have e = f. This shows that each R_{α} contains a single additive idempotent, so that $(R_{\alpha}, +)$ is a group and hence $(R_{\alpha}, +, \cdot)$ is a skew-ring. In other words, we have shown that S is a b-lattice T of skew-rings R_{α} .

Let $\alpha, \beta \in T$ be such that $\alpha \leq \beta$. Then, we define $\phi_{\alpha,\beta} : R_{\alpha} \longrightarrow R_{\beta}$ by

$$a\phi_{\alpha,\beta} = a + 0_{\beta} \qquad a \in R_{\alpha},$$

where 0_{β} is the zero element of the skew-ring R_{β} .

We first show that $\phi_{\alpha,\beta}$ is injective. For this purpose, let $a, b \in R_{\alpha}$ be such that $a\phi_{\alpha,\beta} = b\phi_{\alpha,\beta}$ i.e., $a + 0_{\beta} = b + 0_{\beta}$. then, we have $b' + a + 0_{\beta} = b' + b + 0_{\beta}$. However, this leads to $b' + a \in E^+(S)$, as $E^+(S)$ is a k-ideal of S. Also, $b' + a \in R_{\alpha}$. Hence $b' + a = 0_{\alpha} = a + a' = b + b'$ i.e., b' + a = b' + b. This leads to b + b' + a = b + b + b' i.e., a = a + a' + a = b.

Consequently, we obtain a = b, and this shows that $\phi_{\alpha,\beta}$ is injective. To show that $\phi_{\alpha,\beta}$ is a monomorphism, we let $a \in R_{\alpha}$. Then, $a\mathcal{J}^+\alpha$. Also by $0_{\beta}\mathcal{J}^+\beta$, we have $a0_{\beta}\mathcal{J}^+\alpha\beta$, i.e., $a.0_{\beta} = 0_{\alpha\beta}$. Similarly, we have $0_{\beta}.a = 0_{\beta\alpha}$. Also, we can easily see that $0_{\alpha} + 0_{\beta} = 0_{(\alpha+\beta)}$. Now, let $a, b \in R_{\alpha}$. Then, $a\phi_{\alpha,\beta} + b\phi_{\alpha,\beta} = a + 0_{\beta} + b + 0_{\beta} = a + b + 0_{\beta} = (a + b)\phi_{\alpha,\beta}$.

Also, $a\phi_{\alpha,\beta}b\phi_{\alpha,\beta} = (a+0_{\beta})(b+0_{\beta}) = ab+a0_{\beta}+0_{\beta}b+0_{\beta} = ab+0_{\alpha\beta}+0_{\beta\alpha}+0_{\beta}$ = $ab+0_{\beta} = (ab)\phi_{\alpha,\beta}$.

Thus, we have proved that, $\phi_{\alpha,\beta}$ is a monomorphism.

Clearly, $\phi_{\alpha,\alpha} = I_{R_{\alpha}}$ and $\phi_{\alpha,\beta}\phi_{\beta,\gamma} = \phi_{\alpha,\gamma}$ if $\alpha \leq \beta \leq \gamma$. For $\alpha, \beta, \gamma \in T$ with $\alpha + \beta \leq \gamma$, let $a \in R_{\alpha}$ and $b \in R_{\beta}$. Note that in T, we always have $\alpha + \beta = \alpha + \beta + \alpha\beta$. Then $a\mathcal{J}^+\alpha$ and $b\mathcal{J}^+\beta$, and thereby, we have $ab\mathcal{J}^+\alpha\beta$ and $(a + b)\mathcal{J}^+(\alpha + \beta)$. These implies that $ab \in R_{\alpha\beta}$ and $a + b \in R_{\alpha+\beta}$. Now, $a\phi_{\alpha,\gamma}b\phi_{\beta,\gamma} = (a+0_{\gamma})(b+0_{\gamma}) = ab+a0_{\gamma}+0_{\gamma}b+0_{\gamma} = ab+0_{\alpha\gamma}+0_{\gamma\beta}+0_{\gamma} = ab+0_{\gamma}$ (as $\alpha\gamma \leq \gamma$ and $\gamma\beta \leq \gamma$) = $(ab)\phi_{\alpha\beta,\gamma}$, hence we get $R_{\alpha}\phi_{\alpha,\gamma}R_{\beta}\phi_{\beta,\gamma} \subseteq R_{\alpha\beta}\phi_{\alpha\beta,\gamma}$ if $\alpha + \beta \leq \gamma$. Also, we can derive that $a\phi_{\alpha,\alpha+\beta} + b\phi_{\beta,\alpha+\beta} = a + 0_{\alpha+\beta} + b + 0_{\alpha+\beta} = a + b + 0_{\alpha+\beta} = a + b$ and $a\phi_{\alpha,\alpha+\beta}b\phi_{\beta,\alpha+\beta} = (a+0_{\alpha+\beta})(b+0_{\alpha+\beta}) = ab + a0_{\alpha+\beta} + 0_{\alpha+\beta} = ab + 0_{\alpha+\beta} = (ab)\phi_{\alpha\beta,\alpha+\beta}$. Thus, we have proved that S is a strong b-lattice of skew-rings.

