ON A RELATION BETWEEN CARLEMAN'S INEQUALITY AND VAN DER CORPUT'S INEQUALITY

Bicheng Yang

Abstract

By introducing a parameter $\lambda \in[0,1]$, we give an inequality relating Carleman's inequality with Van der Corput's inequality. In particular, a generalization of Carleman's inequality with a best constant factor $e^{\frac{1}{1-\lambda}}, \lambda \in$ $[0,1)$ is considered.

1. Introduction

If $a_{n} \geq 0(n \in N)$ with $0<\sum_{n=1}^{\infty} a_{n}<\infty$, then the famous Carleman's inequality is:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} \tag{1.1}
\end{equation*}
$$

where the constant factor e is the best possible (see [1]). On the other hand, if $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$, and $a_{n} \geq 0(n \in N)$ with $0<\sum_{n=1}^{\infty}(n+1) a_{n}<\infty$, then we have the following Van der Corput's inequality:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k}\right)^{1 / S_{n}}<e^{1+\gamma} \sum_{n=1}^{\infty}(n+1) a_{n} \tag{1.2}
\end{equation*}
$$

where the constant factor $e^{1+\gamma}$ (γ is Euler constant) is the best possible (see [5]).
Recently, Yang et al. [8] gave a strengthened version of (1.1) as follows.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left[1-\frac{1}{2(n+1)}\right] a_{n} \tag{1.3}
\end{equation*}
$$

Received May 21, 2003; Accepted October 24, 2003.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 26D15.
Key words and phrases: Carleman's inequality, van der Corput's inequality, Euler-Maclaurin's formula.

Some other strengthened version of (1.1) were given by [6,9]. Hu [3] gave an improvement of (1.2):

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k}\right)^{1 / S_{n}}<e^{1+\gamma} \sum_{n=1}^{\infty}\left(n-\frac{1}{4 n} \ln n\right) a_{n} \tag{1.4}
\end{equation*}
$$

The main objective of this paper is to establish a relation between (1.1) and (1.2) with a parameter $\lambda \in[0,1]$ and a series as

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}\left(S_{n}(\lambda)=\sum_{k=1}^{n} \frac{1}{k^{\lambda}}\right) \tag{1.5}
\end{equation*}
$$

For this, we need the following Euler-Maclaurin's formula:

$$
\begin{equation*}
\sum_{k=1}^{n} f(k)=\int_{1}^{n} f(x) d x+\frac{1}{2}(f(n)+f(1))+\int_{1}^{n} \rho_{1}(x) f^{\prime}(x) d x \tag{1.6}
\end{equation*}
$$

where $\rho_{1}(x)=x-[x]+\frac{1}{2}$ is Bernoulli's function, and $f \in C^{1}[1, \infty)$. If $(-1)^{i} f^{(i)}(x)>$ $0(x \in[n, \infty))$, and $f^{(i)}(\infty)=0(i=1,2,3)$, we still have (see [7, (1.7)-(1.9)]):

$$
\begin{equation*}
\int_{n}^{\infty} \rho_{1}(x) f^{\prime}(x) d x=-\frac{1}{12} f^{\prime}(n) \varepsilon(0<\varepsilon<1) \tag{1.7}
\end{equation*}
$$

2. Some Lemmas

Lemma 2.1. If $\lambda \in(0,1)$, setting $S_{n}(\lambda)=\sum_{k=1}^{n} \frac{1}{k^{\lambda}}$, then we have

$$
\begin{equation*}
\frac{1}{S_{n}(\lambda)} \sum_{k=1}^{n} \frac{\ln k}{k^{\lambda}}=-\frac{1}{1-\lambda}+\ln n+\alpha_{n}\left(\alpha_{n}=o(1)(n \rightarrow \infty)\right) \tag{2.1}
\end{equation*}
$$

Proof. Setting $f(x)=\frac{\ln x}{x^{\lambda}}(x \in[1, \infty))$, we have $f(1)=0, f(n)=\frac{\ln n}{n^{\lambda}}$, and

$$
\begin{equation*}
\int_{1}^{n} f(x) d x=\frac{n^{1-\lambda} \ln n}{1-\lambda}-\frac{n^{1-\lambda}}{(1-\lambda)^{2}}+\frac{1}{(1-\lambda)^{2}} \tag{2.2}
\end{equation*}
$$

