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SUBMODULES OF MULTIPLICATION MODULES

Shahabaddin Ebrahimi Atani

Abstract. Let R be a commutative ring with identity (zero-divisors admitted).
Various properties of submodules a multiplication module are considered. In
fact, our aim here is to generalize some of the results in the paper listed as
[1], from finitely generated faithful multiplication ideals to finitely generated
faithful multiplication modules.

1. INTRODUCTION

Throughout this paper all rings will be commutative with identity (zero-divisors
admitted) and all modules will be unitary. Let M be an R-module. Then M is called
a multiplication module if for each submodule N of M , N = IM for some ideal
I of R. In this case we can take I = (N : M) = {r ∈ R : rM ⊆ N}. Examples
of multiplication ideals (i.e., ideals of a ring R that are multiplication R-modules)
include invertible ideals, principal ideals, and ideals generated by idempotents. An
R-module M is called a weak cancellation module whenever AM = BM for ideals
A and B of R, then A+Ann(M) = B +Ann(M). In particular, if Ann(M) = 0,
then we call M a cancellation module.

Let M be an R-module. The idealization of R and M is the commutative ring
with identity R(M) = R ⊕ M with addition (r, m) + (r ′, m′) = (r + r′, m + m′)
and multiplication (r, m)(r′, m′) = (rr′, rm′ + r′m). Note that 0 ⊕ M ia an ideal
of R(M) satisfying (0⊕M)2 = 0 and that the structure of 0⊕M as R(M)-module
(i.e., an ideal of R(M)) is essentially the same as the R-module structure of M .
Let N be a submodule of M . Then 0⊕N is an ideal of R(M) contained in 0⊕M .
A good reference for the basic facts about idealization is [10, Section 25].

Throughout this paper we shall assume unless otherwise stated, that M is a
finitely generated faithful multiplication module, S(M) is the set finitely generated
faithful multiplication submodules of M and S(R) is the semi-group of finitelty
generated faithful multiplication ideals of R.
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2. GCD AND LCM OF MULTIPLICATION MODULES

Let M be an R-module and N a submodule of M with N = IM for some ideal
I of R. Then we say that I is a presentation ideal of N (for short a presentation of
N ). It is possible that for a submodule N no such presentation exist. For example:

(1) Assume that M is a vector space over an arbitrary field of F with dimF M =
k ≥ 2 and let N be a proper subspace of M such that N �= 0. Then M is finite
length (so M is artinian, noetherian, and pure-injective), but M is not multiplication
and N has not any presentation.

(2) Let R be a local Dedekind domain with maximal ideal P = Rp. The module
E = E(R/P ), the injective hull of R/P , is pure-injective, secondary and Artinian
(see [8, Theorem 1.1]). Set An = (0 :E Pn) (n ≥ 1). Then every non-zero proper
submodule L of E is of the form L = Am for some m and E ∼= PnE (n ≥ 1), so
L has not any presentation (see [9, p. 324]), and hence E is not multiplication.

Clearly, for every submodule of M has a presentation ideal if and only if M is
multiplication module. In particular, every submodule N of a multiplication module
M , (N : M) is a presentation for N .

Let M be a multiplication module, and let N = I1M , K = I2M and T = I3M
for some ideals I1, I2 and I3 of R. The product of N and K denoted by NK is
defined by I1I2M . Moreover, the product of N and K is independent of presentation
ideals of N and K (see [2, Theorem 3.4]). Clearly, NK is a submodule of M and
contained in N ∩ K. Also it is clear that if N ⊆ K then NT ⊆ KT .

Remark 1. Clearly, M2 = MM = M (so M is idempotent). Note that this
definition is different from the definition of ordinary ideal multiplication. To see
that the two definitions are actually different, let R = Z be the ring of integers,
and let M = 2Z and N = K = 4Z. Then NK is 16Z by the usual definition and
is 8Z by the our definition. In fact, when I is idempotent - in that case, the two
definitions coincide.

