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ON THE JACOBIAN CONJECTURE

Lih-Chung Wang

Abstract. In 1983, T.T. Moh gave a computer-search algorithm to find the
possible counter-example of Jacobian conjecture for polynomials of degree
less than or equal to 100. His algorithm claimed that there are only six
possible counter-examples. When we re-code his algorithm, there seems to be
exceptions other than his six cases. We modified Moh’s algorithm with his
approximate root theory to fulfill his claim.

1. INTRODUCTION

Let f, g ∈ C[x, y] be two polynomials with Jacobian equal to 1. The well-
known Jacobian conjecture states ”C[x, y] = C[f, g].” After the contribution of
Abhyankar, Moh, Nagata et al., the possible counter-example can be written as
follows:

g = (x + y)pyn−p + lower degree terms

f = (x + y)qym−q + lower degree terms

where 0 < p < n − p and (n − p)/p = (m − q)/q. Note that n − p can not be
equal to p ([2], [5]).

In 1983, Moh had established certain important properties belonging to a Jaco-
bian pair of polynomials. These quantitative properties made a computer checking
program possible and Moh succeeded in proving that the Jacobian problem is true
for polynomials of degree less than or equal to 100. These subtle consequences
all result from solving a sequence of differential equations discovered by Moh who
effectively uses the Jacobian condition.

Our work originates from an attempt to understand Moh’s algorithm. However,
in re-coding his algorithm, there seems to be more exceptions than expected. In
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order to make the computer checking more efficient, we modified the computation
of automorphism degree and had added two checking conditions which also comes
from Moh’s work. This is the main result of our work. We think that the unexpected
result of Moh’s algorithm maybe is caused by some typos or careless writing. We
hope that this paper can make the whole procedure become clear.

Section 2 aims to give a survey of Moh’s work. The original definition of Ai

will be modified. In section 3, we list the exceptions and use the modified algorithm
to reproduce Moh’s result. Section 4 is devoted to the proof of the new criteria.

2. SURVEY OF MOH’S THEORY

Following S.S. Abhyankar and T.T. Moh we consider the expansion of {f, g}
at ∞ as follows ([5], p.149-151). Analytically, let C[x]((η)) denote the ring of
Laurent series with variable η and coefficients in C[x]. We have

g(x, y) = η−n,

η = g(x, y)−
1
n = y−1 + α2(x)y−2 + · · · ∈ C[x]((y−1)) = C[x]((η))

then
f(x, y) = η−m +

∑
j>−m

fj(x)ηj ∈ C[x]((η)).

Recall [4, p.150]
d1 = n,

Mj = min{i |fi(x) �= 0, dj� |i},
dj+1 = g.c.d.(n, M1, · · · , Mj),

Mh+1 = ∞.

The set of numbers {Mj, dj} are called the characteristic data of the pair {f, g}
(with respect to x).

In the above, n− 2 must be a Ms in the characteristic data, where either s = h

or s = h − 1 ([2], [5]). We shall call s the last effective index. Moh had shown
that a counter-example will have s ≥ 3.

In order to understand the fine structure of the points at infinity of the curve
g(x, y) = 0, Moh had factored g(t−1, y) into (y − τ1)(y − τ2) · · · (y − τn) in the

algebraically closed field
∞⋃

k=1

C((t
1
k )). Recall that the leading form of g(x, y) is

(x+y)pyn−p, we can assume without loss of generality that the order of τ1, · · · , τn−p

are larger that −1 and τn−p+1, · · · , τn are of the form −t−1+higher terms in t. Moh
had defined inductively a sequence {1, 2, · · · , n} ⊃ Is ⊃ Is−1 ⊃ · · · ⊃ I2 by the
following rules.
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• Is = {1, 2, · · · , n− p}.
• Suppose that Ii+1 has been defined. Define Vi+1 and δi as follows.

