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GENERATION OF LOCAL C-SEMIGROUPS AND SOLVABILITY OF
THE ABSTRACT CAUCHY PROBLEMS

Sen-Yen Shaw and Chung-Cheng Kuo

Abstract. For a bounded linear injection C' on a Banach space X and a (not
necessarily densely defined) closed linear operator A which commutes with C,
we present various conditions for A to generate a local C-semigroup. A Hille-
Yosida type generation theorem in terms of the asymptotic C-resolvent of A
is proved, and various characterizations of a generator by means of existence
of unique strong solutions of the associated abstract Cauchy problems are
obtained.

1. INTRODUCTION

Let X be a Banach space with norm ||-||, and let B(X) be the set of all bounded
linear operators from X into itself. Consider the abstract Cauchy
d
—u
ACP(4; f,x) dt
u(0) = a,

(t) = Au(t) + f(), 0<t<T,

where A : D(A) C X — X is a closed linear operator and f is an X-valued
function on [0, T"), where 7" may be finite or infinite. A function « : [0,T) — X is
called a strong solution of ACP(A; f, x) if u is continuously differentiable, u(t) €
D(A) for 0 <t < T, and satistfies ACP(4; f,x).

The ACP is closely related to the theory of operator semigroup. It is known that
ACP(A; 0, 2) has a unique strong solution for every € D(A) if and only if the part
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Ay of A in the Banach space X; (the space D(A) equipped with the graph norm
l¢||1 = ||| + ||Az||) generates a (Cp)-semigroup on X (see [10, A-II, Theorem
1.1]). Moreover, when A has nonempty resolvent set p(A), these two conditions
are also equivalent to that A generates a (Cp)-semigroup on X [10, A-TI, Corollary
1.2].

Let C' € B(X) be an injection, and 7' < oo (resp. T'=00). A family {S(t);
0<t<T}in B(X) is called a local C-semigroup (resp. C-semigroup) if
(a) S(-)x:[0,T) — X is continuous for each € X; and
(b) S(s+t)C = 5(s)S(t) forall 0 <t,s,t+s<T and S(0)=C.

The generator A of S(-) is defined as

D(A)={x e X; hlilgl+(5(h)x —Ca)/h € R(C)}

Ax = C7! hlim+(S(h)m — Cx)/h for x € D(A).
—0

(C-semigroups and their connections with the ACP have been studied in [2], [3],
[7], [8], [14, 15], and other papers. If A is the generator of a C-semigroup, then
A commutes with C' and ACP(A4; 0, ) has a unique strong solution for cach initial
value  in C(D(A)) [3, Theorem 4.1]. The converse of the last statement is also
true when p(A) #£ @ [15, Corollary 2.2]. These results extend the above cited result
in [10, A-II, Corollary 1.2] to C-semigroups.

The concept of a local C-semigroup was first introduced and studied by Tanaka
and Okazawa in [17]. Clearly, every C-semigroup can be viewed as a local C-
semigroup on [0, T") for any 0 < T' < co. In general, a local C-semigroup on [0, T')
for some 7' < oo is not necessarily extendable to the whole half line [0, co) except
when C' = I, the identity operator. For instance, the family {S(¢);0 < ¢ < 1} of
operators on ¢y, defined by S(t)x := (e "e™x,,) for x = (2,,) € ¢ and ¢ € [0, 1],
is a local C'-semigroup (with C' : x — (e "z,)) which is strongly continuous on
[0,1] and satisfies ||S(¢)|| = ¢! — ||S(1)|| = 1 as ¢ — 1. But it cannot be
continuously extended beyond the point ¢ = 1. Results concerning extension of
local C'-semigroups can be found in [4] and [18].

Under the assumption that C' has a dense range R(C') (which implies that the
generator A has a dense domain D(A), but not the converse), Tanaka and Okazawa
proved a Hille-Yosida type generation theorem [17, Theorem 2.1] for S(-) in terms
of the asymptotic C-resolvent of its complete infinitesimal generator G. In [4,
Theorem 2.4], Gao proved a version of the generation theorem for densely defined
generators (though without the assumption of denseness of R(C)).

In this paper, for local C-semigroups with generators not necessarily densely
defined, we prove generalizations and improvements of the aforementioned theorems
in [10] and [14], and we characterize generators in terms of unique existence of
solutions of the associated Cauchy problems and integral equations.



Generation of Local C'-Semigroups and Solvability of the Abstract Cauchy Problems 293

In Section 2, we first prepare some preliminary results about basic properties
of local C'-semigroups, and then we prove a generation theorem (Theorem 2.5)
in terms of the asymptotic C-resolvent of its generator A (instead of its complete
infinitesimal generator (7). Our formulation and assumption are simpler than those
in [17], and our proof is based on a different approach, namely, the Widder-Arendt
theorem about Laplace transform (cf. [1], [7, Theorem 2.2]).

In Section 3, we show that, under the assumption that A commutes with C, the
problem ACP( 4; 0, C'z) has a unique strong solution for every € D(A) if and only
if A; is the generator of a local C';-semigroup on X, where (] is the restriction of C'
to X (Theorem 3.2). It is also shown that A generates a local C-semigroup on X if
and only if C~t AC = A and the problem ACP(A; Cerfot Cg(s)ds, 0) has a unique
solution for every g € L} ([0,7),X) and € X, if and only if C"1AC = A
and the problem ACP(A; Cz, 0) has a unique strong solution u(+; C'x, 0) for every
x € X (Theorem 3.4). In case that A has a dense domain, these conditions are
also equivalent to the condition that C"'AC = A and for each z € D(A), the
ACP(4; 0, Cz) has a unique strong solution w(+; 0, Cz) which depends continuously
on = (Corollary 3.6). An illustrating example will be given at the end of the
paper. Finally, for further discussion on strong and weak solutions of the abstract
Cauchy problems associated with local (-semigroups and perturbation of local C-
semigroups, the readers are referred to [6, 9, 13].