Definition 2.1. Let N and K be submodules of an R-module M and let
R(M) be the idealization of M . We say that N divides K , denoted by N | K, if
there exists an ideal J of R(M) such that 0⊕ K = J(0 ⊕ N ).

Let N and K be submodules of an R-module M . A submodule G of M is
called a greatest common divisor of N and K, or gcd(N, K), if and only if:

(i) G | N and G | K,
(ii) If G′ is a submodule of M with G′ | N and G′ | K , then G′ | G. We say

that N is relatively prime to K if gcd(N, K) = M .
Similarly, a submodule L of M is called a least common multiple of N and

K, or lcm(N, K), if and only if:
(i) N | L and K | L,
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(ii) If L′ is a submodule of M with N | L′ and K | L′, then L | L′.

Proposition 2.2. Let N and K be submodules of an R-module M and let
R(M) be the idealization of M . Then N | K if and only if there exists an ideal I
of R such that K = IN . In particular, if N | K then K ⊆ N .

Proof. Suppose first that N | K . Then 0 ⊕ K = J(0 ⊕ N ) for some ideal J

in R(M). By [10, Theorem 25.1 (1)], if

I = {r ∈ R : (r, m) ∈ J for some m ∈ M}
and if

N ′ = {n′ ∈ M : (r, n′) ∈ J for some r ∈ R}
then I is an ideal of R, N ′ is an R-submodule of M , IM ⊆ N ′ and J = I⊕N ′. It
follows that 0⊕K = (I ⊕N ′)(0⊕N ) = 0⊕IN , and hence K = IN . Conversely,
suppose that K = IN for some ideal I in R. Then (I ⊕ M)(0⊕ N ) = 0⊕ IN =
0 ⊕ K, and hence 0 ⊕ N | 0 ⊕ K, as required.

Remark 2. (i) By Proposition 2.2, it is clear that if N is a multiplication
submodule of M then N | K if and only if K ⊆ N .

(ii) Let N1, N2 and N3 be multiplication submodules of an R-module M . Then
by (i) and definition, 1) N1 | N1, 2) if N1 | N2 and N2 | N1 then N1 = N2 and 3)
if N1 | N2 and N2 | N3 then N1 | N3. Moreover, it is clear that gcd(N1, N2) and
lcm(N1, N2) are unique if they exist.

(iii) Let N be a submodule of M . 1) If gcd(M, N ) = G then G = M . 2) If
lcm(0, N ) = L then L = 0.

Lemma 2.3. Let M be a finitely generated faithful multiplication R module
and N a submodule of M . Then N = IM ∈ S(M) if and only if I ∈ S(R).

Proof. This follows from [13, Theorem 10] and [11, Lemma 1.4].

Lemma 2.4. The set S(M) is a multiplicative semi-group.

Proof. Let N, K ∈ S(M). Then N = IM and K = JM for some ideals
I, J in S(R) by Lemma 2.3. If r(NK) = (rI)K = 0 then rI = 0. It follows that
r = 0, so NK is faithful.

Suppose that H ⊆ NK ⊆ K. Then H = J ′K for some ideal J′ in R. As
J ′K ⊆ IK, we have J′ ⊆ I by [13, p. 231 Corollary], so J′ = J1I for some ideal
J1 of R, and hence H = J1IK = J1NK . Thus NK is multiplication. Finally,
since NK = IJM = IK, from Lemma 2.3, we get NK is finitely generated, as
rquired.

Corollary 2.5. Let N, T ∈ S(M).
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(i) If K is a submodule of M and K | N, then K ∈ S(M).
(ii) If lcm(N, T ) = K exists, then K ∈ S(M).

Proof. (i) There exists an ideal I in S(R) such that N = IM by Lemma 2.3.
Therefore K = JM and N = IM = J1JM for some ideals J, J1 of R. It follows
that I = J1J by [12, Theorem 6.1], so J | I . Thus by [1, Lemma 1.4], J ∈ S(R),
and hence K = JM ∈ S(M) by Lemma 2.3.

