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RANK-ONE OPERATORS IN REFLEXIVE A-SUBMODULES OF
OPERATOR ALGEBRAS

Dong Zhe

Abstract. In this paper, we first show that any reflexive A-submodule U of
a unital operator algebra A in B(H) is precisely of the following form:

U = {T ∈ B(H) : TE ⊆ φ(E) ∀E ∈ LatA},
where φ is an order homomorphism of LatA into itself. Furthermore we
investigate the density of the rank-one submodule of a reflexive A-submodule
in the w∗-topology and in certain pointwise approximation, and obtain several
equivalent conditions by means of the order homomorphism φ.

1. INTRODUCTION

Let H be a complex Hilbert space, B(H) the algebra of all bounded linear
operators on H and F (H) the set of all finite-rank operators in B(H). Suppose
that A is a unital operator algebra in B(H) and φ is an order homomorphism of
LatA into itself (i.e., E ≤ F implies φ(E) ≤ φ(F )), where LatA is the complete
lattice of all invariant projections for A. Then the set U = {T ∈ B(H) : TE ⊆
φ(E) for all E ∈ LatA} is clearly a weakly closed two-sided A-submodule of
B(H). In this paper, submodules always mean two-sided submodules.

It became apparent that many interesting classes of non-selfadjoint operator
algebras arise as just such a module. J.A. Erdos and S.C. Power in [3] proved
that any weakly closed A-submodule of B(H) for a nest algebra A is of the above
form. In [5], Han Deguang proved that this is also true for any reflexive algebra A,
which is σ -weakly generated by rank-one operators in itself. Han Deguang [6] also
showed that any reflexive A-submodule for a reflexive algebra A is of the above
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form. One purpose of this paper is to show that the hypothesis that A is reflexive
is not needed, and any reflexive A-submodule for a unital operator algebra A is
precisely of the above form.

In [2] J.A. Erdos showed that if LatA is a nest then the set of finite sums of rank-
one operators in A isw∗-dense (s-dense) in A. In [13] W.E. Longstaff asked whether
the same conclusion holds for the more general case of completely distributive
lattices, and showed that, in the opposite direction, complete distributivity is a
necessary condition for this. Subsequently, M.S. Lambrou [9] showed that complete
distributivity of the invariant subspace lattices implies a condition somewhat weaker
than the strong density. C.Laurie and W.E. Longstaff [11] proved that the answer
is affirmative if the additional requirement of commutativity is imposed on the
invariant subspace lattice. The main purpose of this paper is to investigate the
density of the rank-one submodule of a reflexive A-submodule in the w∗-topology
and in the sense of M.S. Lambrou [9]. The results about w∗-density are new even
in reflexive algebras.

The terminology and notation of this paper concerning reflexive subspaces and
pre-annihilators may be found in [8] and the formal definition and some properties
of complete distributivity may be found in [10]. In what follows, we always assume
that A is a unital operator algebra in B(H). Set

HomLatA = {φ : φ is an order homomorphism from LatA into itself}.
Given φ in HomLatA, there is associated a weakly closed A-submodule given by

Uφ = {T ∈ B(H) : TE ⊆ φ(E) for any E ∈ LatA}.
To each φ in HomLatA there is naturally associated φ∼ in HomLatA given by

φ∼(E) = ∨{F ∈ LatA : φ(F ) �≥ E}, ∀E ∈ LatA
(with the convention that φ∼(0) = 0). The above two definitions are not new, but
can be found in J.A. Erdos [4] pages 582 and 592, respectively (where they are
called Op and φ∨). Observe that HomLatA has a natural partial ordering given by
φ ≤ ψ if and only if φ(E) ≤ ψ(E) for any E ∈ LatA. It follows that φ ≤ ψ

implies φ∼ ≥ ψ∼.