2. SoME BASIC PROPERTIES AND A (GENERATION THEOREM

In this section, we prove some basic properties and a generation theorem for
local C-semigroups.

Lemma 2.1. Let C' € B(X) be an injection and {S(t); 0 <t < T} be a local
C-semigroup with generator A. The following are true:

(2.1) S(s)S(t) = S(t)S(s) forall 0 < s,t < T}

(2.2) If € D(A), then S(t)x € D(A), AS(t)x = S(t)Ax and fot S(s)Axds =
S(t)yx — Cax for 0 <t <T;

(2.3) [y S(s)zds € D(A) and A [} S(s)xds = S(t)a — Ca for x € X and 0 <
t<T;

(2.4) Ais closed and satisfies C~1 AC = A;

(2.5) R(C) ¢ D(A).

Proof. First, taking s = 0 in (b) gives S(¢)C' = CS(t) forall 0 <t < T. To
show (2.1), we fix an arbitrary ¢ € [0, 7). It is seen from (b) that the identity in
(2.1) holds for all s € [0, 7 —¢). We need to extend s to the whole interval [0, T).
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Take a @ > 1 such that ¢t < 0t < T. For any s € [0,T'), we write s = n(T —6¢) +r
for some n € Nand 0 <r < T — 6. Then, by (b), we have

CnS(5)S(t) = C*S(n(T — 0t) +1)8(t) = (S(T — 01))"S(r)S(2)
= (S(T'=01)"S)S(r) = SO(S(T — 01))"S(r)
— S(H)C™S(s) = C"S(1)S(s),

so that S(s)S(t) = S(¢)S(s), by the injectivity of C.
To show that (2.2) holds, letz € D(A) and ¢ € [0, T). Then for all s € [0, T—t)

we have

sHS(s) S(t)x — C S(t)x] = S()[s H(S(s)x — Cx)]

— S(t)CAx = CS(t)Ax € R(C)
as s — 0. This means that S(t)z € D(A) and AS(t)x = S(t)Azx. Tt also shows
40S(t)x = CS(t) Az, so that Cfo s)Axds = CS(t)x — C%x, hence (2.2) is
proved. We next prove (2.3). Using (a) and (b), we have, for all z € X

s 1[S(s) /0 " S(ryedr — © / ' S(r)dr]

¢
=5 [/ S(s+7)Cadr — [ S(1)Cadr]
0

t+s s
= sl[/ 7)Cxdr — | S(7)Cxdr]
¢ 0

— S(t)Cx — C*x = C(S(t)x — Cx) as s — 0.

Thus fo T)xdr € D(A) and Afo T)edr = S(t)x — Ca for x € X and
0<t< T

To show that A is closed, let z,, € D(A), %, — x, and Az, — y. Then
by (2.2) we have S(t)x,, — Cmn fo s)Ax,ds, from which it follows that, as

n — oo, S()x—fofo s)yds for all t € [0,T") and
¢
tH(S(t)x — Ca) =t / S(s)yds — Cy as t — 0.
0

This shows that # € D(A) and Az =y, and so A is a closed linear operator in X .
Finally we show that C ! AC' = A. The relation A C C~! AC follows immediately
from (2.2) with ¢ = 0. To show the converse, let x € D(C 1 AC), ie., Cx € D(A)
and ACz € R(C). Then by (2.2), we have

C(S(t)x — Cx) = S(t)Cax — C*ax = /t S(T)ACzdr = C/t S(r)C L ACxdr
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from which it follows that
t
(St —Ca) =t} / S(r)C ' ACxdr — ACz € R(C)
0

as t — 0. This means that € D(A) and Az = C~! ACwz. Finally, the fact that
fot S(s)xds € D(A) for all z € X and ¢! fot S(s)xds — Ca as t — 0 implies
2.5).

Remark. It is easy to see from (2.2) that the definition of generators as given
in (c) is equivalent to

¢
x € D(A) and Ax = y < / S(s)yds = S(t)x — Ca for all £ € [0, T).
0

Proposition 2.2. Let C € B(X) be an injection and {S(t);0 <t < T} be
a strongly continuous family of bounded linear operators on X. If A is a closed
operator such that

¢ ¢ ¢

(2.6) R(/ S(s)ds) C D(A) and / S(s)Ads C A/ S(s)ds = S(t) — C
0 0 0

forall 0 <t <, then S(-) is a local C-semigroup with generator C~* AC.

Proof. For any fixed ¢ € (0,7),all r € (0,¢), and all x € X,
C%[S(t—r) /0 " S(wady) = —S(t—1)A /0 " S(wedu + S(t —r)S(r)
= =St —r)[S(r)z— Cx]+ St —r)S(r)z
=St —r)Ce,
so that , by integration with respect to » on [0, s|, we have for s € [0, {]
S(t—s) /05 S(u)axdu = /05 S(t—r)Cadr.

Since A is closed, it follows from (2.6) that S({) Az = AS(t)x for all z € D(A).
Using these facts we can write

S(t—s)S(s)z = S(t— s)[A/Os S(u)zdu + Cx]

= A(S(t — s) /Os S(uw)zdu) + S(t — s)Cx

8

=A [ S{t—r)Cxdr+ St —s)Cx

¢
=A

J
J

S(r)Cadr + S(t — s)Cux

—8
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=(S{t)—C)Cax —(S(t—s) —C)Cax+ S(t—s)Cx
= St)Cx

forallz € X and 0 < s <t < T. Since S(0) = C by (2.6), we have shown that
S(-) is a local C-semigroup.

Let B be the generator of S(-). It follows immediately from (2.6) and the
definition of generator that A C B. As B is a generator, (2.4) implies B =
C~'BC > C'AC. To show the converse, let x € D(B). Then (2.6) and (2.2)
(applied to B) imply that

A%@ﬁm@s@m_chA%@m@.

Differentiating both sides and using the closedness of A, we obtain S(t)xz € D(A)
and AS(¢)x = S(t)Bz for all t € [0,T). In particular, Cz € D(A) and ACx =
CBuz, ie., x € D(C'AC) and C~'ACz = Bax. The proof is complete. Now

Lemma 2.1 and Proposition 2.2 yield the next characterization of a generator.