For $x>e^{1 / \lambda}, f^{\prime}(x)=-\frac{\lambda \ln x-1}{x^{\lambda+1}}<0$, and by induction, we obtain

$$
(-1)^{i} f^{(i)}(x)=\frac{\lambda(\lambda+1) \cdots(\lambda+i-1) \ln x-\phi_{i}(\lambda)}{x^{\lambda+i}}(i=1,2, \cdots)
$$

where $\phi_{i}(\lambda)(i=1,2, \cdots)$ are positive constants. It follows that there exists $n_{0}>$ $e^{1 / \lambda}$ such that for $x \in\left[n_{0}, \infty\right) \mathrm{f}(\mathrm{x})$ possesses the condition of (1.7). Hence for $n>n_{0}$, we find

$$
\begin{gather*}
0<\int_{n}^{\infty} \rho_{1}(x) f^{\prime}(x) d x<-\frac{1}{12} f^{\prime}(n)=\frac{\lambda \ln n-1}{12 n^{\lambda+1}}, \text { and } \\
\beta_{n}=\frac{\ln n}{2 n^{\lambda}}-\int_{n}^{\infty} \rho_{1}(x) f^{\prime}(x) d x=o(1)(n \rightarrow \infty) \tag{2.3}
\end{gather*}
$$

By (1.6), we have

$$
\begin{align*}
& \sum_{k=1}^{n} f(k)=\int_{1}^{n} f(x) d x+\frac{\ln n}{2 n^{\lambda}}+\int_{1}^{n} \rho_{1}(x) f^{\prime}(x) d x, \text { and } \tag{2.4}\\
& C_{\lambda}=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} f(k)-\int_{1}^{n} f(x) d x\right]=\int_{1}^{\infty} \rho_{1}(x) f^{\prime}(x) d x \\
& \quad=\int_{1}^{n} \rho_{1}(x) f^{\prime}(x) d x+\int_{n}^{\infty} \rho_{1}(x) f^{\prime}(x) d x .
\end{align*}
$$

Setting $C=\frac{1}{(1-\lambda)^{2}}+C_{\lambda}$, by (2.2), (2.3), and (2.5), we reduce (2.4) as

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\ln k}{k^{\lambda}}=\frac{n^{1-\lambda} \ln n}{1-\lambda}-\frac{n^{1-\lambda}}{(1-\lambda)^{2}}+C+\beta_{n}\left(\beta_{n}=o(1)(n \rightarrow \infty)\right) \tag{2.6}
\end{equation*}
$$

For $\lambda \in(0,1)$, by (1.6) and (1.7), we have

$$
\begin{aligned}
\frac{n^{1-\lambda}}{1-\lambda}-\frac{1}{1-\lambda}= & \int_{1}^{n} \frac{1}{x^{\lambda}} d x \\
& <\sum_{k=1}^{n} \frac{1}{k^{\lambda}}<\int_{0}^{n} \frac{1}{x^{\lambda}} d x=\frac{n^{1-\lambda}}{1-\lambda}, \text { and }
\end{aligned}
$$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k^{\lambda}}=\frac{n^{1-\lambda}}{1-\lambda}+O(1)(n \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

Hence by (2.6) and (2.7), we have

$$
-\ln n+\frac{1}{S_{n}(\lambda)} \sum_{k=1}^{n} \frac{\ln k}{k^{\lambda}}
$$

$$
\begin{aligned}
& =-\ln n+\frac{\frac{n^{1-\lambda} \ln n}{1-\lambda}-\frac{n^{1-\lambda}}{(1-\lambda)^{2}}+C+\beta_{n}}{\frac{n^{1-\lambda}}{1-\lambda}+O(1)} \\
& =\frac{-\ln n O(1)-\frac{n^{1-\lambda}}{(1-\lambda)^{2}}+C+\beta_{n}}{\frac{n^{1-\lambda}}{1-\lambda}+O(1)} \\
& =\frac{-\frac{\ln n}{n^{1-\lambda}} O(1)-\frac{1}{(1-\lambda)^{2}}+\frac{1}{n^{1-\lambda}}\left(C+\beta_{n}\right)}{\frac{1}{1-\lambda}+\frac{1}{n^{1-\lambda}} O(1)} \rightarrow \frac{-1}{1-\lambda}(n \rightarrow \infty)
\end{aligned}
$$

It follows that (2.1) is valid. The lemma is proved.

