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ON A RELATION BETWEEN CARLEMAN’S INEQUALITY AND VAN

DER CORPUT’S INEQUALITY

Bicheng Yang

Abstract. By introducing a parameter λ ∈ [0, 1], we give an inequality
relating Carleman’s inequality with Van der Corput’s inequality. In particular,

a generalization of Carleman’s inequality with a best constant factor e
1

1−λ , λ ∈
[0, 1) is considered.

1. INTRODUCTION

If an ≥ 0 (n ∈ N) with 0 <
∑∞

n=1 an < ∞, then the famous Carleman’s
inequality is:

(1.1)
∞∑

n=1

( n∏

k=1

ak

)1/n
< e

∞∑

n=1

an,

where the constant factor e is the best possible (see [1]). On the other hand, if

Sn =
∑n

k=1
1
k , and an ≥ 0 (n ∈ N) with 0 <

∑∞
n=1(n + 1)an < ∞, then we have

the following Van der Corput’s inequality:

(1.2)
∞∑

n=1

( n∏

k=1

a
1/k
k

)1/Sn < e1+γ
∞∑

n=1

(n + 1)an,

where the constant factor e1+γ (γ is Euler constant) is the best possible (see [5]).
Recently, Yang et al. [8] gave a strengthened version of (1.1) as follows.

(1.3)
∞∑

n=1

( n∏

k=1

ak

)1/n
< e

∞∑

n=1

[
1 − 1

2(n + 1)
]
an.
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Some other strengthened version of (1.1) were given by [6,9]. Hu [3] gave an

improvement of (1.2):

(1.4)
∞∑

n=1

( n∏

k=1

a
1/k
k

)1/Sn < e1+γ
∞∑

n=1

(n − 1
4n

ln n)an.

The main objective of this paper is to establish a relation between (1.1) and

(1.2) with a parameter λ ∈ [0, 1] and a series as

(1.5)
∞∑

n=1

( n∏

k=1

a
1/kλ

k

)1/Sn(λ) (Sn(λ) =
n∑

k=1

1
kλ

).

For this, we need the following Euler-Maclaurin’s formula:

(1.6)
n∑

k=1

f(k) =
∫ n

1
f(x)dx +

1
2
(f(n) + f(1)) +

∫ n

1
ρ1(x)f ′(x)dx,

where ρ1(x) = x−[x]+1
2 is Bernoulli’s function, and f ∈ C1[1,∞). If (−1)if (i)(x) >

0 (x ∈ [n,∞)), and f (i)(∞) = 0 (i = 1, 2, 3), we still have (see [7, (1.7)-(1.9)]):

(1.7)
∫ ∞

n

ρ1(x)f ′(x)dx = − 1
12

f ′(n)ε (0 < ε < 1).

2. SOME LEMMAS

Lemma 2.1. If λ ∈ (0, 1), setting Sn(λ) =
∑n

k=1
1
kλ , then we have

(2.1)
1

Sn(λ)

n∑

k=1

ln k

kλ
= − 1

1 − λ
+ lnn + αn (αn = o(1) (n → ∞)).

Proof. Setting f(x) = ln x
xλ (x ∈ [1,∞)), we have f(1) = 0, f(n) = ln n

nλ , and

(2.2)
∫ n

1
f(x)dx =

n1−λ lnn

1 − λ
− n1−λ

(1− λ)2
+

1
(1 − λ)2

.

For x > e1/λ, f ′(x) = −λ lnx−1
xλ+1 < 0, and by induction, we obtain

(−1)if (i)(x) =
λ(λ + 1) · · ·(λ + i− 1) lnx − φi(λ)

xλ+i
(i = 1, 2, · · ·),
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where φi(λ) (i = 1, 2, · · ·) are positive constants. It follows that there exists n0 >

e1/λ such that for x ∈ [n0,∞) f(x) possesses the condition of (1.7). Hence for
n > n0, we find

0 <

∫ ∞

n
ρ1(x)f ′(x)dx < − 1

12
f ′(n) =

λ lnn − 1
12nλ+1

, and

(2.3) βn =
lnn

2nλ
−

∫ ∞

n
ρ1(x)f ′(x)dx = o(1) (n → ∞).

By (1.6), we have

(2.4)
n∑

k=1

f(k) =
∫ n

1
f(x)dx +

ln n

2nλ
+

∫ n

1
ρ1(x)f ′(x)dx, and

Cλ = lim
n→∞

[ n∑

k=1

f(k)−
∫ n

1
f(x)dx

]
=

∫ ∞

1
ρ1(x)f ′(x)dx

(2.5) =
∫ n

1
ρ1(x)f ′(x)dx +

∫ ∞

n
ρ1(x)f ′(x)dx.