2. REFLEXIVE A-SUBMODULES

Theorem 1. Suppose that A is a unital operator algebra in B(H) and U
is an A-submodule. Then U is reflexive if and only if there exists φ ∈ HomLatA
such that

U = {T ∈ B(H) : (I − φ(E))TE = 0 for any E ∈ LatA}.
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Proof. Sufficiency. Let U be determined by an order homomorphism φ from
LatA into itself. Suppose that T ∈ B(H) and Tx ∈ [Ux] for any x ∈ H. Thus for
any E ∈ LatA,

TE ⊆ [UE] = [φ(E)UE] = φ(E)[UE]⊆ φ(E).

So T ∈ U and it follows from the definition of reflexivity that U is reflexive.
Necessity. For any E ∈ LatA, let φ(E) = [UE]. Since U is a two-sided A-

submodule, φ(E) is invariant under A and φ(E) ∈ LatA. It is plainly seen that φ
is an order homomorphism. Set

Uφ = {T ∈ B(H) : TE ⊆ φ(E), ∀E ∈ LatA}.
It is obvious that U ⊆ Uφ. Conversely, let T ∈ Uφ. For any x ∈ H, denote by E
the orthogonal projection onto [Ax]. Then E ∈ LatA, x ∈ E and

Tx ∈ TE ⊆ φ(E) = [UE] = [U [Ax]] = [Ux].
From the reflexivity of U , it follows that T ∈U . Accordingly, Uφ⊆U and U =Uφ.

A reflexive A-submodule U is said to be determined by an order homomorphism
φ if U = Uφ, that is,

U = {T ∈ B(H) : TE ⊆ φ(E), ∀E ∈ LatA}.
If U is a reflexive A-submodule, it follows from the proof of Theorem 1 that U = Uτ ,
where τ(E) = [UE] for any E ∈ LatA.

For non-zero vectors x, y ∈ H, the rank-one operator x ⊗ y is defined by the
equation

(x⊗ y)z =< z, y > x, ∀z ∈ H.
The following lemma is in J.A. Erdos [4, Lemma 6.2]. We include the brief

proof the part we shall need.

Lemma 2. Suppose that Uφ is a reflexive A-submodule determined by φ ∈
HomLatA. Then a rank-one operator x ⊗ y is in Uφ if and only if for some
E ∈ LatA, x ∈ E and y ∈ φ∼(E)⊥.

Proof. Suppose that there exists E ∈ LatA such that x ∈ E and y ∈ φ∼(E)⊥.
For any F ∈ LatA, if φ(F ) ≥ E , then

(x⊗ y)F = E(x⊗ y)φ∼(E)⊥F ⊆ E ⊆ φ(F );

if φ(F ) �≥ E , it follows from the definition of φ∼(E) that F ≤ φ∼(E). Thus

(x⊗ y)F = E(x⊗ y)φ∼(E)⊥F = (0) ⊆ φ(F ).
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Accordingly, x⊗ y ∈ Uφ.
Conversely, suppose that x⊗ y ∈ Uφ. Let

E = ∧{F ∈ LatA : Fx = x}.
Clearly, E ∈ LatA and x ∈ E . For any F ∈ LatA and φ(F ) �≥ E , it follows from
the definition of E that φ(F )x �= x. Since x⊗ y ∈ Uφ, we have

(x⊗ y)Fy = φ(F )(x⊗ y)Fy

and
‖ Fy ‖2 x =‖ Fy ‖2 φ(F )x.

So Fy = 0. From the definition of φ∼(E), it follows that φ∼(E)y = 0 and
y ∈ φ∼(E)⊥.

We define an equivalence relation in HomLatA. For φ, ψ ∈ HomLatA, φ ∼ ψ
if and only if Uφ = Uψ . Thus HomLatA/ ∼ consists of all equivalence classes [φ].
From Theorem 1, there exists an one-to-one correspondence between HomLatA/ ∼
and reflexive A-submodules.

Proposition 3. Let A be a unital algebra in B(H) and φ ∈ HomLatA. Then
τ ≤ φ and τ∼ = φ∼, where τ(E) = [UφE] for any E ∈ LatA.

Proof. It follows from the definition of Uφ that

τ(E) = [UφE] ⊆ φ(E) for any E ∈ LatA.
So τ ≤ φ.