(ii) Since N, T ∈ S(M), we have NT ∈ S(M) by Lemma 2.4. As NT is a
common multiple of N and T , we have K | NT , and by (i), K ∈ S(M).

Theorem 2.6. Let N, K ∈ S(M). If lcm(N, K) = T exists, then so too does
gcd(N, K). In particular, NK = lcm(N, K)gcd(N, K).

Proof. We can write N = I1M , K = I2M and T = I3M for some ideals
I1, I2 and I3 of R, so NK = I1K = I2N and T | I1K. Then there exists an ideal
J1 in R such that I1K = J1T = J1I3M = (J1M)(I3M). Since T ∈ S(M), we
have

(I1K : T )M = (J1T : T )M = J1M

by [13, Theorem 10 (ii)]. It is enough to show that gcd(N, K) = J1M . Since
K | T , there exists an ideal J2 of R such that T = J2K. It follows that J1T =
J1J2K = I1K and by [12, Theorem 6.1], J1J2 = I1, and hence J2J1M = I1M .
Thus J1M | N . Similarly, J1M | K . Assume that T1 is a submodule of M

such that T1 | K and T1 | N . Then there exists ideals J3, J4 and J5 of R such
that K = J3T1, N = J4T1 and T1 = J5M . Therefore NK = J3J4J5M , so
J5M | NK , and hence T1 = J5M ∈ S(M) by Proposition 2.5. By [13, Theorem
10 (ii)], we have (NK : T1)M = (J3J4T1 : T1)M = J3J4M . It follows that
K, N | (NK : T1)M . Therefore T | (NK : T1)M , and hence there is an ideal I4

of R such that (NK : T1)M = I4T . But NK = J3J4J5M ⊆ J5M = T1 and T1

is a multiplication module. Thus

J1T = NK = (NK : T1)T1 = (NK : T1)J5M = I4J5T

It follows that J1 = I4J5 since T is cancellation module. Thus J1M = I4J5M =
I4T1, so T1 | J1M , as required.

Lemma 2.7. Let I, J ∈ S(R), and let M be a finitely generated faithful mul-
tiplication R-module such that lcm(IM, JM) exists. Then the following statements
are true:

(i) lcm(I, J) exists and lcm(I, J)M = lcm(IM, JM).
(ii) gcd(I, J) exists and gcd(I, J)M = gcd(IM, JM).
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(iii) (I : J) = (IM : JM).

Proof. (i) Let lcm(IM, JM) = U . Then U = I1M = J1IM = J2JM for
some ideals I1, J1 and J2 of R. It follows that I1 = J1I = J2J since M is a
cancellation module, and hence I1 is a common multiple of I and J . Assume that
J3 is an ideal of R with I | J3 and J | J3. Thus J3M is a common multiple of IM
and JM , so there exists an ideal J4 in R such that J3M = J4I1M and therefore
J3 = J4I1. It follows that I1 | J3, so lcm(I, J) = I1, as required.

(ii) This proof is similar to that in case (i) and we omit it.
(iii) Clearly, (I : J) ⊆ (IM : JM). Suppose that r ∈ (IM : JM). Then

rJM ⊆ IM , so rJ ⊆ I by [13, p. 231 Corollary], as required.

Corollary 2.8. Let N, K, T ∈ S(M). Then the following statements are true:

(i) lcm(N, K) exists if and only if lcm(TN, TK) exists, in which case

lcm(TN, TK) = T lcm(N, K)

(ii) If gcd(TN, TK) exists, then so too does gcd(N, K), and

gcd(TN, TK) = Tgcd(N, K)

Proof. (i) We can write N = I1M , K = I2M and T = I3M for some ideals
I1, I2 and I3 ∈ S(R). Suppose first that lcm(N, K) exists. As I3 ∈ S(R), we get
lcm(I3I1, I3I2) = I3lcm(I1, I2) by [1, Theorem 2.2] and Lemma 2.7. It follows
from Lemma 2.7 that

lcm(TN, TK) = lcm(I1T, I2T ) = lcm(I1, I2)MT =

lcm(I1M, I2M)T = lcm(N, K)T

The converse is obvious.
(ii) This proof is similar to that in case (i) and we omit it.