Conversely, let $S = \langle T, R_{\alpha}, \phi_{\alpha,\beta} \rangle$ be strong b-lattice T of skew-rings $R_{\alpha}(\alpha \in T)$. Then, S is clearly an AI-semiring and of course, a completely regular semiring.

It remains to show that $E^+(S)$ is a k-ideal of S. But this follows from the fact that the semigroup (S, +) is a strong semilattice of groups $(R_{\alpha}, +)$ on the semilattice Y = (T, +), where all the structure mappings $\phi_{\alpha,\beta}$ are one-to-one and hence (S, +) is E-unitary which implies $E^+(S)$ is a k-ideal of S. Thus, our proof is completed.

We now recall that a subdirect product algebra T is a subalgebra of a direct product of algebras such that the projection mapping from the algebra T to each of its components is surjective.

Lemma 2.6. Let $S = \langle T, S_{\alpha}, \phi_{\alpha,\beta} \rangle$ be a strong b-lattice T of semirings S_{α} , $\alpha \in T$ and θ a binary relation on S defined by $a\theta b$ if and only if $a\phi_{\alpha,\alpha+\beta} = b\phi_{\beta,\alpha+\beta}$ $(a \in S_{\alpha}, b \in S_{\beta})$. Then θ is a congruence on S and S is a subdirect product of T and S/θ .

Proof. Clearly, the relation θ defined in Lemma 2.6. is reflexive and symmetric. To show that θ is transitive, we let $a \in S_{\alpha}, b \in S_{\beta}$ and $c \in S_{\gamma}$, where $\alpha, \beta, \gamma \in T$. Also, we assume that $a\theta b$ and $b\theta c$. Then we have $a\phi_{\alpha,\alpha+\beta+\gamma} = b\phi_{\beta,\alpha+\beta+\gamma} = c\phi_{\gamma,\alpha+\beta+\gamma}$. Hence, it follows that $a\phi_{\alpha,\alpha+\gamma} = c\phi_{\gamma,\alpha+\gamma}$, since the mapping $\phi_{\alpha+\gamma,\alpha+\beta+\gamma}$ is injective. Thus $a\theta c$ and so θ is transitive. Now, assume that $a\theta b$. Then, we have $a\phi_{\alpha,\alpha+\beta} = b\phi_{\beta,\alpha+\beta}$. This leads to $a\phi_{\alpha,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = b\phi_{\beta,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma}$ and so $(a+c)\phi_{\alpha+\gamma,(\alpha+\gamma)+(\beta+\gamma)} = (b+c)\phi_{\beta+\gamma,(\alpha+\gamma)+(\beta+\gamma)}$, i.e., $(a+c)\theta(b+c)$. By using a symmetric argument, we also have $(c+a)\theta(c+b)$. Again let x = ac and y = bc. Then, we have $x\phi_{\alpha\gamma,\alpha+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = b\phi_{\beta,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = a\phi_{\alpha,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = b\phi_{\beta,\alpha+\beta+\gamma} + c\phi_{\gamma,\alpha+\beta+\gamma} = y\phi_{\beta\gamma,\alpha+\beta+\gamma}$.

Consequently, we have $x\phi_{\alpha\gamma,\alpha\gamma+\beta\gamma} = y\phi_{\beta\gamma,\alpha\gamma+\beta\gamma}$ and so $x\theta y$. This shows that $(ac)\theta(bc)$.

Similarly, we can prove that $(ca)\theta(cb)$. Thus, θ is indeed a congruence on the semiring S.