Since τ ≤ φ, we have τ∼ ≥ φ∼. So it suffices to show that τ∼ ≤ φ∼. If
otherwise, then there exists E ∈ LatA such that τ∼(E) �≤ φ∼(E). It follows
from the definition of τ∼ that there exists F ∈ LatA such that τ(F ) �≥ E and
F �≤ φ∼(E). Thus we can choose non-zero vectors x, y such that x ∈ E and
x �∈ τ(F ), y ∈ φ∼(E)⊥ and y �∈ F⊥. From Lemma 2, it follows that x⊗ y ∈ Uφ.
Since (I − τ(F ))(x ⊗ y)F �= 0, x ⊗ y �∈ Uτ . However it follows from the proof
of Theorem 1 that Uτ = Uφ. This is a contradiction. Accordingly, τ∼ ≤ φ∼ and
τ∼ = φ∼.

Corollary 4. If φ ∼ ψ in HomLatA, then φ∼ = ψ∼.

Lemma 5. Let φ ∈ HomLatA. For any T ∈ B(H) and E ∈ LatA, ET (I −
φ∼(E)) ∈ Uφ.

Proof. For any F ∈ LatA, we consider two separate cases.
(1) φ(F ) ≥ E . Thus

ET (I − φ∼(E))F ⊆ E ⊆ φ(F );
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(2) φ(F ) �≥ E . From the definition of φ∼(E), it follows that F ≤ φ∼(E). Thus

ET (I − φ∼(E))F = (0) ⊆ φ(F ).

This shows that the operator ET (I − φ∼(E)) is in Uφ.
Let Rφ denote the subspace generated by the rank-one operators in Uφ. Note

that Rφ is a two-sided A-submodule; we call Rφ the rank-one submodule of U .

Theorem 6. Suppose that A is a unital algebra in B(H) and U φ is a reflexive
A-submodule determined by φ ∈ HomLatA. Then the following statements are
equivalent:

(1) Rφ is w∗-dense in Uφ;
(2) (Uφ)⊥ = C1(H) ∩ Uφ∼ ;
(3) (Uφ)⊥ = C1(H) ∩ Uψ for some ψ ∈ HomLatA.

Proof. 1)⇒2) Suppose that X ∈ (Uφ)⊥ ⊆ C1(H). For any T ∈ B(H) and
E ∈ LatA, it from follows Lemma 5 that ETφ∼(E)⊥ ∈ Uφ. Thus

tr(φ∼(E)⊥XET ) = tr(XETφ∼(E)⊥) = 0 ∀T ∈ B(H).

Hence
φ∼(E)⊥XE = 0 ∀E ∈ LatA

and
X ∈ C1(H) ∩ Uφ∼ .

Conversely, suppose that X ∈ C1(H)∩Uφ∼ . For any rank-one operator x⊗y ∈
Uφ, it follows from Lemma 2 that there exists E ∈ LatA such that x ∈ E and
y ∈ φ∼(E)⊥. So

tr(X(x⊗ y)) = tr(XE(x⊗ y)φ∼(E)⊥)

= tr(φ∼(E)⊥XE(x⊗ y)) = 0.

Owing to the w∗-continuity of the linear map tr(X ·) and hypothesis 1), we have

tr(XA) = 0 ∀A ∈ Uφ,
that is, X ∈ (Uφ)⊥. Therefore (Uφ)⊥ = C1(H) ∩ Uφ∼ .

2)⇒1) Since Uφ ⊇ Rφ, C1(H) ∩ Uφ∼ = (Uφ)⊥ ⊆ (Rφ)⊥. We will show
(Uφ)⊥ = (Rφ)⊥, and it suffices to show that C1(H)∩Uφ∼ ⊇ (Rφ)⊥. Suppose that
X ∈ (Rφ)⊥. For any T ∈ F(H) and E ∈ LatA, it follows from Lemma 5 that
ETφ∼(E)⊥ ∈ Rφ. Thus

tr(φ∼(E)⊥XET ) = tr(XETφ∼(E)⊥) = 0 ∀T ∈ F(H).
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Since F (H) is w∗-dense in B(H), it follows from the w∗-continuity of the map
tr(φ∼(E)⊥XE·) that

tr(φ∼(E)⊥XET ) = 0 ∀T ∈ B(H).