Lemma 2.9. Let Ni (1 ≤ i ≤ n) be a finite collection of submodules in
S(M).

(i) If gcd(N1, N2, ..., Nn) and gcd(N1, N2, ..., Nn−1) exist and

U = gcd(N1, N2, ..., Nn−1)

then gcd(N1, N2, ..., Nn) = gcd(U, Nn).

(ii) If lcm(N1, N2, ..., Nn) and lcm(N1, N2, ..., Nn−1) exist and

V = lcm(N1, N2, ..., Nn−1)

then lcm(N1, N2, ..., Nn) = lcm(V, Nn).
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Proof. Straightforward

Corollary 2.10. Let N, K, T ∈ S(M), and let gcd(TN, TK) exists and
gcd(N, K) = M . Then gcd(N, TK) = gcd(N, T ).

Proof. By Corollary 2.8, we have gcd(TN, TK) = Tgcd(N, K) = TM = T .
Then gcd(N, T ) = gcd(N, gcd(TN, TK)), and it follows from Lemma 2.9 that

gcd(N, T ) = gcd(gcd(N, TN ), TK) = gcd(N, TK).

Lemma 2.11. Let N, K, T ∈ S(M).

(i) If TN = TK then N = K.

(ii) If T1 = gcd(N, K) then gcd((N : T1)M, (K : T1)M) = M .

Proof. (i) By Lemma 2.3, there exists ideals I1, I2 and I3 in S(R) such that
N = I1M , K = I2M and T = I3M . Suppose that TN = I1I3M = I2I3M =
TK , so I1I3 = I2I3 since M is cancellation, and hence I2 = I1 since I3 is
cancellation ideal. Thus N = K.

(ii) Since T1 is the greatest common divisor of N, K , we have N, K ⊆ T1 and
T1 ∈ S(M), so N = (N : T1)T1 and K = (K : T1)T1. It follows from Corollary
2.8 that

T1M = T1 = gcd((N : T1)T1, (K : T1)T1) = T1gcd((N : T1)M, (K : T1)M).

By (i), we get gcd((N : T1)M, (k : T1)M) = M , as required.

Theorem 2.12. The greatest common divisor of N and K exists for all
N, K ∈ S(M) if and only if lcm(N, K) exists for all N, K ∈ S(M).

Proof. Let N, K ∈ S(M). If gcd(N, K) = G then, G ∈ S(M) and
N = (N : G)G, K = (K : G)G. So by Corollary 2.8, lcm(N, K) exists if and only
if lcm((N : G)M, (K : G)M) exists, and gcd((N : G)M, (K : G)M) = M by
Lemma 2.11 (Since lcm(N, K) = lcm((N : G)MG, (K : G)MG)). Thus we may
assume that gcd(N, K) = M . Now it is enough to show that lcm(N, K) = NK .
Clearly, NK is a common multiple of N and K. Let U be a submodule of M such
that N, K | U . Then U = I1N = I2K for some ideals I1 and I2 of R. As N |
I1N = I1MN , we infer from Corollary 2.10 that gcd(N, I1MN ) = gcd(N, I1M),
and hence N | I1M , so that NK | I1MN = U . The converse follows from
Theorem 2.6.

Lemma 2.13. Let N, K ∈ S(M).
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(i) lcm(N, K) exists in S(M) if and only if N ∩ K ∈ S(M). In particular,
lcm(N, K) = N ∩ K = (N : K)K .

(ii) If lcm(N, K) = N ∩ K then gcd(N, K) = (NK : N ∩ K)M .

Proof. (i) Let lcm(N, K) = T ∈ S(M). Then T is a common multiple of
N and K, so T ⊆ N ∩ K. As N and K are multiplication, N ∩ K is a common
multiple of N and K, so T | N ∩ K, and hence T = N ∩ K ∈ S(M). Similarly,
if N ∩K ∈ S(M) then N ∩K is the least common multiple of N and K . Finally,
since N ∩ K = (N ∩ K : K)K = lcm(N, K), we have lcm(N, K) = (N : K)K .

