SUBMODULES OF MULTIPLICATION MODULES

Shahabaddin Ebrahimi Atani

Abstract

Let R be a commutative ring with identity (zero-divisors admitted). Various properties of submodules a multiplication module are considered. In fact, our aim here is to generalize some of the results in the paper listed as [1], from finitely generated faithful multiplication ideals to finitely generated faithful multiplication modules.

1. Introduction

Throughout this paper all rings will be commutative with identity (zero-divisors admitted) and all modules will be unitary. Let M be an R-module. Then M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case we can take $I=(N: M)=\{r \in R: r M \subseteq N\}$. Examples of multiplication ideals (i.e., ideals of a ring R that are multiplication R-modules) include invertible ideals, principal ideals, and ideals generated by idempotents. An R-module M is called a weak cancellation module whenever $A M=B M$ for ideals A and B of R, then $A+\operatorname{Ann}(M)=B+\operatorname{Ann}(M)$. In particular, if $\operatorname{Ann}(M)=0$, then we call M a cancellation module.

Let M be an R-module. The idealization of R and M is the commutative ring with identity $R(M)=R \oplus M$ with addition $(r, m)+\left(r^{\prime}, m^{\prime}\right)=\left(r+r^{\prime}, m+m^{\prime}\right)$ and multiplication $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+r^{\prime} m\right)$. Note that $0 \oplus M$ ia an ideal of $R(M)$ satisfying $(0 \oplus M)^{2}=0$ and that the structure of $0 \oplus M$ as $R(M)$-module (i.e., an ideal of $R(M)$) is essentially the same as the R-module structure of M. Let N be a submodule of M. Then $0 \oplus N$ is an ideal of $R(M)$ contained in $0 \oplus M$. A good reference for the basic facts about idealization is [10, Section 25].

Throughout this paper we shall assume unless otherwise stated, that M is a finitely generated faithful multiplication module, $\mathbf{S}(\mathbf{M})$ is the set finitely generated faithful multiplication submodules of M and $\mathbf{S}(\mathbf{R})$ is the semi-group of finitelty generated faithful multiplication ideals of R.

[^0]
2. Gcd and Lcm of Multiplication Modules

Let M be an R-module and N a submodule of M with $N=I M$ for some ideal I of R. Then we say that I is a presentation ideal of N (for short a presentation of $N)$. It is possible that for a submodule N no such presentation exist. For example:
(1) Assume that M is a vector space over an arbitrary field of F with $\operatorname{dim}_{F} M=$ $k \geq 2$ and let N be a proper subspace of M such that $N \neq 0$. Then M is finite length (so M is artinian, noetherian, and pure-injective), but M is not multiplication and N has not any presentation.
(2) Let R be a local Dedekind domain with maximal ideal $P=R p$. The module $E=E(R / P)$, the injective hull of R / P, is pure-injective, secondary and Artinian (see [8, Theorem 1.1]). Set $A_{n}=\left(0:_{E} P^{n}\right)(n \geq 1)$. Then every non-zero proper submodule L of E is of the form $L=A_{m}$ for some m and $E \cong P^{n} E(n \geq 1)$, so L has not any presentation (see [9, p. 324]), and hence E is not multiplication.

Clearly, for every submodule of M has a presentation ideal if and only if M is multiplication module. In particular, every submodule N of a multiplication module $M,(N: M)$ is a presentation for N.

Let M be a multiplication module, and let $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$ for some ideals I_{1}, I_{2} and I_{3} of R. The product of N and K denoted by $N K$ is defined by $I_{1} I_{2} M$. Moreover, the product of N and K is independent of presentation ideals of N and K (see [2, Theorem 3.4]). Clearly, $N K$ is a submodule of M and contained in $N \cap K$. Also it is clear that if $N \subseteq K$ then $N T \subseteq K T$.

Remark 1. Clearly, $M^{2}=M M=M$ (so M is idempotent). Note that this definition is different from the definition of ordinary ideal multiplication. To see that the two definitions are actually different, let $R=Z$ be the ring of integers, and let $M=2 Z$ and $N=K=4 Z$. Then $N K$ is $16 Z$ by the usual definition and is $8 Z$ by the our definition. In fact, when I is idempotent - in that case, the two definitions coincide.

Definition 2.1. Let N and K be submodules of an R-module M and let $R(M)$ be the idealization of M. We say that N divides K, denoted by $N \mid K$, if there exists an ideal J of $R(M)$ such that $0 \oplus K=J(0 \oplus N)$.

Let N and K be submodules of an R-module M. A submodule G of M is called a greatest common divisor of N and K, or $\operatorname{gcd}(N, K)$, if and only if:
(i) $G \mid N$ and $G \mid K$,
(ii) If G^{\prime} is a submodule of M with $G^{\prime} \mid N$ and $G^{\prime} \mid K$, then $G^{\prime} \mid G$. We say that N is relatively prime to K if $\operatorname{gcd}(N, K)=M$.