Vi+1 ≡ di+1 |Ii+1|
n

and

δi ≡ 1−
(n − Mi)

s∏
j=i+1

[Vj(n − Mj) − dj]

s∏
j=i+1

[Vj(n − Mj−1) − dj]
.

Then ordt(τj − τk) ≥ δi for all j, k ∈ Ii+1 and Ii+1 will be decomposed into
disjoint union of subsets Ii+1,1, Ii+1,2, · · · such that j and k belong to the
same subset if and only if ordt(τj − τk) > δi.

• Ii+1,l is called major if |Ii+1,l| > n
n−Mi

, otherwise it is called minor.
Choose Ii to be any major one.

Moh’s main result in [5] is that under the Jacobian condition, the sequence exists.
In solving g(t−1, y), Moh introduced the concept of a ’π-root’

σ =
∑
j<δ

ajt
j + πtδ

where
∑

j<δ ajt
j is a partial sum of the expansion of some τk . If

∑
j<δi

ajt
j is

the common part of the expansion of τk for k ∈ Ii+1 and we substitute the π-root
σi =

∑
j<δi

ajt
j + πtδi into g(t−1, y), we obtain

g(t−1, σi) = gσi(π)tnλi + higher terms in t.

Moh proved that the order nλi is n−1+δi
n−Mi

and gσi(π) is of the form pi(π)
n
di

with deg pi(π) = Vi+1
di

di+1
([5]). Denote by ci the coefficient of tδi in the

expansion of τk for k ∈ Ii. ci will be a root of pi(π). However, since the
δi’s are mostly fractional, the π-roots have conjugations due to the Galois exten-
sion C(t, cs−1t

δs−1, · · · , ci+1t
δi+1 , tδi) over C(t, cs−1t

δs−1, · · · , ci+1t
δi+1). Con-

sider the degree of the extension

Ai = [C(t, cs−1t
δs−1, · · · , ci+1t

δi+1 , tδi) : C(t, cs−1t
δs−1, · · · , ci+1t

δi+1)].

When ci �= 0, pi(π) will have the factor (πAi − cAi
i )Vi. If ci = 0, pi(π) will have

the factor πVi whose multiplicity Vi is congruent to deg pi(π) modulo Ai.
Note that Moh had defined Ai to be

[C(t, tδs−1, · · · , tδi) : C(t, tδs−1, · · · , tδi+1)]
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which is different from ours. If the coefficients cs−1, · · · , ci+1 are not zero, the two
definitions are the same. Otherwise, Moh’s Ai will be a factor of ours.

Actually, Moh had considered not only g(t−1, y) but also f(t−1, y) together with
a system of related polynomials (so-called approximate roots). By substituting the
same π-root σi into f(t−1, y), Moh can prove that f(t−1, σi) = fσi(π)tmλi+higher
terms in t = (pi(π))

m
di tmλi+higher terms in t for all i ≥ 2. On the other hand,

for i = 1, mg′σ1
(π)fσ1(π) − ngσ1(π)f ′

σ1
(π) is a nonzero constant ([5], p.187 and

p.200). The coprimeness of gσ1 and g′σ1
(resp. fσ1 and f ′

σ1
) implies that gσ1 (resp.

fσ1 ) has only simple roots. Since gσ1 and fσ1 are coprime, they cannot both have
π as a factor. However, they will be polynomials in πA1 if both are coprime to π.
This will contradict the coprimeness of g ′

σ1
and f ′

σ1
. We conclude that one of gσ1

and fσ1 is coprime to π and the other has π but not π2 as a factor. That is, either

A1 | deg gσ1(π) = V2
n

d2
,

A1 | (deg fσ1(π)− 1) = V2
m

d2
− 1

or
A1 | V2

n

d2
− 1,

A1 | V2
m

d2
.

Therefore, any possible counter-example has to satisfy the above conditions.