(ii) Since NK = (NK : N ∩ K)M(N ∩ K) = gcd(N, K)(N ∩ K), so the
result follows from Lemma 2.11.

Theorem 2.14. Let N, K ∈ S(M), and let lcm(N, K) exists. Then the
following statements are true:

(i) lcm(N, K)m = lcm(Nm, Km) for all positive integer m.
(ii) gcd(N, K)m = gcd(Nm, Km) for all positive integer m.
(iii) (N : K)m = (Nm : Km) for all positive integer m.

Proof. (i) We can write N = I1M and K = I2M for some ideals I1, I2 ∈
S(R) by Lemma 2.3. Suppose that lcm(N, K) = T . Then there exists an ideal I3

of R with T = I3M . By [1, Theorem 2.6] and Lemma 2.7, we have

lcm(N, K)m = lcm(I1M, I2M)m

= (I3M)m = Im
3 M

= lcm(I1, I2)mM

= lcm(Im
1 , Im

2 )M
= lcm(Im

1 M, Im
2 M) = lcm(Nm, Km)

(ii) This proof is similar to that in case (i) and we omit it.
(iii) There exists elements I1, I2 of S(R) such that N = I1M and K = I2M .

from Lemma 2.7 and [1, Theorem 2.6], we have

(N : K)m = (I1M : I2M)m = ((I1 : I2)M)m = (I1 : I2)mM

= (Im
1 : Im

2 )M = (Im
1 M : Im

2 M) = (Nm : Km).

3. GCD MODULES

Definition 3.1. An R-module M is called a GCD module if the intersection
of every two finitely generated faithful multiplication submodules is also a finitely
generated faithful multiplication module.
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Let R be a generalized GCD ring (that is, the intersection of every two finitely
generated faithful multiplication ideals of R is also a finitely generated faithful
multiplication ideal). Then R is GCD as an R-module. But R = Z[

√
5] is not

GCD as an R-module (see [1, Section 3]).

Theorem 3.2. Let S(M) be the set of as described in section 2. Then the
following conditions are equivalent:

(i) M is a GCD module.
(ii) For each N, K ∈ S(M), lcm(N, K) exists in S(M).
(iii) For each N, K ∈ S(M), gcd(N, K) exists in S(M).
(iv) For each N, K ∈ S(M), (N : K)M ∈ S(M).

Proof. From Theorm 2.12 and Lemma 2.13, it is enough to show that (ii) ⇒
(iv) and (iv) ⇒ (i).

(ii) ⇒ (iv). There exists an ideal I of R such that K = IM . By Theorem
2.12 and Lemma 2.13, we have

lcm(N, K) = (N : K)K = I(N : K)M

It follows that (N : K)M | lcm(N, K). Now the assertion follows from the
Corollary 2.5.

(iv) ⇒ (i). Let N, K and (N : K)M ∈ S(M). we can write K = IM for
some ideal of R. As

(N : K)M = (N ∩ K : K)M ∈ S(M),

we have N ∩ K = (N ∩ K : K)K = (N ∩ K : K)(RM)(IM) ∈ S(M), as
required.

Corollary 3.3. Let M be a GCD module, and let N, K, T ∈ S(M). Then
the following statements are true:

(i) (gcd(N, K) : T )M = gcd((N : T )M, (K : T )M).
(ii) (T : lcm(N, K))M = gcd((T : N )M, (T : K)M).

Proof. (i) There exists ideals I1, I2 and I3 of R such that N = I1M , K = I2M
and T = I3M . By Lemma 2.7 and [1, Corollary 3.2], we have

G = ((gcd(I1M, I2M) : I3M))M
= ((gcd(I1, I2)M : I3M))M
= ((gcd(I1, I2) : I3)M
= gcd((I1 : I3), (I2 : I3))M
= gcd((I1 : I3)M, (I2 : I3)M)
= gcd((I1M : I3M), (I2M : I3M))
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So, G = gcd((N : T )M, (K : T )M), as required.
(ii) This proof is similar to that the case (i) and we omit it.