Corollary 2.3. Let C € B(X) be an injection and {S(t);0 <t < T} be a
strongly continuous family of bounded linear operators on X. Then S(-) is a local
C-semigroup with generator A if and only if (2.4) and (2.6) hold.

In general, the generator A is not necessarily densely defined; it is so when the
range R(C') of C is dense in X, by (2.5). In [17], Tanaka and Okazawa considered
local C-semigroups for the case that C' has a dense range. They considered the
so-called complete infinitesimal generator, which is the closure G of the closable
operator ¢ defined by

D(G) =A{x € R(C); hliIglJr(C*lS(h)m —a)/h exists}
2.7 -
2.7) Gx = hlier(C*lS(h)m —x)/h for x € D(G).
—0

The operator GG also satisfies (2.2) and (2.3) with A replaced by G (see [17]).
From the identity [ S(s)Gads = S(t)x — Cz (z € D(G)) it follows that G C A,
and hence C'GC C C'GC C C1AC = A. Conversely, if x € D(A), then
Cz € D(G) and GCx = C Az, by (2.7). Thus the following relation holds:

(2.8) GcGccldo=c'ae = A

Proofs of this fact for the case 7' = oo can be found in [3] and [7]. Morcover, if
p(G) # 0, then G = C'GC (see [15, Proposition 1.4]) and so G = A, by (2.8).
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The local Laplace transform of {S(t);0 < ¢ < T} is the family {L,(\);7 €
(0,T), A € R} of operators defined by

(2.9) L.\ — /O " e MG (tyadt (w € X).

This is clearly a commutative family which also commutes with C' because S(-) is
so, by (2.1).

Lemma 2.4. Let C € B(X) be an injection and {S(t);0 <t < T} be a local
C-semigroup with generator A. The following hold:

(2.10) R(L,(\)) C D(A) and Ly(A\)(A—A) C (A —A)L,(\) = C —e " S(7) for
all 7 €[0,T) and \ € R;
(2.11) for x € X, L, (N)a is infinitely differentiable in \ and
| i L) <3 = sw s
( - 1)' te(0,7]
Jor A>0and n e N.

Proof.  Using integration by parts and the closedness of A, we have for all
reX

(A= A LNz = AL (N — Ale* / s)ads + X / At / s)adsdl]
= AL (Na—e M(S(r)e — Cx) — /0 MS(t)a — Ca)dt

— —e MS(r)a+e MCx + A / e MCudt
0

= Cx —e M S(7)x.
That L,(A\)A C AL.(\) follows from (2.2) and the closedness of A. Thus (2.10)
holds.(2.11) is proved in [17, Proposition 1.2].

For a closed linear operator A in X and 7 > 0, a family {L,(A\); 0 <7 < T, A >
0} in B(X) will be called an asymptotic C-resolvent of A if, for each 7 € (0,T),
the subfamily {Z,(\); A > 0} is commutative and satisfies the following condition:
(2.12) R(L-(A\)) € D(A) and L,(A\)(A—A) C (A —A)L,(A\) = C + V() for all
A > 0, where for € X, both L, ()2 and V,(\)z are infinitely differentiable

for A > 0 and there exists a constant M, > 0, depending on 7, such that

(/N Ve (Na|| < Mpr" e ™
forxe X, A >0and n € N.
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It is easy to see that Lemmas 2.1 and 2.4 verify part (i) of the following gener-
ation theorem.

Theorem 2.5. Let C € B(X) be an injection.

(¢) If an operator A is the generator of a local C-semigroup {S(t);0 <t < T}
on X, then there exists an asymptotic C-resolvent {L,(1); 0 < 7 < T, X > 0}
of A such that

(2.13) H al

(n—1)!
Jorall 7 € (0,T), A\ >0 and n € N, and (2.14) A is closed and satisfies
C1AC = A
(i2) If a closed linear operator A has an asymptotic C-resolvent {L.(\);0 <
T < T,\ > 0} satisfying (2.13), then Xo := D(A) is invariant under C, and
the operator Cy ' AgCq generates a local Cy-semigroup {S(1);0 <t < T}
on Xo, with Cy := C|Xo and Ag the part of A in Xo. If, in addition, (2.14)
holds, then Aq is the generator of S(-).

<d/dA>“1LT<A>H <,

To prove (ii), we need the following lemmas. The following key lemma is due
to Y.-C. Li.

Lemma 2.6. Let V() be as in (2.12), and let H,(\) := /\::1 LNV (V)]
for X > a and n € N. Then lim H, (%)= 0 fort e (0, 7).

Proof. We have for every n =0,1,2,...and A > 0,

n+l "7 n k
H,(\) = A T > <k>d_(>\2)v(nk)(>\)
" k=0

n

By assumption, we have for every 0 < ¢ < 7,
n k:+1 n k k) ™
Hn— < V9 (—
I § V22

n n—k+1 n, _.n
SZ 7]@" (;)k 1M7'ke t

k=0
7Mtnn—k:+1nkk77g
Sl T (e

k=0
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|
-

n n

N n+1 1 ntp 0o 7T 1 nt o . n
SMUTE D e T g 2 e T
1 m'k:o n n+1 Tk:O
< Mr—(—)" "7 for < —.
nl 1 t
. 1 o r+1)
Using the Stirling formula: tlgglo Woivam — 1 (ef. [11, p.194]) and the fact that
w — 1 —In(w) > 0 for w > 1, we have for every w := 7 > 1,
1' ( )n —nw _ 1' 1 n( )n —nw
Jim —(nw)”e = lim 27mn+1/26 nw)™e
< 1 1' n _ n—nw
im w”e
T A2 n—oo
1

_ lim en(ln(w)lefw)‘

\/ 21 n—00

Since In(w) +1 —w < 0, the last limit equals to 0. Therefore lim H,(%) = 0 for
n—0o0
te(0,7).