Similarly, a submodule L of M is called a least common multiple of N and K, or $\operatorname{lcm}(N, K)$, if and only if:
(i) $N \mid L$ and $K \mid L$,
(ii) If L^{\prime} is a submodule of M with $N \mid L^{\prime}$ and $K \mid L^{\prime}$, then $L \mid L^{\prime}$.

Proposition 2.2. Let N and K be submodules of an R-module M and let $R(M)$ be the idealization of M. Then $N \mid K$ if and only if there exists an ideal I of R such that $K=I N$. In particular, if $N \mid K$ then $K \subseteq N$.

Proof. \quad Suppose first that $N \mid K$. Then $0 \oplus K=J(0 \oplus N)$ for some ideal J in $R(M)$. By [10, Theorem 25.1 (1)], if

$$
I=\{r \in R:(r, m) \in J \text { for some } m \in M\}
$$

and if

$$
N^{\prime}=\left\{n^{\prime} \in M:\left(r, n^{\prime}\right) \in J \text { for some } r \in R\right\}
$$

then I is an ideal of R, N^{\prime} is an R-submodule of $M, I M \subseteq N^{\prime}$ and $J=I \oplus N^{\prime}$. It follows that $0 \oplus K=\left(I \oplus N^{\prime}\right)(0 \oplus N)=0 \oplus I N$, and hence $K=I N$. Conversely, suppose that $K=I N$ for some ideal I in R. Then $(I \oplus M)(0 \oplus N)=0 \oplus I N=$ $0 \oplus K$, and hence $0 \oplus N \mid 0 \oplus K$, as required.

Remark 2. (i) By Proposition 2.2, it is clear that if N is a multiplication submodule of M then $N \mid K$ if and only if $K \subseteq N$.
(ii) Let N_{1}, N_{2} and N_{3} be multiplication submodules of an R-module M. Then by (i) and definition, 1) $N_{1} \mid N_{1}, 2$) if $N_{1} \mid N_{2}$ and $N_{2} \mid N_{1}$ then $N_{1}=N_{2}$ and 3) if $N_{1} \mid N_{2}$ and $N_{2} \mid N_{3}$ then $N_{1} \mid N_{3}$. Moreover, it is clear that $\operatorname{gcd}\left(N_{1}, N_{2}\right)$ and $\operatorname{lcm}\left(N_{1}, N_{2}\right)$ are unique if they exist.
(iii) Let N be a submodule of M. 1) If $\operatorname{gcd}(M, N)=G$ then $G=M$. 2) If $\operatorname{lcm}(0, N)=L$ then $L=0$.

Lemma 2.3. Let M be a finitely generated faithful multiplication R module and N a submodule of M. Then $N=I M \in S(M)$ if and only if $I \in S(R)$.

Proof. This follows from [13, Theorem 10] and [11, Lemma 1.4].
Lemma 2.4. \quad The set $S(M)$ is a multiplicative semi-group.
Proof. Let $N, K \in S(M)$. Then $N=I M$ and $K=J M$ for some ideals I, J in $S(R)$ by Lemma 2.3. If $r(N K)=(r I) K=0$ then $r I=0$. It follows that $r=0$, so $N K$ is faithful.

Suppose that $H \subseteq N K \subseteq K$. Then $H=J^{\prime} K$ for some ideal J^{\prime} in R. As $J^{\prime} K \subseteq I K$, we have $J^{\prime} \subseteq I$ by [13, p. 231 Corollary], so $J^{\prime}=J_{1} I$ for some ideal J_{1} of R, and hence $H=J_{1} I K=J_{1} N K$. Thus $N K$ is multiplication. Finally, since $N K=I J M=I K$, from Lemma 2.3, we get $N K$ is finitely generated, as rquired.

Corollary 2.5. Let $N, T \in S(M)$.
(i) If K is a submodule of M and $K \mid N$, then $K \in S(M)$.
(ii) If $\operatorname{lcm}(N, T)=K$ exists, then $K \in S(M)$.

Proof. (i) There exists an ideal I in $S(R)$ such that $N=I M$ by Lemma 2.3. Therefore $K=J M$ and $N=I M=J_{1} J M$ for some ideals J, J_{1} of R. It follows that $I=J_{1} J$ by [12, Theorem 6.1], so $J \mid I$. Thus by [1, Lemma 1.4], $J \in S(R)$, and hence $K=J M \in S(M)$ by Lemma 2.3.
(ii) Since $N, T \in S(M)$, we have $N T \in S(M)$ by Lemma 2.4. As $N T$ is a common multiple of N and T, we have $K \mid N T$, and by (i), $K \in S(M)$.

Theorem 2.6. Let $N, K \in S(M)$. If $\operatorname{lcm}(N, K)=T$ exists, then so too does $\operatorname{gcd}(N, K)$. In particular, $N K=\operatorname{lcm}(N, K) \operatorname{gcd}(N, K)$.