3. MOH’S ALGORITHM

One application of Moh’s theory is to give a search algorithm of minimal
counter-example for polynomials of degrees less than or equal to 100. The searching
goes as follows:

Consider a possible counter-example of minimal degree. We shall search for the
sequence of integers {n, M1, · · · , Ms} such that

• deg f(x, y) = m = −M1 < deg g(x, y) = n ≤ 100,
• m � n,
• −m = M1 < M2 < · · · < Ms = n − 2,
• dr = gcd(n, M1, · · · , Mr−1) and ds < · · · < d2.

The constraints for s and ds are

5 ≥ s ≥ 3

and
ds ≥ 4

([5], corollary 6.1).
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Assign a sequence of integers {Vs, · · · , V2} for a hypothetically existing se-
quence of subfamilies with

Vr+1
dr

dr+1
≥ Vr >

dr

n − Mr
.

Compute the orders δs−1, · · · , δ1 through

δi = 1 −
(n − Mi)

s∏
j=i+1

[Vj(n − Mj) − dj]

s∏
j=i+1

[Vj(n − Mj−1)− dj]
.

Let L be the
l. c. m.{reduced denominators of δi, i = s − 1, · · · , r}.

Denote the reduced denominator of Lδr−1 by Ar−1. Consider the division algorithm
equation

Vr
dr−1

dr
= ∆r−1Ar−1 + �r−1.

The value of Vr−1 is further restricted by
Vr−1 ≤ ∆r−1

if the corresponding factor of pr−1(π) is of the form (π − α)Vr−1 with α �= 0 or
Ar−1 | Vr−1 − �r−1

if the corresponding factor of pr−1(π) is of the form πVr−1 .
Finally, when r = 2 we need to check the following conditions.

Condition 1. Either A1 | V2
n
d2

, A1 | V2
m
d2

− 1 or A1 | V2
n
d2

− 1, A1 | V2
m
d2

([5], proposition 5.5).

Condition 2. The corresponding factor of pr(π) can not be of the form πVr

for all r ≥ 2 ([5], proposition 5.6).
Moh’s result consists of two parts. First of all, there were six cases (four pairs

of (n, m)) left in the computer counter-example-searching for degree ≤ 100. They
are counter-example candidates.

n m = −M1 M2 M3 M4 V3 V2 δ2 δ1

64 48 52 62 63 3 3
1
4

9
16

84 56 64[72] 82 83 3 2[5]
2
7

[1
4

] 16
21

[ 7
12

]

75 50 55 73 4 3
[
2
] 1

5
1
2

[2
3

]

99 66 77 97 8 8
1
3

4
9
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Secondly, these six candidates can further be excluded by direct computation. ([5],
p.207-211)

Nevertheless, in re-coding Moh’s algorithm we found that there are other cases
satisfying Moh’s checking criteria. For example, for s = 4, we have

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 -16 84 94 95 3 3 2 1
4

9
16

7
12

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

84 56 70 77 82 83 5 10 5 1
4

1
3

7
12

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 84 88 94 95 3 9 3 1
5

1
4

59
80

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

72 48 12 56 70 71 3 9 2 3
11

7
22

13
33

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

90 60 10 45 88 89 4 8 3 8
35

5
21

2
7

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

90 60 10 45 88 89 4 8 1 8
35

5
21

17
42

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

90 60 45 70 88 89 4 2 3 1
5

2
5

1
2

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

90 60 45 80 88 89 4 5 3 1
7

5
14

13
28

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

90 60 45 80 88 89 4 5 2 1
7

5
14

11
21

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 48 68 94 95 3 2 3 3
10

2
5

1
2

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 48 68 94 95 3 2 1 3
10

2
5

3
4

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 48 76 94 95 3 5 3 2
7

5
14

13
28

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 48 76 94 95 3 5 2 2
7

5
14

11
21
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n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 64 48 88 94 95 6 7 3 1
5