Lemma 2.7. If C~'AC = A, then Cy' AoCy = Ay.

Proof.  First, A € C'AC implies CD(A) C D(A) and so R(Cp) =
C(D(A)) € D(A) = X,. Furthermore, to deduce A9 C C, ' AgCy from A C
CYAC, leta € D(Ag). Thenx € D(A) and Ax € Xo, which imply Cox = C €
D(A) and ACyx = ACx = CAx = ChApx € R(Cy) C Xo. This means that
Cox € D(Ag) and AgCox = AChx = CoAgz € R(Cp) so that 2 € D(Cy ' AgCo)
and Cy ' AgCox = Agx for @ € D(Ap). ie., Ag C Cy ' AgCo.

Next, to show D(CaleCo) C D(Ag), let z € D(CgleCo). Then Cox €
D(Ag) and ACz = AgCoz € R(Co) € R(C). So, Az = C~1ACx = O~ AgCox
= C’aleCox € Xo. Hence x € D(Ap).

Proof of (ii) of Theorem 2.5.

First, we fix a 7 € (0,7)). We obtain from the Widder-Arendt Theorem (cf.
[1] or [7, Theorem 2.2]) and (2.13) that there is a strongly continuous function
W, : [0,00) — B(X) such that W,(0) = 0, ||W,(t + h) — W,()|| < Myh for all
t,h >0, and

(2.15) Ly(Na =\ /OO e MW (t)adt = A\ /OO e M(1x W) (t)adt

for all A > 0 and « € X. From (2.12) we have that

(2.16) / e MW (t)Adt C A / e MW (t)dt
0 0
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and

[o.9]
A/ e M1« W) (t)adt

0
(2.17) ~ ~

= / e MW (t)adt — / e MtCudt — A2V, (Ve

0 0
for every x € X
Next, we need to employ the Post inverse formula (cf. [19, Chapter 7] or [12, p.
250]), which states that if L(g, A) := [;° e *g(t)dt for A > 0, where g : [0, 00) —
_1\yn({n\yn+1
X is an exponentially bounded continuous function, then lim %D”L( 9,%)
n—0o0 :

= ¢(t) uniformly on bounded subsets of (0,c0). Since W, (+) is Lipschitz contin-
uous, we can apply the Post inverse formula to the functions g(t) = (1 * W)
(t)x, Wr(t)x, tCz. By applying it to the equation (2.17) and using Lemma
2.6 and the closedness of A, we obtain, for every 0 < ¢ < 7 and z € X, that
(1« W,)(t)x € D(A) and

(2.18) A1« W) (H)x = W () — tCa.
Since W,(0) = 0, (2.17) also holds for ¢ = 0. Similarly, from (2.16) we obtain
W-(t)A C AW,(t), 0 <t < 7. In particular, if x € D(A), then
t t
W, ()x = A/ Wr(s)xds + tCax = / W, (s)Axds + tCux,
0 0

so that W.(-)z: [0,7) — X is continuously differentiable and

(2.19) W, () = AW, (t)x + Cax = W, () Aw + Cx

for all @ € D(A). Since W, (-) is Lipschitz continuous on [0, 7), the set
{x € X; W,(-)x is continuously differentiable on [0, 7)}

is a closed linear subspace of X, which contains D(A). Hence W, (-)x is continu-
ously differentiable for all x € X = D(A).

We set S.-(t) := W.(t)|x, for 0 <¢ < 7. Then S, (-)z is continuous on [0, 7)
for every « € Xy. From

W (1) Xo = Wr(t)D(A) € Wr(1)(D(A)) € D(A) = Xo

and the Banach-Steinhaus theorem, we can see that the operator S.-(¢) : Xo — Xp
is bounded for cach 0 < ¢ < 7. Thus {S,(¢);0 <t < 7} is a strongly continuous
family in B(Xp). It follows from (2.19) that

(2.20) /t S, (s)Agxds = W (1) Ax = W (t)x — Cx = S (1) — Coz
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and
¢
A/ Sr(s)xds = AW, (O)x = W, (t)x — Cx = S; (1) — Cox € Xo
0

for all z € D(Ap) and 0 < ¢ < 7. Since A is closed, the latter equation actually
holds for all z € Xy. Thus

(2.21) R(/t S, (s)ds) C D(Ag) and Aq /t Sy (s)ds = 8.(t) — Co

for all 0 <{ < 7. In view of (2.20) and (2.21), it follows from Proposition 2.2 that
{S-(t);0 <t <7} is a local Cy-semigroup on X with Cp = (| X and generator
B = Cy ' AgCo.

The family {S(¢);0 < t < T}, defined on Xy by S(t)x = S;(t)x for t €
[0,7), 7 € (0,T) and « € X, is a well-defined local Cp-semigroup on Xy with
Co = C|Xp. Indeed, for x € Xo, 0 <7 <7 < T, and all ¢t € [0, 77)

d r
lnt=n) [ 80 (wadl

S (t—7)B / So (Wadu + Sy (£ — 1) S ()2
0
=S, (t—r)Cua,

and so Cfot Sr (w)zdu = fot Sp(t—r)Cax = Cfot Sr,(w)zdu for all ¢ € [0, 7).
Since C' is injective, we have Sy, (t) = S.,(¢) for all £ € [0,71). Finally, the last
assertion in (ii) follows from Lemma 2.7.

From Theorem 2.5 and (2.5) of Lemma 2.1 follows immediately the next corol-
lary.

Corollary 2.8. Let C € B(X) be an injection and A be a densely defined
linear operator. Then A is the generator of a local C-semigroup {S(t);0 <t < T}
on X if and only if it is closed, satisfying C~' AC = A, and has an asymptotic
C-resolvent {L;(\);0 <7 < T, > 0} which satisfies (2.13).