Proof. We can write $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$ for some ideals I_{1}, I_{2} and I_{3} of R, so $N K=I_{1} K=I_{2} N$ and $T \mid I_{1} K$. Then there exists an ideal J_{1} in R such that $I_{1} K=J_{1} T=J_{1} I_{3} M=\left(J_{1} M\right)\left(I_{3} M\right)$. Since $T \in S(M)$, we have

$$
\left(I_{1} K: T\right) M=\left(J_{1} T: T\right) M=J_{1} M
$$

by [13, Theorem 10 (ii)]. It is enough to show that $\operatorname{gcd}(N, K)=J_{1} M$. Since $K \mid T$, there exists an ideal J_{2} of R such that $T=J_{2} K$. It follows that $J_{1} T=$ $J_{1} J_{2} K=I_{1} K$ and by [12, Theorem 6.1], $J_{1} J_{2}=I_{1}$, and hence $J_{2} J_{1} M=I_{1} M$. Thus $J_{1} M \mid N$. Similarly, $J_{1} M \mid K$. Assume that T_{1} is a submodule of M such that $T_{1} \mid K$ and $T_{1} \mid N$. Then there exists ideals J_{3}, J_{4} and J_{5} of R such that $K=J_{3} T_{1}, N=J_{4} T_{1}$ and $T_{1}=J_{5} M$. Therefore $N K=J_{3} J_{4} J_{5} M$, so $J_{5} M \mid N K$, and hence $T_{1}=J_{5} M \in S(M)$ by Proposition 2.5. By [13, Theorem 10 (ii)], we have $\left(N K: T_{1}\right) M=\left(J_{3} J_{4} T_{1}: T_{1}\right) M=J_{3} J_{4} M$. It follows that $K, N \mid\left(N K: T_{1}\right) M$. Therefore $T \mid\left(N K: T_{1}\right) M$, and hence there is an ideal I_{4} of R such that $\left(N K: T_{1}\right) M=I_{4} T$. But $N K=J_{3} J_{4} J_{5} M \subseteq J_{5} M=T_{1}$ and T_{1} is a multiplication module. Thus

$$
J_{1} T=N K=\left(N K: T_{1}\right) T_{1}=\left(N K: T_{1}\right) J_{5} M=I_{4} J_{5} T
$$

It follows that $J_{1}=I_{4} J_{5}$ since T is cancellation module. Thus $J_{1} M=I_{4} J_{5} M=$ $I_{4} T_{1}$, so $T_{1} \mid J_{1} M$, as required.

Lemma 2.7. Let $I, J \in S(R)$, and let M be a finitely generated faithful multiplication R-module such that $\operatorname{lcm}(I M, J M)$ exists. Then the following statements are true:
(i) $\operatorname{lcm}(I, J)$ exists and $\operatorname{lcm}(I, J) M=\operatorname{lcm}(I M, J M)$.
(ii) $\operatorname{gcd}(I, J)$ exists and $\operatorname{gcd}(I, J) M=\operatorname{gcd}(I M, J M)$.
(iii) $(I: J)=(I M: J M)$.

Proof. (i) Let $\operatorname{lcm}(I M, J M)=U$. Then $U=I_{1} M=J_{1} I M=J_{2} J M$ for some ideals I_{1}, J_{1} and J_{2} of R. It follows that $I_{1}=J_{1} I=J_{2} J$ since M is a cancellation module, and hence I_{1} is a common multiple of I and J. Assume that J_{3} is an ideal of R with $I \mid J_{3}$ and $J \mid J_{3}$. Thus $J_{3} M$ is a common multiple of $I M$ and $J M$, so there exists an ideal J_{4} in R such that $J_{3} M=J_{4} I_{1} M$ and therefore $J_{3}=J_{4} I_{1}$. It follows that $I_{1} \mid J_{3}$, so $\operatorname{lcm}(I, J)=I_{1}$, as required.
(ii) This proof is similar to that in case (i) and we omit it.
(iii) Clearly, $(I: J) \subseteq(I M: J M)$. Suppose that $r \in(I M: J M)$. Then $r J M \subseteq I M$, so $r J \subseteq I$ by [13, p. 231 Corollary], as required.

Corollary 2.8. Let $N, K, T \in S(M)$. Then the following statements are true:
(i) $\operatorname{lcm}(N, K)$ exists if and only if $\operatorname{lcm}(T N, T K)$ exists, in which case

$$
\operatorname{lcm}(T N, T K)=T \operatorname{lcm}(N, K)
$$

(ii) If $\operatorname{gcd}(T N, T K)$ exists, then so too does $\operatorname{gcd}(N, K)$, and

$$
\operatorname{gcd}(T N, T K)=T \operatorname{gcd}(N, K)
$$

Proof. (i) We can write $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$ for some ideals I_{1}, I_{2} and $I_{3} \in S(R)$. Suppose first that $\operatorname{lcm}(N, K)$ exists. As $I_{3} \in S(R)$, we get $\operatorname{lcm}\left(I_{3} I_{1}, I_{3} I_{2}\right)=I_{3} \operatorname{lcm}\left(I_{1}, I_{2}\right)$ by [1, Theorem 2.2] and Lemma 2.7. It follows from Lemma 2.7 that

$$
\begin{aligned}
& \operatorname{lcm}(T N, T K)=\operatorname{lcm}\left(I_{1} T, I_{2} T\right)=\operatorname{lcm}\left(I_{1}, I_{2}\right) M T= \\
& \operatorname{lcm}\left(I_{1} M, I_{2} M\right) T=\operatorname{lcm}(N, K) T
\end{aligned}
$$

The converse is obvious.
(ii) This proof is similar to that in case (i) and we omit it.