Setting C = 1
(1−λ)2

+ Cλ, by (2.2), (2.3), and (2.5), we reduce (2.4) as

(2.6)
n∑

k=1

lnk

kλ
=

n1−λ ln n

1 − λ
− n1−λ

(1− λ)2
+ C + βn (βn = o(1) (n → ∞)).

For λ ∈ (0, 1), by (1.6) and (1.7), we have

n1−λ

1 − λ
− 1

1 − λ
=

∫ n

1

1
xλ

dx

<
n∑

k=1

1
kλ

<

∫ n

0

1
xλ

dx =
n1−λ

1 − λ
, and

(2.7)
n∑

k=1

1
kλ

=
n1−λ

1 − λ
+ O(1)(n → ∞).

Hence by (2.6) and (2.7), we have

− lnn +
1

Sn(λ)

n∑

k=1

lnk

kλ
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= − lnn +

n1−λ lnn

1 − λ
− n1−λ

(1− λ)2
+ C + βn

n1−λ

1−λ + O(1)

=
− lnnO(1) − n1−λ

(1− λ)2
+ C + βn

n1−λ

1 − λ
+ O(1)

=
− ln n

n1−λ O(1)− 1
(1− λ)2

+
1

n1−λ
(C + βn)

1
1 − λ

+
1

n1−λ
O(1)

→ −1
1− λ

(n → ∞).

It follows that (2.1) is valid. The lemma is proved.

Lemma 2.2. If on = o(1) (n → ∞), then we have

(2.8)

N∑

n=1

on

n

N∑

n=1

1
n

= o(1) (N → ∞).

Proof. For any ε > 0, there exists N0 > 1, such that for any n > N0

|on| < ε/2. Setting M = max{|o1|, |o2|, · · · , |oN0|}, since we find

lim
N→∞

N0∑

n=1

M

n

N∑

n=1

1
n

= 0,

there exists N1 > N0, such that for any N > N1 ,

N0∑

n=1

M

n

N∑

n=1

1
n

<
ε

2
.

Then for any N > N1,
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|

N∑

n=1

on

n

N∑

n=1

1
n

| ≤

N∑

n=1

|on|
n

N∑

n=1

1
n

<

N0∑

n=1

M

n
+

ε

2

N∑

n=N0+1

1
n

N∑

n=1

1
n

<

N0∑

n=1

M

n

N∑

n=1

1
n

+
ε

2
< ε.

Hence we have (2.8). The lemma is proved.

3. MAIN RESULTS

Theorem 3.1. If λ ∈ [0, 1], Sn(λ) =
∑n

k=1
1
kλ , and an ≥ 0 (n ∈ N), then

we have

(3.1)
∞∑

n=1

( n∏

k=1

a
1/kλ

k

)1/Sn(λ) ≤ e

∞∑

n=1

eλnλ−1Sn(λ)an.

Proof. Setting cn > 0, such that

(3.2)
( n∏

k=1

c
1/kλ

k

)−1/Sn(λ) =
1

(n + 1)λSn+1(λ)
,

then we find
∏n

k=1 c
1/kλ

k =
[
(n+1)λSn+1(λ)

]Sn(λ)
,
∏n−1

k=1 c
1/kλ

k =
[
nλSn(λ)

]Sn−1(λ)
,

and

(3.3) cn =

[
(n + 1)λSn+1(λ)

]nλSn(λ)

[
nλSn(λ)

]nλSn−1(λ)
(n ∈ N, S0(λ) = 0).

By using the arithmetic-geometric average inequality (see [2, Th. 9], we have

(3.4)
[ n∏

k=1

(ckak)1/kλ]1/Sn(λ) ≤
n∑

k=1

1
kλSn(λ)

ckak .

Since we have (see [6, (5)])

(3.5)
(
1 +

1
x

)x
< e

[
1 − 1

2(x + 1)
]

< e (for x > 0),
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then by (3.4), (3.2), (3.3) and (3.5), we find

(3.6)
∞∑

n=1

( n∏

k=1

a
1/kλ

k

)1/Sn(λ) =
∞∑

n=1

[ n∏

k=1

(ckak)1/kλ]1/Sn(λ)( n∏

k=1

c
1/kλ

k

)−1/Sn(λ)

≤
∞∑

n=1

n∑

k=1

1
kλSn(λ)

ckak
1

(n+1)λSn+1(λ)
=

∞∑

k=1

1
kλ

ckak

∞∑

n=k

1
(n+1)λSn+1(λ)Sn(λ)

=
∞∑

k=1

1
kλ

ckak

∞∑

n=k

[ 1
Sn(λ)

− 1
Sn+1(λ)

]
=

∞∑

k=1

1
kλ

ckak
1

Sk(λ)

=
∞∑

k=1

[ (k + 1)λSk+1(λ)
kλSk(λ)

]kλSk(λ)
ak

≤
∞∑

k=1

[
(1 +

1
k

)k
]λkλ−1Sk(λ)[1 +

1
(k + 1)λSk(λ)

](k+1)λSk(λ)

ak

≤ e

∞∑

k=1

[
(1 +

1
k

)k
]λkλ−1Sk(λ)

ak ≤ e

∞∑

k=1

{
e
[
1 − 1

2(k + 1)
]}λkλ−1Sk(λ)

ak.