2
5

1
2

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 -60 56 94 95 3 9 1 9
29

19
58

39
116

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 36 80 94 95 3 9 4 3
11

7
22

4
11

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 36 80 94 95 3 9 1 3
11

7
22

23
44

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 36 78 94 95 5 3 4 1
7

2
7

1
3

n m = −M1 M2 M3 M4 M5 V4 V3 V2 δ3 δ2 δ1

96 72 36 78 94 95 5 3 1 1
7

2
7

1
2

and, for s = 5, we have

n m=−M1 M2 M3 M4 M5 M6 V5 V4 V3 V2 δ4 δ3 δ2 δ1

96 64 80 88 92 94 95 3 5 10 5 0 1
4

1
3

7
12

n m=−M1 M2 M3 M4 M5 M6 V5 V4 V3 V2 δ4 δ3 δ2 δ1

96 64 -48 -8 20 94 95 3 6 1 1 9
28

25
77

5
14

3
8

n m=−M1 M2 M3 M4 M5 M6 V5 V4 V3 V2 δ4 δ3 δ2 δ1

96 64 48 88 92 94 95 3 6 7 3 0 1
5

2
5

1
2

We modify Moh’s algorithm as follows. The idea originates from Moh’s work
and the proof will appear in the next section (proposition 4.2,4.4).

Consider a possible counter-example of minimal degree. We shall search for the
sequence of integers {n, M1, · · · , Ms} such that

• deg f(x, y) = m = −M1 < deg g(x, y) = n ≤ 100,
• m � n,
• −m = M1 < M2 < · · · < Ms = n − 2,
• dr = gcd(n, M1, · · · , Mr−1) and ds < · · · < d2.

The constraints for s and ds are

5 ≥ s ≥ 3
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and
ds ≥ 4.

Assign a sequence of integers {Vs, · · · , V2} for a hypothetically existing sequence
of subfamilies with

Vr+1
dr

dr+1
≥ Vr >

dr

n − Mr
.

Compute the orders δs−1, · · · , δ1 through

δi = 1 −
(n − Mi)

s∏
j=i+1

[Vj(n − Mj)− dj]

s∏
j=i+1

[Vj(n − Mj−1) − dj]
.

Let L be the

l. c. m.{reduced denominators of δi with Vi ≤ �i, i = s − 1, · · · , r}.

Denote the reduced denominator of Lδr−1 by Ar−1. Consider the division algorithm
equation

Vr
dr−1

dr
= ∆r−1Ar−1 + �r−1.

The value of Vr−1 is restricted by

Vr−1 ≤ ∆r−1

if the corresponding factor of pr−1(π) is of the form (π − α)Vr−1 with α �= 0 or

Ar−1 | Vr−1 − �r−1

if the corresponding factor of pr−1(π) is of the form πVr−1.
Finally, when r = 2 we need to check the following conditions.

Condition 1. Either A1 | V2
n
d2

, A1 | V2
m
d2

− 1 or A1 | V2
n
d2

− 1, A1 | V2
m
d2

([5], proposition 5.5).

Condition 2. If the corresponding factor of pr(π) is of the form πVr for
r = s, · · · , i, then d2(1− δi) ≥ n − Mi (See proposition 4.2).

Condition 3. If the corresponding factor of pr(π) is of the form πVr for
r = s, · · · , 3, then �2 can not be d2

n−M2
(See proposition 4.4).

Furthermore, if one qualified sequence {Vi} satisfies Ar � Vr −�r and �r > dr
n−Mr

for some r, another qualified sequence {Vs, · · · , Vr+1, V
′
r , · · · } with Ar | V ′

r − �r
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under the same characteristic data {Mi, di} should exist. Similarly, for any qualified
sequence {Vi} satisfying Vr+1

dr
dr+1

> Vr > �r and dr
n−Mr

< 1 for some r, another
qualified sequence {Vs, · · · , Vr+1, V

′
r , · · · } with V ′

r ≤ �r should exist.
With the modified algorithm, the six cases for s = 3 are still left and all of the

cases for s = 4 or s = 5 are ruled out.
We’d like to point out that a counter-example should reveal a whole tree of

major subfamilies. Supposed that a sequence of data satisfies the checking criteria,
and at the i-th stage, after the Vi (resp. Ii) has been chosen, if the factorization of
pi(π) ensures the existence of another Vi, then a second sequence of data must exist
and satisfies the checking criteria also. This consideration has been included in our
modified algorithm.