Lemma 2.9. Let $N_{i}(1 \leq i \leq n)$ be a finite collection of submodules in $S(M)$.
(i) If $\operatorname{gcd}\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ and $\operatorname{gcd}\left(N_{1}, N_{2}, \ldots, N_{n-1}\right)$ exist and

$$
U=\operatorname{gcd}\left(N_{1}, N_{2}, \ldots, N_{n-1}\right)
$$

then $\operatorname{gcd}\left(N_{1}, N_{2}, \ldots, N_{n}\right)=\operatorname{gcd}\left(U, N_{n}\right)$.
(ii) If $\operatorname{lcm}\left(N_{1}, N_{2}, \ldots, N_{n}\right)$ and $\operatorname{lcm}\left(N_{1}, N_{2}, \ldots, N_{n-1}\right)$ exist and

$$
V=\operatorname{lcm}\left(N_{1}, N_{2}, \ldots, N_{n-1}\right)
$$

then $\operatorname{lcm}\left(N_{1}, N_{2}, \ldots, N_{n}\right)=\operatorname{lcm}\left(V, N_{n}\right)$.

Proof. Straightforward

Corollary 2.10. Let $N, K, T \in S(M)$, and let $\operatorname{gcd}(T N, T K)$ exists and $\operatorname{gcd}(N, K)=M$. Then $\operatorname{gcd}(N, T K)=\operatorname{gcd}(N, T)$.

Proof. By Corollary 2.8, we have $\operatorname{gcd}(T N, T K)=T \operatorname{gcd}(N, K)=T M=T$. Then $\operatorname{gcd}(N, T)=\operatorname{gcd}(N, \operatorname{gcd}(T N, T K))$, and it follows from Lemma 2.9 that

$$
\operatorname{gcd}(N, T)=\operatorname{gcd}(\operatorname{gcd}(N, T N), T K)=\operatorname{gcd}(N, T K)
$$

Lemma 2.11. Let $N, K, T \in S(M)$.
(i) If $T N=T K$ then $N=K$.
(ii) If $T_{1}=\operatorname{gcd}(N, K)$ then $\operatorname{gcd}\left(\left(N: T_{1}\right) M,\left(K: T_{1}\right) M\right)=M$.

Proof. (i) By Lemma 2.3, there exists ideals I_{1}, I_{2} and I_{3} in $S(R)$ such that $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$. Suppose that $T N=I_{1} I_{3} M=I_{2} I_{3} M=$ $T K$, so $I_{1} I_{3}=I_{2} I_{3}$ since M is cancellation, and hence $I_{2}=I_{1}$ since I_{3} is cancellation ideal. Thus $N=K$.
(ii) Since T_{1} is the greatest common divisor of N, K, we have $N, K \subseteq T_{1}$ and $T_{1} \in S(M)$, so $N=\left(N: T_{1}\right) T_{1}$ and $K=\left(K: T_{1}\right) T_{1}$. It follows from Corollary 2.8 that

$$
T_{1} M=T_{1}=\operatorname{gcd}\left(\left(N: T_{1}\right) T_{1},\left(K: T_{1}\right) T_{1}\right)=T_{1} \operatorname{gcd}\left(\left(N: T_{1}\right) M,\left(K: T_{1}\right) M\right)
$$

By (i), we get $\operatorname{gcd}\left(\left(N: T_{1}\right) M,\left(k: T_{1}\right) M\right)=M$, as required.
Theorem 2.12. \quad The greatest common divisor of N and K exists for all $N, K \in S(M)$ if and only if $\operatorname{lcm}(N, K)$ exists for all $N, K \in S(M)$.

Proof. Let $N, K \in S(M)$. If $\operatorname{gcd}(N, K)=G$ then, $G \in S(M)$ and $N=(N: G) G, K=(K: G) G$. So by Corollary $2.8, \operatorname{lcm}(N, K)$ exists if and only if $\operatorname{lcm}((N: G) M,(K: G) M)$ exists, and $\operatorname{gcd}((N: G) M,(K: G) M)=M$ by Lemma $2.11($ Since $\operatorname{lcm}(N, K)=\operatorname{lcm}((N: G) M G,(K: G) M G))$. Thus we may assume that $\operatorname{gcd}(N, K)=M$. Now it is enough to show that $\operatorname{lcm}(N, K)=N K$. Clearly, $N K$ is a common multiple of N and K. Let U be a submodule of M such that $N, K \mid U$. Then $U=I_{1} N=I_{2} K$ for some ideals I_{1} and I_{2} of R. As $N \mid$ $I_{1} N=I_{1} M N$, we infer from Corollary 2.10 that $\operatorname{gcd}\left(N, I_{1} M N\right)=\operatorname{gcd}\left(N, I_{1} M\right)$, and hence $N \mid I_{1} M$, so that $N K \mid I_{1} M N=U$. The converse follows from Theorem 2.6.