Corollary 3.4. Let M be a GCD module, and let N, K, T ∈ S(M). Then
the following statements are true:

(i) lcm(gcd(N, K), T )) = gcd(lcm(N, T ), lcm(K, T ))
(ii) gcd(lcm(N, K), T )) = lcm(gcd(N, T ), gcd(K, T ))

Proof. (i) We can write N = I1M , K = I2M and T = I3M for some ideals
I1, I2 and I3 of R. By Lemma 2.7 and [1, Corollary 3.3], we have

lcm(gcd(I1M, I2M), I3M))
= lcm(gcd(I1, I2)M, I3M)
= lcm(gcd(I1, I2), I3)M
= gcd(lcm(I1, I3), lcm(I2, I3))M
= gcd(lcm(I1, I3)M, lcm(I2, I3)M)
= gcd(lcm(I1M, I3M), lcm(I2M, I3M)
= gcd(lcm(N, T ), lcm(K, T )).

(ii) This proof is similar to that the case (i) and we omit it.

Lemma 3.5. Let M be a GCD module, and let N, K, T ∈ S(M). If
gcd(N, T ) = gcd(K, T ) = M, then gcd(lcm(N, K), T ) = M = gcd(NK, T ).

Proof. This follows from Corollary 2.10 and Corollary 3.4.
Let M be a GCD module, and let I, J ∈ S(R), N, K ∈ S(M). Set

ΦI,J = {A : A is an ideal of R, A | I, gcd(A, J) = R}
ΦN,KM = {T : T is a submodule of M, T | N, gcd(T, K) = M}

Clearly, ΦN,KM ⊆ S(M) and M ∈ ΦN,KM .

Lemma 3.6. Let N = IM, K = JM ∈ S(M). Then T = I1M ∈ ΦN,KM
if and only if I1 ∈ ΦI,J .

Proof. There exists an ideal J1 of R such that IM = J1I1M , so I = J1I1

since M is cancellation, and hence I1 | I . As T ∈ ΦN,KM , by Lemma 2.7, we
have

gcd(T, K) = gcd(I1M, JM) = gcd(I1, J)M = RM

It follows that gcd(I1, J) = R. Thus I1 ∈ ΦI,J . The converse is obvious.

Theorem 3.7. Let M be a GCD module and N = IM, K = JM ∈ S(M).
Then the following statements are true:
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(i) ΦN,KM formes a lattice of submodules of M . Moreover, if Φ N,KM contains
a minimal element, then it is unique.

(ii) If A, B ∈ ΦN,KM then (A : B)M ∈ ΦN,KM .

Proof. Let A, B ∈ ΦN,KM . Then A, B ∈ S(M), and gcd(A, B) and
lcm(A, B) exist. There exists ideals I1 and I2 in ΦI,J such that A = I1M and
B = I2M by Lemma 3.6. From Lemma 2.7, [1, Theorem 3.5], and Lemma 3.6,
we have

gcd(A, B) = gcd(I1M, I2M) = gcd(I1, I2)M ∈ ΦN,KM

lcm(A, B) = lcm(I1M, I2M) = lcm(I1, I2)M ∈ ΦN,KM

This show that the first assertion follows and the second assertion is obvious.
(ii) We can write A = I1M and B = I2M for some ideals I1 and I2 in ΦI,J .

From Lemma 2.7, [1, Theorem 3.5], and Lemma 3.6, we have

(A : B)M = (I1M : I2M)M = (I1 : I2)M ∈ ΦN,KM

Proposition 3.8. Let M be a GCD module and N = IM, K = JM ∈ S(M).
Then T = I1M is the smallest element in ΦN,KM if and only if I1 is the smallest
element in ΦI,J .