Hence
φ∼(E)⊥XE = 0 ∀E ∈ LatA

and X ∈ C1(H) ∩ Uφ∼ . So (Rφ)⊥ = C1(H) ∩ Uφ∼ = (Uφ)⊥ and

(Rφ)w
∗

= [(Rφ)⊥]⊥ = [(Uφ)⊥]⊥ = Uφ.
2)⇒3) Obviously.
Before giving the proof 3)⇒2), we summarize a useful result from the proofs

of 1)⇒2) and 2)⇒1), that is,

(Rφ)⊥ = C1(H) ∩ Uφ∼ for any φ ∈ HomLatA.
Now we can give the proof of 3)⇒ 2) and this will complete the proof of

Theorem 6.
3)⇒2) Since Uφ ⊇ Rφ,

(Uφ)⊥ = C1(H) ∩ Uψ ⊆ C1(H) ∩ Uφ∼ = (Rφ)⊥.

It suffices to show the converse inclusion. First we prove the following assertion:

(C1(H) ∩ Uψ)⊥ = Uψ∼ .

In fact, suppose that T ∈ (C1(H) ∩ Uψ)⊥. For any E ∈ LatA and x, y ∈ H, it
follows from Lemma 5 that E(x⊗ y)ψ∼(E)⊥ ∈ C1(H) ∩ Uψ . Thus

0 = tr(TE(x⊗ y)ψ∼(E)⊥)
= tr(ψ∼(E)⊥TE(x⊗ y))
= 〈ψ∼(E)⊥TEx, y〉,

so ψ∼(E)⊥TE = 0 and T ∈ Uψ∼ .
Conversely, let T ∈ Uψ∼ . For any rank-one operator x ⊗ y in C1(H) ∩ Uψ, it

follows from Lemma 2 that there is E ∈ LatA such that x ∈ E and y ∈ ψ∼(E)⊥.
Hence

tr(Tx⊗ y) = tr(TE(x⊗ y)ψ∼(E)⊥)
= tr(ψ∼(E)⊥TE(x⊗ y)) = 0.

Since Uφ is a reflexive subspace, it follows from [8, Theorem 2.1] that (Uφ)⊥ =
C1(H)∩Uψ is the ‖ · ‖1-closed linear span of rank-one operators in itself. Accord-
ingly,

tr(TS) = 0, ∀S ∈ C1(H) ∩ Uψ
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and T ∈ (C1(H) ∩ Uψ)⊥. Thus the assertion is proved.
Since (Uφ)⊥ = C1(H) ∩ Uψ , we have that

Uφ = [(Uφ)⊥]⊥ = [C1(H) ∩ Uψ]⊥ = Uψ∼ .

So φ ∼ ψ∼ and it follows from Corollary 4 that φ∼ = (ψ∼)∼. Now we will prove
that

C1(H) ∩ Uψ ⊇ C1(H) ∩ U(ψ∼)∼ = C1(H) ∩ Uφ∼ .
Suppose that T ∈ C1(H) ∩ U(ψ∼)∼ . For any E ∈ LatA, it follows from the
definitions that

(1) (ψ∼)∼(E) = ∨{G ∈ LatA : ψ∼(G) �≥ E}
and

(2) ψ∼(G) = ∨{F ∈ LatA : ψ(F ) �≥ G}
For G ∈ LatA and ψ∼(G) �≥ E , if ψ(E) �≥ G, it follows from equation (2) that
ψ∼(G) ≥ E . This contradiction shows that ψ(E) ≥ G. Thus equation (1) tells us
that (ψ∼)∼(E) ≤ ψ(E). Therefore

TE ⊆ (ψ∼)∼(E) ⊆ ψ(E)

and T ∈ C1(H) ∩ Uψ . Hence

(Uφ)⊥ = C1(H) ∩ Uψ = C1(H) ∩ Uφ∼
and this concludes the proof.