Finally, we define a mapping $\Psi : S \longrightarrow T \times S/\theta$ by $a\Psi = (\alpha, a\theta)$, where $a \in S_{\alpha}$.

Clearly Ψ is a homomorphism. Also Ψ is injective and the projection homomorphisms map $S\Psi$ onto T and S/θ respectively. Therefore, S is a subdirect product of T and S/θ .

Theorem 2.7. A semiring S is an AI-semiring and is a subdirect product of a b-lattice and a skew-ring if and only if $S = \langle T, R_{\alpha}, \phi_{\alpha,\beta} \rangle$, where the latter is a generalized Clifford semiring.

Proof. First, we suppose that the semiring S is an AI-semiring and is a subdirect product of a b-lattice T and a skew-ring R. Then we may consider $S \subseteq T \times R$. For each $\alpha \in T$, let $R_{\alpha} = (\{\alpha\} \times R) \cap S$. Then R_{α} is a skew-ring for each $\alpha \in T$ and $S = \bigcup_{\alpha \in T} R_{\alpha}$. Now for each pair $\alpha, \beta \in T$ with $\alpha \leq \beta$, we define

 $\phi_{\alpha,\beta}: R_{\alpha} \longrightarrow R_{\beta}$ by $(\alpha, r)\phi_{\alpha,\beta} = (\beta, r)$.

Then clearly $\phi_{\alpha,\beta}$ is a monomorphism satisfying the conditions $\phi_{\alpha,\alpha} = I_{R_{\alpha}}$ and $\phi_{\alpha,\beta}\phi_{\beta,\gamma} = \phi_{\alpha,\gamma}$ if $\alpha \leq \beta \leq \gamma$.

Let $\alpha, \beta, \gamma \in T$ such that $\alpha + \beta \leq \gamma$. Let $a = (\alpha, r) \in R_{\alpha}$ and $b = (\beta, r') \in R_{\beta}$. Then, we have $a + b = (\alpha, r) + (\beta, r') = (\alpha + \beta, r + r') \in R_{\alpha+\beta}$ and $ab = (\alpha, r)(\beta, r') = (\alpha\beta, rr') \in R_{\alpha\beta}$. Now $(a\phi_{\alpha,\gamma})(b\phi_{\beta,\gamma}) = (\gamma, r)(\gamma, r') = (\gamma, rr') = (\alpha\beta, rr')\phi_{\alpha\beta,\gamma} = (ab)\phi_{\alpha\beta,\gamma}$. Therefore, $R_{\alpha}\phi_{\alpha,\gamma}R_{\beta}\phi_{\beta,\gamma} \subseteq R_{\alpha\beta}\phi_{\alpha\beta,\gamma}$ if $\alpha + \beta \leq \gamma$. Also, $a + b = (\alpha, r) + (\beta, r') = (\alpha + \beta, r + r') = (\alpha + \beta, r) + (\alpha + \beta, r') = a\phi_{\alpha,\alpha+\beta} + b\phi_{\beta,\alpha+\beta}$ and $(a\phi_{\alpha,\alpha+\beta})(b\phi_{\alpha,\alpha+\beta}) = (\alpha + \beta, r)(\alpha + \beta, r') = (\alpha + \beta, rr') = (ab)\phi_{\alpha\beta,\alpha+\beta}$. Therefore, S is a strong b-lattice of skew-rings R_{α} i.e., $S = \langle T, R_{\alpha}, \phi_{\alpha,\beta} \rangle$.

Conversely, let $S = \langle T, R_{\alpha}, \phi_{\alpha,\beta} \rangle$. Then, by Lemma 2.6., S is a subdirect product of T and S/θ . Now S/θ , being a homomorphic image of a completely regular semiring is a completely regular semiring. If $e, f \in E^+(S)$, say $e \in R_{\alpha}, f \in R_{\beta}$. Then, we have $e \theta (e\phi_{\alpha,\alpha+\beta}) = (f\phi_{\beta,\alpha+\beta}) \theta f$, i.e., $e\theta = f\theta$. This shows that S/θ has just one additive idempotent so that $(S/\theta, +)$ is a group and hence $(S/\theta, +, \cdot)$ is a skew-ring. In other words, S is a subdirect product of a b-lattice T and a skew-ring S/θ .