Lemma 2.13. Let $N, K \in S(M)$.
(i) $\operatorname{lcm}(N, K)$ exists in $S(M)$ if and only if $N \cap K \in S(M)$. In particular, $\operatorname{lcm}(N, K)=N \cap K=(N: K) K$.
(ii) If $\operatorname{lcm}(N, K)=N \cap K$ then $\operatorname{gcd}(N, K)=(N K: N \cap K) M$.

Proof. (i) Let $\operatorname{lcm}(N, K)=T \in S(M)$. Then T is a common multiple of N and K, so $T \subseteq N \cap K$. As N and K are multiplication, $N \cap K$ is a common multiple of N and K, so $T \mid N \cap K$, and hence $T=N \cap K \in S(M)$. Similarly, if $N \cap K \in S(M)$ then $N \cap K$ is the least common multiple of N and K. Finally, since $N \cap K=(N \cap K: K) K=\operatorname{lcm}(N, K)$, we have $\operatorname{lcm}(N, K)=(N: K) K$.
(ii) Since $N K=(N K: N \cap K) M(N \cap K)=\operatorname{gcd}(N, K)(N \cap K)$, so the result follows from Lemma 2.11.

Theorem 2.14. Let $N, K \in S(M)$, and let $\operatorname{lcm}(N, K)$ exists. Then the following statements are true:
(i) $\operatorname{lcm}(N, K)^{m}=\operatorname{lcm}\left(N^{m}, K^{m}\right)$ for all positive integer m.
(ii) $\operatorname{gcd}(N, K)^{m}=\operatorname{gcd}\left(N^{m}, K^{m}\right)$ for all positive integer m.
(iii) $(N: K)^{m}=\left(N^{m}: K^{m}\right)$ for all positive integer m.

Proof. (i) We can write $N=I_{1} M$ and $K=I_{2} M$ for some ideals $I_{1}, I_{2} \in$ $S(R)$ by Lemma 2.3. Suppose that $\operatorname{lcm}(N, K)=T$. Then there exists an ideal I_{3} of R with $T=I_{3} M$. By [1, Theorem 2.6] and Lemma 2.7, we have

$$
\begin{aligned}
\operatorname{lcm}(N, K)^{m} & =\operatorname{lcm}\left(I_{1} M, I_{2} M\right)^{m} \\
& =\left(I_{3} M\right)^{m}=I_{3}^{m} M \\
& =\operatorname{lcm}\left(I_{1}, I_{2}\right)^{m} M \\
& =\operatorname{lcm}\left(I_{1}^{m}, I_{2}^{m}\right) M \\
& =\operatorname{lcm}\left(I_{1}^{m} M, I_{2}^{m} M\right)=\operatorname{lcm}\left(N^{m}, K^{m}\right)
\end{aligned}
$$

(ii) This proof is similar to that in case (i) and we omit it.
(iii) There exists elements I_{1}, I_{2} of $S(R)$ such that $N=I_{1} M$ and $K=I_{2} M$. from Lemma 2.7 and [1, Theorem 2.6], we have

$$
\begin{aligned}
(N: K)^{m} & =\left(I_{1} M: I_{2} M\right)^{m}=\left(\left(I_{1}: I_{2}\right) M\right)^{m}=\left(I_{1}: I_{2}\right)^{m} M \\
& =\left(I_{1}^{m}: I_{2}^{m}\right) M=\left(I_{1}^{m} M: I_{2}^{m} M\right)=\left(N^{m}: K^{m}\right) .
\end{aligned}
$$

3. GCD Modules

Definition 3.1. An R-module M is called a $G C D$ module if the intersection of every two finitely generated faithful multiplication submodules is also a finitely generated faithful multiplication module.

Let R be a generalized $G C D$ ring (that is, the intersection of every two finitely generated faithful multiplication ideals of R is also a finitely generated faithful multiplication ideal). Then R is $G C D$ as an R-module. But $R=Z[\sqrt{5}]$ is not $G C D$ as an R-module (see [1, Section 3]).

Theorem 3.2. Let $S(M)$ be the set of as described in section 2. Then the following conditions are equivalent:
(i) M is a GCD module.
(ii) For each $N, K \in S(M), \operatorname{lcm}(N, K)$ exists in $S(M)$.
(iii) For each $N, K \in S(M), \operatorname{gcd}(N, K)$ exists in $S(M)$.
(iv) For each $N, K \in S(M),(N: K) M \in S(M)$.

Proof. From Theorm 2.12 and Lemma 2.13, it is enough to show that $(i i) \Rightarrow$ $(i v)$ and $(i v) \Rightarrow(i)$.
$(i i) \Rightarrow(i v)$. There exists an ideal I of R such that $K=I M$. By Theorem 2.12 and Lemma 2.13, we have

$$
\operatorname{lcm}(N, K)=(N: K) K=I(N: K) M
$$

It follows that $(N: K) M \mid \operatorname{lcm}(N, K)$. Now the assertion follows from the Corollary 2.5.
$(i v) \Rightarrow(i)$. Let N, K and $(N: K) M \in S(M)$. we can write $K=I M$ for some ideal of R. As

$$
(N: K) M=(N \cap K: K) M \in S(M)
$$

we have $N \cap K=(N \cap K: K) K=(N \cap K: K)(R M)(I M) \in S(M)$, as required.