Proof. Suppose first that T is the smallest element in ΦN,KM . Then I1 ∈ ΦI,J

by Lemma 3.6. Let I2 be an ideal in R such that I2 | (I : I1) and gcd(I2, J) = R.
By [1, Theorem 3.7], it is enough to show that I2 = R. Since I2M | (I : I1)M =
(IM : I1M)M , we have from Theorem 3.2 and Corollary 2.5 that I2M ∈ S(M).
Moreover, I2T = I2TM | (N : T )TM = NM = N , gcd(I2M, K) = M and
gcd(T, K) = gcd(I1, J)M = RM = M , so by Lemma 3.5,

gcd(I2MT, K) = gcd(I2T, K) = M.

It follows that I2T ∈ ΦN,KM , and hence T ⊆ I2T ⊆ T . Thus I2T = T = RT
and therefore I2 = R since T is cancellation. Conversely, assume that I1 is the
smallest element in ΦI,J . Let T1 = J1M ∈ ΦN,KM . Then J1 ∈ ΦI,J by Lemma
3.6, and hence I1 ⊆ J1, as required.

Theorem 3.9. Let M be a GCD module and N = IM, K = JM ∈ S(M).
Then T = I1M is the smallest element in ΦN,KM if and only if the only submodule
of M dividing (N : T )M and relatively prime to K is M .

Proof. This follows from [1, Theorm 3.7] and Proposition 3.8.

Theorem 3.10. Let M be a GCD module and N = IM, K = JM and
T = I3M ∈ S(M), and let G = I4M = gcd(N, K). Then the following statements
are equivalent:



Submodules of Multiplication Modules 395

(i) T | N and gcd(T, K) = M .
(ii) T | (N : G)M and gcd(T, G) = M .

Proof. (i) ⇒ (ii). By (i) we get I3 | I1 and gcd(I3, I2) = R since M is
cancellation, so by [1, Theorem 3.8], we have I3 | (I1 : I4) and gcd(I3, I4) = R.
Now the assertion follows from Lemma 2.7.

(ii) ⇒ (i). Similarly, this follows from [1, Theorem 3.8] and Lemma 2.7.

Remark 3. It is clear from Theorem 3.10 that if G = gcd(N, K), then
ΦN,KM = Φ(N :G)M,GM .

Let M be a GCD module, and let N, K ∈ S(M). Then N = IM and
K = JM for some ideals I and J in S(R). Define two sequences of ideals in R

and two sequences of submodules of M recursively as follows: I0 = I , J0 = J ,
Ji+1 = gcd(Ii, Ji) and Ii+1 = (Ii : Ji+1) for all i ≥ 0, and N0 = N, K0 =
K, Ki+1 = gcd(Ni, Ki) and Ni+1 = (Ni : Ki+1)M for all i ≥ 0.

Lemma 3.11. Let M be a GCD module and N, K ∈ S(M) with the sequences
Ii, Ji, Ni and Ki as above. Then Ni = IiM and Ki = JiM for all i ≥ 0.

Proof. We shall prove the assertion by induction on i. The result is trivial for
i = 0. Assume that i ≥ 1 and that Ni = IiM , Ki = JiM . Thus from Lemma 2.7,
we have

Ki+1 = gcd(Ni, Ki) = gcd(Ii, Ji)M = Ji+1M

Ni+1 = (Ni : Ki+1)M = (IiM : Ji+1M)M = (Ii : Ji+1)M = Ii+1M.

Theorem 3.12. Let M be a GCD module and N, K ∈ S(M) with the
sequences Ii, Ji, Ni and Ki as above. Then the following statements are equivalent:

(i)
⋃∞

i=1 Ni is the smallest element in ΦN,KM .

(ii)
⋃∞

i=1 Ni ∈ ΦN,KM .

(iii)
⋃∞

i=1 Ni ∈ S(M).

(iv)
⋃∞

i=1 Ni = Nn for some positive integer n.

(v) Nn = Nn+1 for some positive integer n.

(vi) Nn+1 = M for some positive integer n.

Proof. This follows from Lemma 3.6, Proposition 3.8, [1, Theorem 3.9] and
Lemma 3.11.
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