Remarks. (i) Theorem 2.5 is analogous to generation theorems (see e.g. |7,
Theorem 6.2], [14]) for exponentially bounded C'-semigroups. (ii) Since R(C) C
D(A), Corollary 2.8 characterizes the generator A of a local C-semigroup S(-) for
the case that C' has dense range. Compared to Tanaka and Okazawa’s generation
theorem [17, Theorem 2.1] which characterizes the complete infinitesimal generator
G of S(-), Corollary 2.8 is subject to simpler condition
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3. SoLUTIONS OF ABSTRACT CAUCHY PROBLEMS

This section is concerned with connections between a generator A and strong
solutions of the associated abstract Cauchy problems. In the next lemma, X, denotes
the Banach space which is D(A) equipped with the graph norm ||z |1 = [|z||+|| Az||.

Lemma 3.1. Let C' € B(X) be an injection and {S(t); 0 <t < T} be a local
C-semigroup on X with generator A. Then S1(t) == S(t)|x,,0 <t < T, form a
local Cy-semigroup on X1 with Cy = C|x, and generator Ay, the part of A in
Xi.

Proof. Tt is easy to see that S1(-) is a local C-semigroup on X7, with C; =
C|X1. To show that its generator B is equal to A, first let x € D(A;) = D(A?).
Then we have

(S (D) — Cra) = tH(S(H)x — Cx) — CAx = Cy Ay,

A8 (D — Cra) = t7H(S(t) Ax — CAx) — CA%x = AC) Az,

which show that ¢ 1(S1(t)x — Ciz) — C1Ajz in || - ||1, ie, 2 € D(B) and
Bx = Ajz. Hence Ay C B. Conversely, if x € D(B), then

t 1Stz — Cx) =t 1(S1(t)x — C1a) — C,Bx = CBux,
so that x € D(A) and Az = Bx € X7 = D(A). Hence D(B) C D(A?%) = D(Ay).

Theorem 3.2. Let C € B(X) be an injection on X and A be a closed linear
operator satisfying

(3.1) Ca € D(A) and ACx = CAx for x € D(A).

Then the following statements are equivalent.
(i) Ay is the generator of a local Cy-semigroup S1(-) on X1, where Cy is the
restriction of C' to X;.
(i2) There exists a unique strong solution u(-; 0, Cx) of ACP(A; 0, Cx) for every
x € D(A).
In this case, u(-;0,Cx) is given by u(t; 0, Cx) = Sy ().

Proof. (1) = (i1): Assume that A; is the generator of a local C'-semigroup
{51(#);0 <t < T}on Xy, let x € D(A) and set u(t) = S1(¢)x for 0 <t < T.
Then w € C([0,T), X1) so that both « and Aw are continuous functions. Since A is
closed we have fot u(s)ds € D(A) and Afot u(s)ds = fot Au(s)ds for 0 <t < T.

Moreover, (i) implies that fot Si(s)xds € D(A;) and
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A/Ot u(s)ds = Ay /Ot Si(s)xds = S1(H)x — Cra = u(t) — Cu

for 0 <t < T. Consequently, u(t) = Cx + fot Au(s)ds for 0 <t < T. Hence
u € CY(]0,T), X) and v’ = Au. Thus u is a solution of ACP(A;0,Cz). In order
to show the uniqueness, assume that « is a solution of ACP(A4;0,0), we have to
show that uw = 0. Let v(t) = fot u(s)ds for 0 <t < T. Then the closedness of A
implies that v(¢) € D(A) and Av(t) = [3 Au(s)ds = [3 o/ (s)ds = u(t) € D(A).
Consequently, v(t) € D(A?) = D(A;) for all 0 <t < T. Moreover, v/ = u = Av
and Av' = Au = o are continuous on [0,7). Thus v € C'([0,T), X1) and
v/ = Ajv. Since v(0) = 0, it follows that

Cru(t) /O(d/ds)(Sl(t—s)’u(s))ds

— /Ot[Sl(t — s)Ajv(s) — S1(t — s)Ajv(s)]ds = 0

forall 0 <t <7T. Thus u=v = 0.

(if) = (1): Assume that (ii) holds, i.c., for every x € D(A) there exists a unique
solution u(+;0,Cx) € C*([0,T), X) of ACP(A;0,Cx). For each 0 < ¢t < T,
we define a mapping S; : X7 — X3 by S1(Y)x = u(t;0,Cz) for x € X;. By
the uniqueness of solution one can easily see that S7(¢) is a linear operator on X,
satisfying S1(0) = C and S1(¢ + s5)Cy = S1(¢)S1(s) for 0 < t,s,t +s <T. In
particular, this implies that S (-) commutes with C';. Moreover, since u(-; 0, Cx) is
continuously differentiable on [0, 7) and has values in D(A), both u(-; 0, Cz) and
Au(+;0,Cz) = 4/(+;0,Cx) are continuous, so that ¢ — S1(¢)x is continuous from
[0,T) into X1, i.e., S1(-)x € C([0,T), X1).

We next show that S;(¢) is a bounded linear operator on X7 for all 0 < ¢ <
T. Let 0 < t < T. Consider the lincar map 7; : X1 — C([0,¢], X1) given
by ni(xz) = Si(-)x = wu(;0,Cx). We claim that 7, is a closed operator. In
fact, let #, — x in X7 and n(x,) = u(-;0,Cx,) — v in C([0,¢], X7). Then
u(s; 0,Cxy,) = Cuy + [ Au(r; 0,Ca,)dr. Letting n — oo we obtain v(s) =
Ca + [; Av(r)dr for 0 < s < t. Let 9(s) = Cv(s) for 0 < s < ¢ and o(s) =
Si(s —t)v(t) = u(s — £;0,Cv(t)) for t < s <T. Then, by (3.1) one can easily
check that @ is a solution of ACP(A;0, C%x). The uniqueness of solution implies
that 5 = u(+; 0,C%x) = S1(-)Cax = C'S;(+)2. In particular, for 0 < s < ¢ we have
Cv(s) = 9(s) = Cn(x)(s), and so v = n:(x) on [0, £], by the injectivity of C. We
have shown that 7; is closed. By the closed graph theorem, 7; is a continuous linear
operator from X, to C([0,¢], X1). This shows in particular that S1(s) € B(X;) for
cach s € [0,¢] and Sy (-)x = n(x) is continuous on [0, ¢] for all # € X;. Since ¢ is
arbitrary in [0, T), {S1(¢); 0 <t < T} is a strongly continuous family of operators
on X7. Hence {S1(¢);0 <t < T} is a local C;-semigroup on X;.
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We now prove that A; is its generator. First, to show that
(32) Sl<t)$ S D(Al) and A151<t)$ = Sl<t)z41$, x € D(Al), 0<t<T.