Corollary 3.3. Let M be a $G C D$ module, and let $N, K, T \in S(M)$. Then the following statements are true:
(i) $(\operatorname{gcd}(N, K): T) M=\operatorname{gcd}((N: T) M,(K: T) M)$.
(ii) $(T: \operatorname{lcm}(N, K)) M=\operatorname{gcd}((T: N) M,(T: K) M)$.

Proof. (i) There exists ideals I_{1}, I_{2} and I_{3} of R such that $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$. By Lemma 2.7 and [1, Corollary 3.2], we have

$$
\begin{aligned}
G & =\left(\left(\operatorname{gcd}\left(I_{1} M, I_{2} M\right): I_{3} M\right)\right) M \\
& =\left(\left(\operatorname{gcd}\left(I_{1}, I_{2}\right) M: I_{3} M\right)\right) M \\
& =\left(\left(\operatorname{gcd}\left(I_{1}, I_{2}\right): I_{3}\right) M\right. \\
& =\operatorname{gcd}\left(\left(I_{1}: I_{3}\right),\left(I_{2}: I_{3}\right)\right) M \\
& =\operatorname{gcd}\left(\left(I_{1}: I_{3}\right) M,\left(I_{2}: I_{3}\right) M\right) \\
& =\operatorname{gcd}\left(\left(I_{1} M: I_{3} M\right),\left(I_{2} M: I_{3} M\right)\right)
\end{aligned}
$$

So, $G=\operatorname{gcd}((N: T) M,(K: T) M)$, as required.
(ii) This proof is similar to that the case (i) and we omit it.

Corollary 3.4. Let M be a $G C D$ module, and let $N, K, T \in S(M)$. Then the following statements are true:
(i) $\operatorname{lcm}(\operatorname{gcd}(N, K), T))=\operatorname{gcd}(\operatorname{lcm}(N, T), \operatorname{lcm}(K, T))$
(ii) $\operatorname{gcd}(\operatorname{lcm}(N, K), T))=\operatorname{lcm}(\operatorname{gcd}(N, T), \operatorname{gcd}(K, T))$

Proof. (i) We can write $N=I_{1} M, K=I_{2} M$ and $T=I_{3} M$ for some ideals I_{1}, I_{2} and I_{3} of R. By Lemma 2.7 and [1, Corollary 3.3], we have

$$
\begin{aligned}
& \left.\operatorname{lcm}\left(\operatorname{gcd}\left(I_{1} M, I_{2} M\right), I_{3} M\right)\right) \\
= & \operatorname{lcm}\left(\operatorname{gcd}\left(I_{1}, I_{2}\right) M, I_{3} M\right) \\
= & \operatorname{lcm}\left(\operatorname{gcd}\left(I_{1}, I_{2}\right), I_{3}\right) M \\
= & \operatorname{gcd}\left(\operatorname{lcm}\left(I_{1}, I_{3}\right), \operatorname{lcm}\left(I_{2}, I_{3}\right)\right) M \\
= & \operatorname{gcd}\left(\operatorname{lcm}\left(I_{1}, I_{3}\right) M, \operatorname{lcm}\left(I_{2}, I_{3}\right) M\right) \\
= & \operatorname{gcd}\left(\operatorname{lcm}\left(I_{1} M, I_{3} M\right), \operatorname{lcm}\left(I_{2} M, I_{3} M\right)\right. \\
= & \operatorname{gcd}(\operatorname{lcm}(N, T), \operatorname{lcm}(K, T))
\end{aligned}
$$

(ii) This proof is similar to that the case (i) and we omit it.

Lemma 3.5. Let M be a $G C D$ module, and let $N, K, T \in S(M)$. If $\operatorname{gcd}(N, T)=\operatorname{gcd}(K, T)=M$, then $\operatorname{gcd}(\operatorname{lcm}(N, K), T)=M=\operatorname{gcd}(N K, T)$.

Proof. This follows from Corollary 2.10 and Corollary 3.4.
Let M be a $G C D$ module, and let $I, J \in S(R), N, K \in S(M)$. Set

$$
\begin{aligned}
\Phi_{I, J} & =\{A: A \text { is an ideal of } R, A \mid I, \operatorname{gcd}(A, J)=R\} \\
\Phi_{N, K} M & =\{T: T \text { is a submodule of } M, T \mid N, \operatorname{gcd}(T, K)=M\}
\end{aligned}
$$

Clearly, $\Phi_{N, K} M \subseteq S(M)$ and $M \in \Phi_{N, K} M$.
Lemma 3.6. Let $N=I M, K=J M \in S(M)$. Then $T=I_{1} M \in \Phi_{N, K} M$ if and only if $I_{1} \in \Phi_{I, J}$.