Let S be a subspace of B(H). We denote RefS by

RefS = {T ∈ B(H) : Tx ∈ [Sx], ∀x ∈ H}.

Corollary 7. Rφ is w∗-dense in Uφ if and only if (Uφ)⊥ = C1(H)∩Ref(Uφ)⊥.

Proof. Suppose that (Uφ)⊥ = C1(H)∩Ref(Uφ)⊥. From the definition of (Uφ)⊥,
it follows that (Uφ)⊥ is a two-sided A-submodule. Thus it is routine to show that
Ref(Uφ)⊥ is also a two-sided A-submodule. Since Ref(Uφ)⊥ is reflexive, it follows
from Theorems 1 and 6 that Rφ is w∗-dense in Uφ.

Conversely, let Rφ be w∗-dense in Uφ. From Theorem 6, it follows that (Uφ)⊥ =
C1(H) ∩ Uψ for some ψ ∈ HomLatA. Certainly, (Uφ)⊥ ⊆ Ref(Uφ)⊥ and (Uφ)⊥ ⊆
C1(H) ∩ Ref(Uφ)⊥. Since (Uφ)⊥ ⊆ Uψ and Uψ is reflexive, so Ref(Uφ)⊥ ⊆ Uψ.
Thus

(Uφ)⊥ = C1(H) ∩ Uψ ⊆ C1(H) ∩ Ref(Uφ)⊥ ⊆ C1(H) ∩ Uψ = (Uφ)⊥,
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hence (Uφ)⊥ = C1(H) ∩ Ref(Uφ)⊥.
The following corollary gives a necessary condition on the w∗-density of Rφ by

means of the property of φ.

Corollary 8. Let φ ∈ HomLatA. If Rφ is w∗-dense in Uφ, then φ∼ = φ∼3 ,

where φ∼3 = [(φ∼)∼]∼.

Proof. By virtue of Theorem 6, it follows that (Uφ)⊥ = C1(H) ∩ Uφ∼ . From
the assertion in the proof of 3)⇒2) of Theorem 6, we have

Uφ = [(Uφ)⊥]⊥ = [C1(H) ∩ Uφ∼ ]⊥ = U(φ∼)∼ .

Thus φ ∼ (φ∼)∼ and it follows from Corollary 4 that φ∼ = φ∼3 .

Corollary 9. Let U be a reflexive A-submodule. If the rank-one submodule of
U is w∗-dense in U , then τ = (τ∼)∼, where τ(E) = [UE] for any E ∈ LatA.

Proof. From the proof of Theorem 1, we have U = Uτ . Thus, it follows from
Theorem 6 and the assertion in 3)⇒2) that (Uτ )⊥ = C1(H) ∩ Uτ∼ and

Uτ = [(Uτ )⊥]⊥ = (C1(H) ∩ Uτ∼)⊥ = U(τ∼)∼ .

By virtue of Proposition 3, it follows that τ ≤ (τ∼)∼. From the last paragraph of
the proof of 3)⇒2) in Theorem 6, we have (τ∼)∼ ≤ τ . Thus τ = (τ∼)∼.

Remark 10. Let U = A be a unital reflexive algebra. It follows from [9] that
LatA is completely distributive if and only if

E = E� = ∨{F ∈ LatA : F− �≥ E} ∀E ∈ LatA,

where F− = ∨{G ∈ LatA : G �≥ F}.
In this case, τ(E) = [AE] = E , τ∼(E) = ∨{G ∈ LatA : τ(G) �≥ E} =

∨{G ∈ LatA : G �≥ E} = E− and (τ∼)∼(E) = ∨{F ∈ LatA : τ∼(F ) �≥ E} =
∨{F ∈ LatA : F− �≥ E} = E�. Thus LatA is completely distributive if and only
if τ = (τ∼)∼, where τ(E) = [AE] = E for any E ∈ LatA. So we can consider
the conditions φ∼ = φ∼3 and τ = (τ∼)∼ in Corollary 8 and Corollary 9 are the
generalizations of completely distributivity.