In fact, for 2 € D(A1) = D(A?) let w(t) = Cx + fot u(s; 0, C'Ax)ds. Then by
the closedness of A, the continuity of the function Au(-;0,C'Ax) and by (3.1), we
have

d ¢
d_lf =u(t;0,CAz) = CAx +/ Au(s; 0,C Az)ds
0

¢
= A(Cx +/ u(s; 0,C'Ax)ds)
0
= Aw(t).
Since w(0) = Cu, it follows from (ii) that w(-) = u(-; 0, Cz). Hence we have

d
AS1(H)ax = Au(t; 0,Ca) = Aw(t) = aw(t) = u(t;0,CAzx) = S1(t) A1z € X1,

which implies (3.2). In particular, C1z € D(A4;) and A;Cix = C1 Az for = €

D(A7). Now denote by B the generator of {S1(¢);0 <t <T}. For z € D(A) we

have, by ACP(A4;0, Cx), hlier(Sl(h)x —Cx)/h =4/ (0;0,Cz) = Au(0; 0, Cz) =
—0

ACxz = C Ax. Furthermore, if @ € D(A;) = D(A?), then, by (3.2),

lim A(Sl (h).%‘—cl.%‘)/h - th(fglJr(Sl(h)Al.%‘ —CAl.%‘)/h - CAlAl.%‘ - AClAlx

h—0+t

in the norm of X. Hence 1im+(Sl (h)x — Ciz)/h = C1 A2 in the norm of X for
h—0

@ € D(A7). This shows that A; C B. In order to show the converse, let x € D(B).
Then 1im+(Sl (h)x—Cha)/h = Cy Bz in the norm of X;. On the other hand, since
h—0

D(B) C D(A), as shown above, we have hlier(Sl(h)x — Cha)/h = C Az. Hence
—0

CAx = OBz and so Az = Bx € X7 = D(A). Thus € D(A?) = D(A;) and
Ajx = Bx. This shows B C A;.

It follows from Lemma 3.1 and Theorem 3.2 that w := S(-)x is the unique
strong solution of ACP(A;0,Cx) for each « € D(A). Moreover, we have the
following proposition for the nonhomogeneous Cauchy problem ACP(A; C'f, Cz).
A proof of it is given in [9].

Proposition 3.3. Let C € B(X) be an injection and A be the generator
of a local C-semigroup S(-) on X. If either (i) f € C'([0,7),X), or (i) f €
C([0,7), D(A))and Af € C([0,7), X), then for each x € D(A) ACP(A;Cf,Cx)
has the unique strong solution u(t) .= S(t)x + (S* f)(¥), 0 <t < T.
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Remarks. Note that Theorem 1.1 in [10, A-II] is the special case C' = [ of
our Theorem 3.2. Versions of Proposition 3.3 for (Cp)-semigroups and global C-
semigroups can be found in [5, Theorem I1.1.3] and [7, Corollary 7.5], respectively.
See also [3, Theorem 4.1] for the case f = 0. In general, the condition that
w = S(-)x is the unique strong solution of ACP(A4; 0, Cx) for every x € D(A) is
not sufficient for A to generate a local C-semigroup (even if C~ ' AC' = A) except
when A has dense domain (see Corollary 3.6).

Theorem 3.4. Let C € B(X) be an injection on X and A be a closed linear

operator satisfying (3.1).
(2) If A is the generator of a local C—sengroup S(-)on X, then C"AC = A
and the problem ACP(A; Cx + fo Cyg(s)ds,0) has a unique strong solution

u(t; Cx +f0 Cy(s)ds,0) fo mderfo Jo S(s—r)g(r)drds for every
ge L (0,7), ) and x € X.

(éi) If the problem ACP(A; Cx,0) has a unique strong solution u(-; Cz,0) for
every x € X, then the family {S(1);0 < t < T}, defined by S(t)x =
W' (t;C,0), x € X, is a local C-semigroup with generator C~ AC.

Proof. (1) Let u(t fo s)xds + fo J5 S(s — r)g(r)drds. Using (2.3) and
the closedness of A we have

Au(t) A/ xderA/ / (s —r)g(r)drds

=St )m—Cm+A/ (/ S(s —r)g(r)ds)dr

0 r

— S(t)w — Ca + /OtA(/O” S(s)g(r)ds)dr

= S{t)x — Cx + /Ot [S(t—r)g(r) — Cy(r)]dr

=u'(t) — Cao — /Ot Cyg(r)dr

Hence u satisfies ACP(A; Cx + fo Cy(s)ds, 0). The uniqueness of solution of the
problem ACP(A; Cz+ fo Cy(s)ds,0) follows from the fact that v = 0 is the unique
solution of ACP(4;0,0) (see Prop0s1t10n 3.3).