Proof. There exists an ideal J_{1} of R such that $I M=J_{1} I_{1} M$, so $I=J_{1} I_{1}$ since M is cancellation, and hence $I_{1} \mid I$. As $T \in \Phi_{N, K} M$, by Lemma 2.7, we have

$$
\operatorname{gcd}(T, K)=\operatorname{gcd}\left(I_{1} M, J M\right)=\operatorname{gcd}\left(I_{1}, J\right) M=R M
$$

It follows that $\operatorname{gcd}\left(I_{1}, J\right)=R$. Thus $I_{1} \in \Phi_{I, J}$. The converse is obvious.
Theorem 3.7. Let M be a $G C D$ module and $N=I M, K=J M \in S(M)$. Then the following statements are true:
(i) $\Phi_{N, K} M$ formes a lattice of submodules of M. Moreover, if $\Phi_{N, K} M$ contains a minimal element, then it is unique.
(ii) If $A, B \in \Phi_{N, K} M$ then $(A: B) M \in \Phi_{N, K} M$.

Proof. Let $A, B \in \Phi_{N, K} M$. Then $A, B \in S(M)$, and $\operatorname{gcd}(A, B)$ and $\operatorname{lcm}(A, B)$ exist. There exists ideals I_{1} and I_{2} in $\Phi_{I, J}$ such that $A=I_{1} M$ and $B=I_{2} M$ by Lemma 3.6. From Lemma 2.7, [1, Theorem 3.5], and Lemma 3.6, we have

$$
\begin{aligned}
\operatorname{gcd}(A, B) & =\operatorname{gcd}\left(I_{1} M, I_{2} M\right)
\end{aligned}=\operatorname{gcd}\left(I_{1}, I_{2}\right) M \in \Phi_{N, K} M, ~=\operatorname{lcm}\left(I_{1}, I_{2}\right) M \in \Phi_{N, K} M
$$

This show that the first assertion follows and the second assertion is obvious.
(ii) We can write $A=I_{1} M$ and $B=I_{2} M$ for some ideals I_{1} and I_{2} in $\Phi_{I, J}$. From Lemma 2.7, [1, Theorem 3.5], and Lemma 3.6, we have

$$
(A: B) M=\left(I_{1} M: I_{2} M\right) M=\left(I_{1}: I_{2}\right) M \in \Phi_{N, K} M
$$

Proposition 3.8. Let M be a $G C D$ module and $N=I M, K=J M \in S(M)$. Then $T=I_{1} M$ is the smallest element in $\Phi_{N, K} M$ if and only if I_{1} is the smallest element in $\Phi_{I, J}$.

Proof. Suppose first that T is the smallest element in $\Phi_{N, K} M$. Then $I_{1} \in \Phi_{I, J}$ by Lemma 3.6. Let I_{2} be an ideal in R such that $I_{2} \mid\left(I: I_{1}\right)$ and $\operatorname{gcd}\left(I_{2}, J\right)=R$. By [1, Theorem 3.7], it is enough to show that $I_{2}=R$. Since $I_{2} M \mid\left(I: I_{1}\right) M=$ $\left(I M: I_{1} M\right) M$, we have from Theorem 3.2 and Corollary 2.5 that $I_{2} M \in S(M)$. Moreover, $I_{2} T=I_{2} T M \mid(N: T) T M=N M=N, \operatorname{gcd}\left(I_{2} M, K\right)=M$ and $\operatorname{gcd}(T, K)=\operatorname{gcd}\left(I_{1}, J\right) M=R M=M$, so by Lemma 3.5,

$$
\operatorname{gcd}\left(I_{2} M T, K\right)=\operatorname{gcd}\left(I_{2} T, K\right)=M
$$

It follows that $I_{2} T \in \Phi_{N, K} M$, and hence $T \subseteq I_{2} T \subseteq T$. Thus $I_{2} T=T=R T$ and therefore $I_{2}=R$ since T is cancellation. Conversely, assume that I_{1} is the smallest element in $\Phi_{I, J}$. Let $T_{1}=J_{1} M \in \Phi_{N, K} M$. Then $J_{1} \in \Phi_{I, J}$ by Lemma 3.6, and hence $I_{1} \subseteq J_{1}$, as required.

Theorem 3.9. Let M be a $G C D$ module and $N=I M, K=J M \in S(M)$. Then $T=I_{1} M$ is the smallest element in $\Phi_{N, K} M$ if and only if the only submodule of M dividing $(N: T) M$ and relatively prime to K is M.

Proof. This follows from [1, Theorm 3.7] and Proposition 3.8.
Theorem 3.10. Let M be a $G C D$ module and $N=I M, K=J M$ and $T=I_{3} M \in S(M)$, and let $G=I_{4} M=\operatorname{gcd}(N, K)$. Then the following statements are equivalent:
(i) $T \mid N$ and $\operatorname{gcd}(T, K)=M$.
(ii) $T \mid(N: G) M$ and $\operatorname{gcd}(T, G)=M$.