Property B. Let φ ∈ HomLatA. We say that φ has Property B if and only if
(C1(H) ∩ Uφ)⊥ is a reflexive subspace.

By virtue of [8, Theorem 2.1], we know that φ has Property B if and only if
C1(H) ∩ Uφ is the ‖ · ‖1-closed linear span of rank-one operators in itself.
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Theorem 11. Let U be a reflexive A-submodule. Then the rank-one submodule
of U is w∗-dense in U if and only if τ∼ has Property B and τ = (τ∼)∼, where
τ(E) = [UE] for any E ∈ LatA.

Proof. From the proof Theorem 1, U = Uτ . Let Rτ denote the rank-one
submodule of U .

Necessity. Suppose that Rw∗
τ = U Corollary 9 shows that τ = (τ∼)∼. It follows

from Theorem 6 that U⊥ = C1(H) ∩ Uτ∼ . Thus

U = (U⊥)⊥ = (C1(H) ∩ Uτ∼)⊥,

so τ∼ has Property B.
Sufficiency. Set S = (C1(H) ∩ Uτ∼)⊥. Thus S is a reflexive subspace and

S⊥ = [(C1(H) ∩ Uτ∼)⊥]⊥ = C1(H) ∩ Uτ∼ .
Now we will prove that S = U .

Let T ∈ S . For any x, y ∈ H and E ∈ LatA, it follows from Lemma 2 that
E(x⊗ y)(τ∼)∼(E)⊥ ∈ C1(H) ∩ Uτ∼ . Thus

0 = tr(TE(x⊗ y)(τ∼)∼(E)⊥)

= tr((τ∼)∼(E)⊥TE(x⊗ y))

= 〈(τ∼)∼(E)⊥TEx, y〉,

so (τ∼)∼(E)⊥TE = 0 and T ∈ U(τ∼)∼ = Uτ = U .
Conversely, let T ∈ U . Consider any rank-one operator x ⊗ y ∈ C1(H) ∩ Uτ∼ .

It follows from Lemma 2 that there exists E ∈ LatA such that x ∈ E and y ∈
(τ∼)∼(E)⊥ = τ(E)⊥. Thus

tr(T (x⊗ y)) = tr(TE(x⊗ y)τ(E)⊥)

= tr(τ(E)⊥TE(x⊗ y)) = 0.

So the map tr(T ·) annihilates every rank-one operator in C1(H) ∩ Uτ∼ . Since S is
reflexive and S⊥ = C1(H)∩Uτ∼ , it follows from [8, Theorem 2.1] that C1(H)∩Uτ∼
is the ‖ · ‖1-closed linear span of rank-one operators it contains. Accordingly,

tr(TS) = 0, ∀S ∈ C1(H) ∩ Uτ∼
and T ∈ (C1(H) ∩ Uτ∼)⊥ = S . Hence S = U and U⊥ = S⊥ = C1(H) ∩ Uτ∼ , so it
follows from Theorem 6 that Rτ is w∗-dense in U .

Corollary 12. Suppose that L is a subspace lattice. Then the rank-one
subalgebra of AlgL is w ∗-dense in AlgL if and only if L is completely distributive
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and the homomorphism E → E− from L into L has Property B, where E− =
∨{F ∈ L : F �≥ E}.

Proof. Sufficiency. [12, Theorem 6.1] shows that a completely distributive
subspace lattice is reflexive, that is, L = LatAlgL. Thus it follows from Remark
10 and Theorem 11 that the rank-one subalgebra of AlgL is w∗-dense in AlgL.

Necessity. If the rank-one subalgebra is w∗-dense in AlgL, it follows from
[13, Theorem 3.1] that L is completely distributive. So L = LatAlgL, thus from
Theorem 11, it follows that the homomorphism E �→ E− from L into L has
Property B.