3. CLIFFORD SEMIRINGS AND CHARACTERIZATIONS

In this section, we will study completely regular semiring S which is AI-semiring in which $E^+(S)$ is a distributive lattice as well as a k-ideal of S. We first give the following definition of Clifford semirings.

Definition 3.1. Let S be a completely regular semiring. Then S is called a Clifford semiring if S is an AI-semiring and $E^+(S)$ is a distributive sublattice of S as well as a k-ideal of S.

One can easily see that every Clifford semiring is a generalized Clifford semiring, however, the converse is not necessarily true. This is evident if we let $(S, +, \cdot)$ be a semiring such that (S, +) is a semilattice and (S, \cdot) is a left zero semigroup, then $(S, +, \cdot)$ is clearly a generalized Clifford semiring, but according to our definition, S is not a Clifford semiring.

We now classify the Clifford semirings.

Theorem 3.2. An AI-semiring S is a Clifford semiring if and only if the following conditions hold:

- $(i) \ a+a'=a'+a$
- (*ii*) a(a + a') = a + a'
- (iii) (a+a')b = b(a+a')

(iv) a + (a + a')b = a, for all $a, b \in S$

and (v) If $a \in S$ and a + b = b for some $b \in S$ then a + a = a.

Proof. First, we suppose that S is a Clifford semiring. Then by Theorem 2.1., we see that the conditions (i), (ii) and (v) are satisfied. To prove that the conditions (iii) and (iv) also hold, we let $a, b \in S$. Since $E^+(S)$ is a distributive lattice of S, we have (a + a')(b + b') = (b + b')(a + a') so that (a + a')b + (a + a')b' = b(a+a')+b'(a+a'). This is equivalent to (a+a')b+(a+a')b = b(a+a')+b(a+a') i.e., (a + a')b = b(a + a'). Also, we have (a + a') + (a + a')(b + b') = (a + a') i.e., (a + a') + (a + a')b = a + a'. This leads to a + (a + a')b = a. Thus, conditions (ii) and (iv) are satisfied.

Conversely, suppose that all the above conditions (i) - (v) hold. Then by Theorem 2.1., we see that S is a generalized Clifford semiring. To see that S is a Clifford semiring, it remains to show that $E^+(S)$ is a distributive lattice of S.

Clearly $e^2 = e$ and e + f = f + e for all $e, f \in E^+(S)$. Let $e, f \in E^+(S)$. Then we have e = a + a' and f = b + b' for some $a, b \in S$. Now, by (a + a')b = b(a + a'), we deduce that (a + a')b + (a + a')b' = b(a + a') + b'(a + a'), and so (a + a')(b + b') = (b + b')(a + a') i.e., ef = fe. Again, by a + (a + a')b = a, we have a' + a + (a + a')b = a' + a, and so a + a' + (a + a')b + (a + a')b' = a + a', or equivalently, (a + a') + (a + a')(b + b') = (a + a') i.e., e + ef = e. This proves that $E^+(S)$ is a distributive lattice of S. Hence, S is a Clifford semiring. Thus the proof is completed.

Finally, we give the following interesting characterization theorem for Clifford semiring, in fact, this is the main result of our paper.

Theorem 3.3. A semiring S is a Clifford semiring if and only if S is a strong distributive latice of skew-rings.

Proof. We first suppose that S is a Clifford semiring. Then S is a generalized Clifford semiring. Hence, by Theorem 2.5., S is a strong b-lattice T of skew-rings $R_{\alpha}(\alpha \in T)$, where $T = S/\mathcal{J}^+$ and R_{α} is a \mathcal{J}^+ -class of (S, +) containing a. We now show that the \mathcal{J}^+ -relation is a distributive lattice congruence on S. Let $a, b \in S$. Then we deduce the following equalities:

ab = (a + a' + a)b = (a + a')b + ab = b(a' + a) + ab [by (i) and (iii) of Theorem 3.2.] = ba' + ba + ab and ba = b(a + a' + a) = b(a + a') + ba = (a' + a)b + ba [by (i) and (iii) of Theorem 3.2.] = a'b + ab + ba. This shows that $ab\mathcal{J}^+ba$.

Also, a = a + (a+a')b = (a+a') + (a+ab) + a'b and a+ab = (a+a') + a + ab. Hence, $(a+ab)\mathcal{J}^+a$ as well. Consequently, the \mathcal{J}^+ -relation is a distributive lattice congruence on S and hence S/\mathcal{J}^+ is a distributive lattice. This implies that S is a strong distributive lattice T of skew-rings $R_{\alpha}(\alpha \in T)$.