Proof. $\quad(i) \Rightarrow(i i)$. By (i) we get $I_{3} \mid I_{1}$ and $\operatorname{gcd}\left(I_{3}, I_{2}\right)=R$ since M is cancellation, so by [1, Theorem 3.8], we have $I_{3} \mid\left(I_{1}: I_{4}\right)$ and $\operatorname{gcd}\left(I_{3}, I_{4}\right)=R$. Now the assertion follows from Lemma 2.7.
$(i i) \Rightarrow(i)$. Similarly, this follows from [1, Theorem 3.8] and Lemma 2.7.
Remark 3. It is clear from Theorem 3.10 that if $G=\operatorname{gcd}(N, K)$, then $\Phi_{N, K} M=\Phi_{(N: G) M, G} M$.

Let M be a $G C D$ module, and let $N, K \in S(M)$. Then $N=I M$ and $K=J M$ for some ideals I and J in $S(R)$. Define two sequences of ideals in R and two sequences of submodules of M recursively as follows: $I_{0}=I, J_{0}=J$, $J_{i+1}=\operatorname{gcd}\left(I_{i}, J_{i}\right)$ and $I_{i+1}=\left(I_{i}: J_{i+1}\right)$ for all $i \geq 0$, and $N_{0}=N, K_{0}=$ $K, K_{i+1}=\operatorname{gcd}\left(N_{i}, K_{i}\right)$ and $N_{i+1}=\left(N_{i}: K_{i+1}\right) M$ for all $i \geq 0$.

Lemma 3.11. Let M be a $G C D$ module and $N, K \in S(M)$ with the sequences I_{i}, J_{i}, N_{i} and K_{i} as above. Then $N_{i}=I_{i} M$ and $K_{i}=J_{i} M$ for all $i \geq 0$.

Proof. We shall prove the assertion by induction on i. The result is trivial for $i=0$. Assume that $i \geq 1$ and that $N_{i}=I_{i} M, K_{i}=J_{i} M$. Thus from Lemma 2.7, we have

$$
\begin{gathered}
K_{i+1}=\operatorname{gcd}\left(N_{i}, K_{i}\right)=\operatorname{gcd}\left(I_{i}, J_{i}\right) M=J_{i+1} M \\
N_{i+1}=\left(N_{i}: K_{i+1}\right) M=\left(I_{i} M: J_{i+1} M\right) M=\left(I_{i}: J_{i+1}\right) M=I_{i+1} M
\end{gathered}
$$

Theorem 3.12. Let M be a $G C D$ module and $N, K \in S(M)$ with the sequences I_{i}, J_{i}, N_{i} and K_{i} as above. Then the following statements are equivalent:
(i) $\bigcup_{i=1}^{\infty} N_{i}$ is the smallest element in $\Phi_{N, K} M$.
(ii) $\bigcup_{i=1}^{\infty} N_{i} \in \Phi_{N, K} M$.
(iii) $\bigcup_{i=1}^{\infty} N_{i} \in S(M)$.
(iv) $\bigcup_{i=1}^{\infty} N_{i}=N_{n}$ for some positive integer n.
(v) $N_{n}=N_{n+1}$ for some positive integer n.
(vi) $N_{n+1}=M$ for some positive integer n.

Proof. This follows from Lemma 3.6, Proposition 3.8, [1, Theorem 3.9] and Lemma 3.11.

Acknowledgment

The author thanks the referee for useful comments.

References

1. M. M. Ali, and D. J. Smith, Generalized GCD rings, Beiträge Algebra Geom., 42 (2001), 219-233.
2. R. Ameri, On the prime submodules of multiplication modules, Inter. J. of Mathematics and Mathematical Sciences, 27 (2003), 1715-1724.
3. D. D. Anderson, Some remarks on multiplication ideals, Math. Japonica, 25 (1980), 463-469.
4. D. D. Anderson, D. D. Some remarks on multiplication ideals, II, Comm. Algebra, 28 (2000), 2577-2583.
5. D. D. Anderson and D. F. Anderson, Generalized GCD domains, Comment. Math. Univ. St. Paul, 2 (1979), 215-221.
6. D. D. Anderson, π-domains, divisioral ideals and overrings, Glasgow Math. J, 19 (1978), 199-203.
7. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
8. S. Ebrahimi Atani, On secondary modules over pullback rings, Comm. Algebra, $\mathbf{3 0}$ (2002), 2675-2685.
9. S. Ebrahimi Atani, Submodules of secondary modules, Inter. J. of Mathematics and Mathematical Sciences, 31 (2002), 321-327.
10. J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc, New York, 1988.
11. G. H. Low and P. F. Smith, Multiplication modules and ideals, Comm. Algebra, 18 (1990), 4353-4375.
12. A. G. Naoum and A. S. Mijbass, Weak cancellation modules, Kyungpook Math. J., 37 (1997), 73-82.
13. P. F. Smith, Some remarks on multiplication modules, Arch. Math, 50 (1988), 223235.

Shahabaddin Ebrahimi Atani Department of Mathematics, University of Guilan, P. O. Box 1914 Rasht, Iran

[^0]: Received November 17, 2003; Accepted November 26, 2003.
 Communicated by Pjek-Hwee Lee.
 2000 Mathematics Subject Classification: 13A15, 13F05.
 Key words and phrases: Multiplication modules, Greatest common divisor, Least common multiple.