(ii) Assume that for every € X there exists a unique solution u(-; Cz, 0) of
ACP(A; Cz,0), and let S(t)z := o/(t; Cx,0) for x € X,0 <t < T. S()x is
strongly continuous and S(0)z = «/(0; Cx,0) = Au(0; Cz,0) + Cx = Czx for
x € X. By the uniqueness of solution one can see that S(¢) is a linear operator and
u(-; C%2,0) = Cu(-; Ca, 0).
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Next, we claim that w(-; CAgc O) Au( Cz,0) and v/ (+; C Az, 0) = Au/(+; C,
0) for @ € D(A). Indeed, let w( fo s;CAx,0)ds +tCax for x € D(A) and
0<t<T. Since v/(s; CAx, O) Au(s CAx, O)JrCAgc = A(u(s; CAx,0)+Cz),
taklng 1ntegrat10n we obtain that u(s; C'Ax, O) = Aw(s) for 0 < s < T, so that

fo Aw(s)ds+tCx and w'(t) = Aw(t)+Ca for 0 < ¢ < T. The uniqueness
of solutlon shows w(t) = u(t; Cx, 0). Thus fot u(s; CAx, 0)ds+tCx = u(t; Cx, 0)
and, after differentiation, u(¢; C' Az, 0) + Cx = ' (¢; Cz,0) = Au(t; Cx,0) + Ca.
We have shown u(t; C Az, 0) = Au(t; Cz,0) for @ € D(A) and 0 < ¢ < T. By
the closedness of A we also have u/(-; C' Az, 0) = Ad/(+; C, 0).

We next show that {S(¢);0 < ¢ < T} is a strongly continuous family of
bounded linear operators on X. Let 0 < ¢ < T. Consider the linear map 7, : X —
C([0,t], X) given by ni(x) = S(-)x = u/(+; Cx,0). We show that 7, is a closed
operator. In fact, let z,, — « in X and nt(gcn) = u/(+; Cap, 0) — v in C([0, 1], X).

Then, for all s € [0, ], u(s; C,, 0) — [ v(r)dr and Au(s; Cmn, 0) = o/ (s; Cap,
0) — Ca,, — v(s) — Cz. The closedness of A 1mphes that [J v(r)dr € D(A) and
A [§v(r)dr = v(s)—Cax forall 0 < s < t. Let o(s) := C f; v( dr for0<s<t

and 0(s) 1= u(s — t; Cv(t),0) + 0(t) for t < s < T Then © € C([0,T), X).
Furthermore, by (3.1) we have

#(s) — Cu(s) — C(A /0 T o(r)dr 1 C) — Ad(s) + Ca
for 0 < s < t. and
7(s) = u'(s —1;Cv(t),0) = Au(s —t; Cv(t),0) + Cuv(t)
= Ai(s) — Av(t) + (AB(t) + C*x)
= Ad(s) + C?x

for t < s < T. Hence ¥ is a solution of ACP(A;C?z,0) on [0,7). By the
uniqueness of solution, we have ¥(s) = u(s; C%x,0) = Cu(s; Cx,0) and hence
v(s) = u/(s;C,0) for all 0 < s < ¢, ie., v = nx). Therefore 7, is closed. By
the closed graph theorem, 7, is a continuous linear operator from X to C'([0, ], X).
Since ¢ is arbitrary, this implies the continuity of S(¢) on X for all 0 <¢ < T and
the strong continuity of S(-) on [0, 7).

For x € X we have

/Ot S(s)ads = /Ot ' (s; Cx, 0)ds = u(t; Cx, 0) € D(A)

and so,

¢
A/ S(s)zds = Au(t; Cx,0) = v/ (t; Cz,0) — Cx = S(t)x — Ca.
0
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Since S(¢) Az = u/(t; C Az, 0) = Au/(t; Cx,0) = AS(t)x for @ € D(A), it follows
from Proposition 2.2 that C 1 AC is the generator of S(-).

The fact that S(-) satisfies S(t+s)C = S(¢)S(s) for 0 <t,s,t+s < T can also
be seen directly in the following way. For any fixed € X and 0 < s < 7T, define
w e C([0,T —s), X) by w(t) := u(t + s;C?%2,0) — u(s; C%2,0),0 <t <T — s.
Then w(0) = 0 and

w'(t) =/ (t+s;C%2,0) = Au(t + s, C?2,0) + C?2
= Aw(t) + Au(s; C%x,0) + C?z = Aw(t) + C(Au(s; Cz,0) + Cx)
= Aw(t) + Cu/(s; Cz, 0)

for all ¢ € [0, T — s). That is, w satisfies ACP(4; Cu/(s; Cz,0),0) on [0, T — s).
Since u(-; Cu/(s; Cx, 0),0) is the unique solution of ACP(A; Cu/(s; Cz,0),0) on
[0, T'), it must coincide with w on [0, T—s). Hence we have w(t) = u(t; Cu/(s; Ca,
0),0), so that

S(t+ s)Cx = /(1 + s,C?%2,0) = w'(t) = u/(; C/(s; Cz, 0),0)
= S(t)u/(s;Cx,0) = S(t)S(s)x
for all £ € [0, T — s). The proof is complete.

Corollary 3.5. Let C' € B(X) be an injection. If A is a densely defined closed
operator and if for each x € D(A) ACP(A;0,Cxz) has a unique strong solution
u(+; 0, Cx) which depends continuously on x (i.e., if {x,} is a Cauchy sequence in
D(A), then {u(-;0,Cx,)} is uniformly Cauchy on compact subsets of [0,T)), then
C~ Y AC generates a local C-semigroup on [0,T).

Proof. In view of Theorem 3.4(ii), we need only to show that ACP(A; Cz, 0)
has a unique strong solution u(-; Cz, 0) for every « € X. For any x € X let {x,}
be a sequence in D(A) such that z,, — a. Let u(-;0,Cx,) be the unique strong
solution of ACP(A;0,Cx,,), and let v, () = fot u(s; 0,Cap)ds. Then there is a
continuous function u such that u(t; 0, Cz,,) — u(t) and v, () — v(t) = fot u(s)ds
uniformly on compact subsets of [0,7"). Since A is closed and Au(-;0,Cx,) =
u'(+; 0, Cz,) is continuous, we have

¢ ¢
Av,(t) = A/ u(s; 0, Cay,)ds = / Au(s; 0, Cay,)ds
0 0
=u(t; 0,Cx,) — Cxy,

which converges to u(t) — Cz. It follows that v(¢) € D(A) and Av(t) = u(t) —
Cz = v/(t) — Cx. Hence v is a strong solution of ACP(A;Cxz,0). That this
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function v is the unique strong solution of ACP(A; C'z, 0) follows from the unique
existence of the strong solution of ACP(A4;0,0).