Lemma 2.2. If $o_{n}=o(1)(n \rightarrow \infty)$, then we have

$$
\begin{equation*}
\frac{\sum_{n=1}^{N} \frac{o_{n}}{n}}{\sum_{n=1}^{N} \frac{1}{n}}=o(1)(N \rightarrow \infty) \tag{2.8}
\end{equation*}
$$

Proof. For any $\varepsilon>0$, there exists $N_{0}>1$, such that for any $n>N_{0}$ $\left|o_{n}\right|<\varepsilon / 2$. Setting $M=\max \left\{\left|o_{1}\right|,\left|o_{2}\right|, \cdots,\left|o_{N_{0}}\right|\right\}$, since we find

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N_{0}} \frac{M}{n}}{\sum_{n=1}^{N} \frac{1}{n}}=0
$$

there exists $N_{1}>N_{0}$, such that for any $N>N_{1}$,

$$
\frac{\sum_{n=1}^{N_{0}} \frac{M}{n}}{\sum_{n=1}^{N} \frac{1}{n}}<\frac{\varepsilon}{2}
$$

Then for any $N>N_{1}$,

$$
\begin{gathered}
\sum_{n=1}^{N} \frac{o_{n}}{n} \left\lvert\, \leq \frac{\sum_{n=1}^{N} \frac{\left|o_{n}\right|}{n}}{\sum_{n=1}^{N} \frac{1}{n}} \sum_{n=1}^{N} \frac{1}{n}\right. \\
<\frac{\sum_{n=1}^{N_{0}} \frac{M}{n}+\frac{\varepsilon}{2} \sum_{n=N_{0}+1}^{N} \frac{1}{n}}{\sum_{n=1}^{N} \frac{1}{n}}<\frac{\sum_{n=1}^{N_{0}} \frac{M}{n}}{\sum_{n=1}^{N} \frac{1}{n}}+\frac{\varepsilon}{2}<\varepsilon .
\end{gathered}
$$

Hence we have (2.8). The lemma is proved.

3. Main Results

Theorem 3.1. If $\lambda \in[0,1], S_{n}(\lambda)=\sum_{k=1}^{n} \frac{1}{k^{\lambda}}$, and $a_{n} \geq 0(n \in N)$, then we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)} \leq e \sum_{n=1}^{\infty} e^{\lambda n^{\lambda-1} S_{n}(\lambda)} a_{n} \tag{3.1}
\end{equation*}
$$

Proof. Setting $c_{n}>0$, such that

$$
\begin{equation*}
\left(\prod_{k=1}^{n} c_{k}^{1 / k^{\lambda}}\right)^{-1 / S_{n}(\lambda)}=\frac{1}{(n+1)^{\lambda} S_{n+1}(\lambda)}, \tag{3.2}
\end{equation*}
$$

then we find $\prod_{k=1}^{n} c_{k}^{1 / k^{\lambda}}=\left[(n+1)^{\lambda} S_{n+1}(\lambda)\right]^{S_{n}(\lambda)}, \prod_{k=1}^{n-1} c_{k}^{1 / k^{\lambda}}=\left[n^{\lambda} S_{n}(\lambda)\right]^{S_{n-1}(\lambda)}$, and

$$
\begin{equation*}
c_{n}=\frac{\left[(n+1)^{\lambda} S_{n+1}(\lambda)\right]^{\lambda^{\lambda} S_{n}(\lambda)}}{\left[n^{\lambda} S_{n}(\lambda)\right]^{n^{\lambda} S_{n-1}(\lambda)}}\left(n \in N, S_{0}(\lambda)=0\right) \tag{3.3}
\end{equation*}
$$

By using the arithmetic-geometric average inequality (see [2, Th. 9], we have

$$
\begin{equation*}
\left[\prod_{k=1}^{n}\left(c_{k} a_{k}\right)^{1 / k^{\lambda}}\right]^{1 / S_{n}(\lambda)} \leq \sum_{k=1}^{n} \frac{1}{k^{\lambda} S_{n}(\lambda)} c_{k} a_{k} \tag{3.4}
\end{equation*}
$$