Hence, we obtain (3.1). The theorem is proved.

Remark 1. For λ = 1, by (1.6) and (1.7), we find the following Franel’s
inequality (see [4]):

(3.7)
n∑

k=1

1
k

< lnn +
1
2n

+ γ, and

Sn = Sn(1) =
n+1∑

k=1

1
k
− 1

n + 1

(3.8) < ln(n + 1)− 1
2(n + 1)

+ γ < ln(n + 1) + γ.

Hence, for λ=1, by (3.8), inequality (3.1) reduces to (1.2). It is obvious that for λ
= 0, (3.1) reduces to (1.1). It follows that (3.1) is a relation between (1.1) and (1.2).

Theorem 3.2. If an ≥ 0 (n ∈ N), such that 0 <
∑∞

n=1 an < ∞, λ ∈ [0, 1),
and Sn(λ) =

∑n
k=1

1
kλ , then we have

(3.9)
∞∑

n=1

( n∏

k=1

a
1/kλ

k

)1/Sn(λ)
< e

1
1−λ

∞∑

n=1

an,

where the constant factor e
1

1−λ is the best possible. We also have its strengthened

version as:
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(3.10)
∞∑

n=1

( n∏

k=1

a
1/kλ

k

)1/Sn(λ)
< e

1
1−λ

∞∑

n=1

[
1 − 1

2(n + 1)
] λ

1−λ an.

In particular, for λ = 1/2, we have Sn(1
2) =

∑n
k=1

1√
k
, and

(3.11)
∞∑

n=1

( n∏

k=1

a
1/

√
k

k

)1/Sn(1/2)
< e2

∞∑

n=1

[
1− 1

2(n + 1)
]
an.

Proof. For λ = 0, since Sn(0) = n, (3.9) reduces to (1.1). We only consider

λ ∈ (0, 1) in the following. Since we have

Sn(λ) <

∫ n

0

1
xλ

dx =
n1−λ

1 − λ
, for λ ∈ (0, 1),

then by (3.1) and (3.6), we obtain (3.9) and (3.10).

Setting ãn (n ∈ N) as:

ãn =
1
n

, for n ≤ N ; ãn = 0, for n > N,

then by (2.1), for n ≤ N , since αn = o(1) (n → ∞), we find

( n∏

k=1

ã
1/kλ

k

)1/Sn(λ) = exp
{

ln
[ n∏

k=1

(
1
k
)1/kλ]1/Sn(λ)}

= exp
{
− 1

Sn(λ)

∑n
k=1

lnk
kλ

}
= exp{ 1

1− λ
− lnn − αn}

(3.12) =
1
n

exp{ 1
1− λ

} exp{ln(1 + on)} =
1 + on

n
exp{ 1

1− λ
},

where on = o(1) (n → ∞).
If there exists λ ∈ (0, 1), such that the constant factor e

1
1−λ in (3.9) is not the

best possible, then there exists positive number K < e
1

1−λ , such that (3.9) is still

valid if we replace e
1

1−λ by K. In particular, we have

(3.13)
∞∑

n=1

( n∏

k=1

ã
1/kλ

k

)1/Sn(λ)
< K

∞∑

n=1

ãn.

Hence we find

K >
1

N∑

n=1

1
n

N∑

n=1

exp
{

ln
[ n∏

k=1

(
1
k
)1/kλ]1/Sn(λ)}
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=
1

N∑

n=1

1
n

N∑

n=1

1 + on

n
exp

{ 1
1− λ

}
= e

1
1− λ

[
1 +

N∑

n=1

on

n

N∑

n=1

1
n

]
,

and K ≥ e
1

1−λ , for N → ∞, by (2.8). This contradicts the face that K < e
1

1−λ .

Hence the constant factor e
1

1−λ in (3.9) is the best possible. The theorem is proved.

Remark 2. For λ = 0, by (3.9) or (3.10), we have (1.1). Inequality (3.9) is a
generalization of Carleman’s inequality with a best constant factor e

1
1−λ (λ ∈ [0, 1]);

So is (3.10).
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