Condition A. Let U be a reflexive A-submodule. If x ∈ H, A ∈ U and ε > 0
are given, there is an F equal to a finite sum of rank-one operators of U such that
‖ Ax − Fx ‖< ε.

The conclusion of Theorem 13 below for reflexive algebras is in [9], and the
proof is a slight modification of it.

Theorem 13. Suppose that U is a reflexive A-submodule and τ(E) = [UE]
for any E ∈ LatA. Then τ = (τ∼)∼ if and only if Condition A is satisfied.

Proof. Sufficiency. Clearly, the rank-one submodule is not empty. For any
E ∈ LatA and e⊗ f ∈ U , we first show

(e⊗ f)E ⊆ (τ∼)∼(E) = ∨{F ∈ LatA : τ∼(F ) �≥ E}.

By virtue of Lemma 2, there is an element L ∈ LatA such that e ∈ L and f ∈
τ∼(L)⊥. If τ∼(L) ≥ E then

(e⊗ f)E = L(e⊗ f)τ∼(L)⊥E = (0) ⊆ (τ∼)∼(E);

if τ∼(L) �≥ E then L ≤ (τ∼)∼(E). Thus

(e⊗ f)E = L(e⊗ f)τ∼(L)⊥E ⊆ L ⊆ (τ∼)∼(E).

So each rank-one operator of U maps E to (τ∼)∼(E) for any E ∈ LatA. For
A ∈ U and x ∈ E(∈ LatA), Condition A shows that Ax ∈ (τ∼)∼(E) and AE ⊆
(τ∼)∼(E). Accordingly, τ(E) = [UE] ⊆ (τ∼)∼(E) and τ ≤ (τ∼)∼. This together
with the relation (τ∼)∼ ≤ τ (see Theorem 6) implies the equality τ = (τ∼)∼.

Necessity. Suppose that τ = (τ∼)∼ and suppose that A ∈ U , x ∈ H and ε > 0
are given. It will be shown that there is a finite sum F of rank-one operators of U
such that ‖ Ax− Fx ‖< ε.

Define E by
E = ∧{F ∈ LatA : x ∈ F}.
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Observe that the intersection is over a non-empty family of subspaces of LatA since
x ∈ H. Clearly, x ∈ E and E ∈ LatA. By the hypothesis,

τ(E) = [UE] = ∨{G ∈ LatA : τ∼(G) �≥ E}

and hence the set of all G ∈ LatA with τ∼(G) �≥ E has a dense linear span in
[UE]. Therefore there is a finite set Gi(1 ≤ i ≤ n) of subspaces of LatA with
τ∼(Gi) �≥ E and a set of vectors xi ∈ Gi(1 ≤ i ≤ n) with the property that

‖ Ax − (x1 + · · ·+ xn) ‖< ε.

The definition of E and the condition τ∼(Gi) �≥ E(1 ≤ i ≤ n) imply that
x �∈ τ∼(Gi)(1 ≤ i ≤ n) and so there exists yi ∈ τ∼(Gi)⊥ with

< x, yi >�= 0 ∀1 ≤ i ≤ n.

By suitably scaling yi if needed we may assume that 〈x, yi〉 = 1 and so (xi⊗yi)x =
xi for 1 ≤ i ≤ n. Lemma 2 shows that xi⊗yi is a rank-one operator in U . Writing

F =
n∑

i=1
xi ⊗ yi, we get

‖ Ax− Fx ‖ = ‖ Ax− (
n∑

i=1
xi ⊗ yi)x ‖

= ‖ Ax− (x1 + · · ·+ xn) ‖< ε,

and this concludes the proof.

It is mentioned in Section 1 that complete distributivity is a condition somewhat
weaker than strong density of the rank-one submodule. This was indeed thought true
for some time, although no example was known. Later, however, such an example
was constructed. In [1], there is an example of a complete distributive subspace
lattice satisfying Condition A yet the identity cannot be approximated even at two
points by operators of the corresponding rank one submodule.
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