Since we have (see [6, (5)])

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}<e\left[1-\frac{1}{2(x+1)}\right]<e(\text { for } x>0), \tag{3.5}
\end{equation*}
$$

then by (3.4), (3.2), (3.3) and (3.5), we find

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}=\sum_{n=1}^{\infty}\left[\prod_{k=1}^{n}\left(c_{k} a_{k}\right)^{1 / k^{\lambda}}\right]^{1 / S_{n}(\lambda)}\left(\prod_{k=1}^{n} c_{k}^{1 / k^{\lambda}}\right)^{-1 / S_{n}(\lambda)} \tag{3.6}\\
& \leq \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{k^{\lambda} S_{n}(\lambda)} c_{k} a_{k} \frac{1}{(n+1)^{\lambda} S_{n+1}(\lambda)}=\sum_{k=1}^{\infty} \frac{1}{k^{\lambda}} c_{k} a_{k} \sum_{n=k}^{\infty} \frac{1}{(n+1)^{\lambda} S_{n+1}(\lambda) S_{n}(\lambda)} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{\lambda}} c_{k} a_{k} \sum_{n=k}^{\infty}\left[\frac{1}{S_{n}(\lambda)}-\frac{1}{S_{n+1}(\lambda)}\right]=\sum_{k=1}^{\infty} \frac{1}{k^{\lambda}} c_{k} a_{k} \frac{1}{S_{k}(\lambda)} \\
& =\sum_{k=1}^{\infty}\left[\frac{(k+1)^{\lambda} S_{k+1}(\lambda)}{k^{\lambda} S_{k}(\lambda)}\right]^{k^{\lambda} S_{k}(\lambda)} a_{k} \\
& \leq \sum_{k=1}^{\infty}\left[\left(1+\frac{1}{k}\right)^{k}\right]^{\lambda k^{\lambda-1} S_{k}(\lambda)}\left[1+\frac{1}{(k+1)^{\lambda} S_{k}(\lambda)}\right]^{(k+1)^{\lambda S_{k}(\lambda)}} a_{k} \\
& \leq e \sum_{k=1}^{\infty}\left[\left(1+\frac{1}{k}\right)^{k}\right]^{\lambda k^{\lambda-1} S_{k}(\lambda)} a_{k} \leq e \sum_{k=1}^{\infty}\left\{e\left[1-\frac{1}{2(k+1)}\right]\right\}^{\lambda k^{\lambda-1} S_{k}(\lambda)} a_{k} .
\end{align*}
$$

Hence, we obtain (3.1). The theorem is proved.
Remark 1. For $\lambda=1$, by (1.6) and (1.7), we find the following Franel's inequality (see [4]):

$$
\begin{gather*}
\sum_{k=1}^{n} \frac{1}{k}<\ln n+\frac{1}{2 n}+\gamma, \text { and } \tag{3.7}\\
S_{n}=S_{n}(1)=\sum_{k=1}^{n+1} \frac{1}{k}-\frac{1}{n+1} \\
<\ln (n+1)-\frac{1}{2(n+1)}+\gamma<\ln (n+1)+\gamma \tag{3.8}
\end{gather*}
$$

Hence, for $\lambda=1$, by (3.8), inequality (3.1) reduces to (1.2). It is obvious that for λ $=0$, (3.1) reduces to (1.1). It follows that (3.1) is a relation between (1.1) and (1.2).