Corollary 3.6. Let C € B(X) be an injection and A be a closed linear
operator satisfying C~' AC' = A. Then the following statements are equivalent.

(i) A is the generator of a local C-semigroup S(-) on X.
(ii) The problem ACP(A;Cz + fo Cy(s)ds,0) has a unique strong solution
u(t; Cx +f0 Cyg(s)ds,0) for every g € L} ([0,T), X) and x € X.
(ii’) The integral equation

loc

(3.3) v(t) = A/Otv(s)ds +Cx + /Ot Cy(s)ds

has a unique strong solution v € C([0,T); X) for every g € L}, ([0,T), X)
and x € X.

(iii) The problem ACP(A;Cx,0) has a unique strong solution u(-;Cx,0) for
every x € X.

Moreover, we have v(t) = /' (t; Cx + fo Cy(s)ds,0) = S(t)x + fo

)()dsandu(tCerfng )ds, 0) fo s)ds for 0 <t < T. If
in addition, A has dense domain, then each of the above conditions is also
equivalent to

(iv) The problem ACP(A;0,Cx) has a unique strong solution for every x €
D(A), and the solution depends continuously on .

Proof. By setting v(t) = u/(¢; Cx + fo Cy(s)ds,0), one easily sces that
statement (i1) is equivalent to (i1”). “(i1) = (iii)” is obV1ous. “(1) = (11)” and “(ii1)
= (1)” follow from Theorem 3.4. “(i) = (iv)” is contained in Proposition 3.3, and
“(iv) = (1)” follows from Corollary 3.5 in the case that A is densely defined.

Applying Theorem 3.2 and Corollary 3.6 we prove the following result.

Corollary 3.7. Let C € B(X) be an injection. The following statements have
the relations: (1) < (1) = (iil) < (iv).
(i) A is the generator of a local C-semigroup S(-) on X.
(if) CAC = A, and the problem ACP(A; Cw,0) has a unique strong solution
u(+; Cx,0) for every x € X.
(iii) A is a closed linear operator satisfying (3.1), and Ay is the generator of a
local Cy-semigroup S1(-) on X;.

(iv) A is a closed linear operator satisfying (3.1), and ACP(A;0,Cx) has a
unique strong solution u(-; 0, Cx) for every x € D(A).
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In case A has nonempty resolvent set, the above statements are equivalent. More-
over, S1(+) is the restriction of S(-) to X1, and u(-;0,Cx) = S(t)x for x € D(A).

Proof.  “(1) & (i1)” follows from Corollary 3.6, “(i) = (iii)” follows from
Lemma 3.1, and “(ii1) < (iv)” follows from Theorem 3.2.

It remains to show “(iii) = (i) under the assumption p(A) # 0. Suppose A;
is the generator of a local C-semigroup S1(-) on X;. Let A € p(A), and define
S()=(A=A)S1(-)(A—A)~L. Since (A\—A) ! is a topological linear isomorphism
from X onto X; and since CA C AC on D(A), it is obvious that S(-) is a local
C-semigroup on X with generator (A — A)A; (A — A) 7L = A,

Remarks. In the case C' = I, this corollary reduces to Corollary 1.2 of [10, A-
. The equivalence of (i) and (ii) for the case " = oo was proved in [16, Corollary
2.4]. That (1) implies (iv), for the case T" = oo, was proved by deLaubenfels |3,
Theorem 4.1]. The equivalence of (i) and (iv) in case p(A) # @ and T = oo, was
proved by Tanaka and Miyadera [15, Corollary 2.2] in different way.

Next, we include the following simple example for illustration. Consider the
following initial value problems in ¢q:

{ uL(t) = nu,(t) +e " fu(t), 0 <t < 1;

A
3 1n(0) = € g,

n>1,

v (1) = non(t) + € g + [ e "gn(s)ds, 0 <t < 1;

(3.5) (t) (t) Jo (s) 1.
v,(0) = 0,

The family {S(¢); 0 <¢ < 1}, deflned by S(t)x = (e "e™a,), x = (x,) € - o, is
a local C-semigroup with C' := @ e ™ € B(cp) and with generator A := @ n.

If, for instance, (nf,(t)) € co for all £ € [0,1) and the functions {n fn} are
uniformly continuous on [0, 1), then Af € C([0,1);cp). Now it follows from
Proposition 3.3 that, for any ¢ € ¢y with lim,, .o ng, = 0, (3.4) has a unique
solution w € C([0, 1); ¢g), which is given by

u(t) = S{t)g+ /Ot S(t—s)f(s)ds

t
— <e” {e”tqn +/ e”(ts)fn(s)ds}>, 0<t<l.
0

Next we consider (3.5). If g = (g,,(¢)) € ¢o for all ¢ € [0, 1) and the functions
{gn} arc uniformly continuous on [0, 1), then g € C([0,1);co). It follows from



310 Sen-Yen Shaw and Chung-Cheng Kuo

Theorem 3.4(i) that, for any g € cg, (3.5) has a unique solution v € C([0,1); ¢p),
which is given by

o(l) = / qu+// s —1)g(r)drds
<e"[n+( g + // &5 g (r drdsD

for 0 < ¢ < 1. Finally, we remark that Corollary 3.6 can be used to prove the
following bounded perturbation theorem [13] for local C-semigroups.

Theorem 3.8. Let C' € B(X) be an injection and A be the generator of a local
C-semigroup S(-) on X. If B € B(X) satisfies R(B) C R(C) and BCx = CBx
for x € D(A), then A+ B is the generator of a local C-semigroup T(-) on X,
which satisfies

(1) Tz = S{t)x + /Ot S(t—s)C'BT(s)axds, x € X, 0<t < T.

Moreover, in the case T = oo, if |S(t)|| < Me™t for some M, w > 0 and all
t >0, then ||T(t)|| < MelwtMICTBIN for ¢ > 0,

We also remark that perturbation by unbounded operators has been discussed in

[9].
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