4. THE NEW CHECKING CRITERIA

It is well known that there are a term of the form xln in g(x, y) and a term of
the form xlm in f(x, y) [3]. It is also well known that the Newton polygons of f
and g are similar [3]. Hence, we have n

m = ln
lm

and

ln =
n

m
lm =

n
d2
m
d2

lm ≥ n

d2

since d2 is the g.c.d. of m and n. Let’s summarize it as the following lemma.

Lemma 4.1. There is a term of the form x ln in g(x, y) and ln ≥ n
d2

.

Proposition 2.2. Suppose that s ≥ 2 and the π-root σ i is of the following form

σi = πtδi

such that
d2(1− δi) < n − Mi,

then (f, g) with such a π-root is not a minimal counter-example.

Proof. Suppose that (f, g) is a minimal counter-example. From the above
lemma, we have g(x, y) = xln + h(x, y) for some h(x, y). Consider g(t−1, σi) =
g(t−1, πtδi) = t−ln + h(t−1, πtδi). Each term in h(x, y) is either x-monomial with
degree less than ln or a term with the y-variable. Therefore,

n
−1 + δi

n − Mi
= ordtg(t−1, σi) ≤ −ln ≤ − n

d2
.

i.e.,
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d2(1− δi) ≥ n− Mi.

Corollary 4.3. ([5], proposition5.6) Suppose that s ≥ 2 and the π-root σ 1 is
of the following form

σ1 = πtδ1,

then (f, g) with such a π-root is not a minimal counter-example.

Proof. We have
δ1 > −1.

Hence

d2(1 − δ1) < 2d2 < n + m = n − M1.

Proposition 4.4. Suppose that s ≥ 3 and that a sequence of subfamilies

Is ⊃ Is−1 ⊃ · · · ⊃ I3

has been constructed. If the corresponding factor of p r(π) is of the form πVr for
r ≥ 3 and �2 = d2

n−M2
, then (f, g) with such a π-root is not a minimal counter-

example.

Proof. Suppose that (f, g) with such a π-root is a minimal counter-example.
The multiplicity of the root zero in p2(π) is at least �2. If it is strictly bigger, (f, g)
is not a minimal counter-example by corollary 4.3. If it is �2, the corresponding
π-root σ∗

1 is of the form
σ∗

1 = πtδ
∗
1

(corresponding to a minor case). Moh has shown that δ∗1 ≥ 1 ([5], proposition 6.1).
It follows that

ordtg(t−1, σ∗
1) = ordtg(t−1, πtδ2) + V2

n

d2
(δ∗1 − δ2)

= n
−1 + δ2

n − M2
+

d2

n − M2
n

d2
(δ∗1 − δ2)

= n
−1 + δ2

n − M2
+ n

δ∗1 − δ2

n − M2

= n
−1 + δ∗1
n − M2

≥ 0.

On the other hand, we have

ordtg(t−1, σ∗
1) ≤ −ln < 0

as in the proof of Proposition 4.2. This gives a contradiction.
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5. APPENDIX

In order to help the readers in seeing the differences between Moh’s algorithm
and ours, we make a comparison table.

Moh’s algorithm Our algorithm
Definition of L lcm{denominators of δi} lcm{denominators of δi with Vi ≤ �i}

Our L is a factor of Moh’s L.
Definition of Ar−1 the denominator of Lδr−1 the denominator of Lδr−1

Our Ar−1 is a multiple of Moh’s Ar−1.
Condition 2 Corollary 4.3 Proposition 4.2

Our condition 2 is more general.
Condition 3 NA Proposition 4.4

This is a new checking condition.
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