Conversely, let $S = \langle D, R_{\alpha}, \phi_{\alpha,\beta} \rangle$ be a strong distributive lattice D of skewrings $R_{\alpha}(\alpha \in D)$. Since every distributive lattice is also a b-lattice, it follows from Theorem 2.5 that S is a generalized Clifford semiring. To complete our proof, it suffices to prove that (a + a')b = b(a + a') and a + (a + a')b = a for all $a, b \in S$.

Let $a, b \in S$. Suppose that $a \in R_{\alpha}$ and $b \in R_{\beta}$. Since S is a generalized Clifford semiring, we can let a' be the inverse element of a in the skew-ring R_{α} . Let (a+a')b = c and $a+a' = 0_{\alpha}$ in R_{α} . Then, we have $c\phi_{\alpha\beta,\alpha+\beta} = 0_{\alpha}\phi_{\alpha,\alpha+\beta}b\phi_{\beta,\alpha+\beta} = 0_{\alpha+\beta}b\phi_{\beta,\alpha+\beta} = 0_{\alpha+\beta}$. Also, we let b(a + a') = d. Then, we have $d\phi_{\beta\alpha,\beta+\alpha} = b\phi_{\beta,\beta+\alpha}0_{\alpha}\phi_{\alpha,\beta+\alpha} = b\phi_{\beta,\beta+\alpha}0_{\beta+\alpha} = 0_{\beta+\alpha}$.

Since D is a distributive lattice, we have $c\phi_{\alpha\beta,\alpha+\beta} = d\phi_{\beta\alpha,\beta+\alpha} = d\phi_{\alpha\beta,\alpha+\beta}$. Again, from injectivity of $\phi_{\alpha\beta,\alpha+\beta}$, we have b(a + a') = (a + a')b. Similarly, we can also show that a + (a + a')b = a. Thus, S is a Clifford semiring.

By using the above theorem, we immediately obtain the following corollary.

Corollary 3.4. Let $(S, +, \cdot)$ be an AI-semiring whose additive reduct (S, +) is commutative. Then $(S, +, \cdot)$ is a Clifford semiring if and only if S is a strong distributive lattice of rings.

ACKNOWLEDGEMENT

The authors express their sincere thanks to the learned referee for his valuable suggestions.

REFERENCES

- 1. H. J. Bandelt, and M. Petrich, Subdirect product of rings and distributive lattices. *Proc. Edinburgh. Math.*, **25** (1982), 155-171.
- Shamik Ghosh, A characterization of semirings which are subdirect products of a distributive lattice and a ring. *Semigroup Forum.* 59 (1999), 106-120.
- 3. J. S. Golan, The Theory of Semirings with Applications in Mathematics and Surveys in Pure and Applied Mathematics. 54, *Longman Scientific and Technical*, 1992.
- M. P. Grillet, Semirings with a completely simple additive semigroup. J. Austral. Math. Soc., 20 (Series A) (1975), 257-267.
- 5. J. M. Howie, Introduction to the theory of semigroups. Academic Press, 1976.
- 6. P. H. Karvellas, Inverse semirings. J. Austral. Math. Soc. 18 (1974), 277-288.
- F. Pastijn and Y. Q. Guo, The lattice of idempotent distributive semiring varieties. Science in China, 42(8) (Series A) (1999), 785-804.
- M. K. Sen, Y. Q. Guo and K. P. Shum, A class of idempotent semirings. *Semigroup Forum*, 60 (2000), 351-367.
- 9. M. K. Sen, S. K. Maity and K. P. Shum, On Completely Regular Semirings. (Submitted).

- M. K. Sen, Shamik Ghosh, and P. Mukhopadhyay, Congruences on inversive semirings. *Algebras and Combinatorics*, Proceedings ICAC 97 (HK), Springer-Verlag (1999), 391-400.
- 11. J. Zeleznekow, Regular semirings. Semigroup Forum, 23 (1981), 119-136.
- 12. X. Zhao, K. P. Shum and Y. Q. Guo, L-subvarieties of the variety of idempotent semirings. *Algebra Universalis*, **46** (2001), 75-96.

M. K. Sen and S. K. Maity Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India. E-mail: senmk@cal3.vsnl.net.in

K. P. Shum Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China, (SAR).