Theorem 3.2. If $a_{n} \geq 0(n \in N)$, such that $0<\sum_{n=1}^{\infty} a_{n}<\infty, \lambda \in[0,1)$, and $S_{n}(\lambda)=\sum_{k=1}^{n} \frac{1}{k^{\lambda}}$, then we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}<e^{\frac{1}{1-\lambda}} \sum_{n=1}^{\infty} a_{n} \tag{3.9}
\end{equation*}
$$

where the constant factor $e^{\frac{1}{1-\lambda}}$ is the best possible. We also have its strengthened version as:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}<e^{\frac{1}{1-\lambda}} \sum_{n=1}^{\infty}\left[1-\frac{1}{2(n+1)}\right]^{\frac{\lambda}{1-\lambda}} a_{n} \tag{3.10}
\end{equation*}
$$

In particular, for $\lambda=1 / 2$, we have $S_{n}\left(\frac{1}{2}\right)=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} a_{k}^{1 / \sqrt{k}}\right)^{1 / S_{n}(1 / 2)}<e^{2} \sum_{n=1}^{\infty}\left[1-\frac{1}{2(n+1)}\right] a_{n} \tag{3.11}
\end{equation*}
$$

Proof. For $\lambda=0$, since $S_{n}(0)=n$, (3.9) reduces to (1.1). We only consider $\lambda \in(0,1)$ in the following. Since we have

$$
S_{n}(\lambda)<\int_{0}^{n} \frac{1}{x^{\lambda}} d x=\frac{n^{1-\lambda}}{1-\lambda}, \text { for } \lambda \in(0,1)
$$

then by (3.1) and (3.6), we obtain (3.9) and (3.10).
Setting $\tilde{a}_{n}(n \in N)$ as:

$$
\tilde{a}_{n}=\frac{1}{n}, \text { for } n \leq N ; \tilde{a_{n}}=0, \text { for } n>N,
$$

then by (2.1), for $n \leq N$, since $\alpha_{n}=o(1)(n \rightarrow \infty)$, we find

$$
\begin{align*}
& \left(\prod_{k=1}^{n} \tilde{a}_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}=\exp \left\{\ln \left[\prod_{k=1}^{n}\left(\frac{1}{k}\right)^{1 / k^{\lambda}}\right]^{1 / S_{n}(\lambda)}\right\} \\
= & \exp \left\{-\frac{1}{S_{n}(\lambda)} \sum_{k=1}^{n} \frac{\ln k}{k^{\lambda}}\right\}=\exp \left\{\frac{1}{1-\lambda}-\ln n-\alpha_{n}\right\} \\
= & \frac{1}{n} \exp \left\{\frac{1}{1-\lambda}\right\} \exp \left\{\ln \left(1+o_{n}\right)\right\}=\frac{1+o_{n}}{n} \exp \left\{\frac{1}{1-\lambda}\right\}, \tag{3.12}
\end{align*}
$$

where $o_{n}=o(1)(n \rightarrow \infty)$.
If there exists $\lambda \in(0,1)$, such that the constant factor $e^{\frac{1}{1-\lambda}}$ in (3.9) is not the best possible, then there exists positive number $K<e^{\frac{1}{1-\lambda}}$, such that (3.9) is still valid if we replace $e^{\frac{1}{1-\lambda}}$ by K. In particular, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} \tilde{a}_{k}^{1 / k^{\lambda}}\right)^{1 / S_{n}(\lambda)}<K \sum_{n=1}^{\infty} \tilde{a}_{n} \tag{3.13}
\end{equation*}
$$

Hence we find

$$
K>\frac{1}{\sum_{n=1}^{N} \frac{1}{n}} \sum_{n=1}^{N} \exp \left\{\ln \left[\prod_{k=1}^{n}\left(\frac{1}{k}\right)^{1 / k^{\lambda}}\right]^{1 / S_{n}(\lambda)}\right\}
$$

$$
=\frac{1}{\sum_{n=1}^{N} \frac{1}{n}} \sum_{n=1}^{N} \frac{1+o_{n}}{n} \exp \left\{\frac{1}{1-\lambda}\right\}=e^{\frac{1}{1-\lambda}}\left[1+\frac{\sum_{n=1}^{N} \frac{o_{n}}{n}}{\sum_{n=1}^{N} \frac{1}{n}}\right],
$$

and $K \geq e^{\frac{1}{1-\lambda}}$, for $N \rightarrow \infty$, by (2.8). This contradicts the face that $K<e^{\frac{1}{1-\lambda}}$. Hence the constant factor $e^{\frac{1}{1-\lambda}}$ in (3.9) is the best possible. The theorem is proved.

Remark 2. For $\lambda=0$, by (3.9) or (3.10), we have (1.1). Inequality (3.9) is a generalization of Carleman's inequality with a best constant factor $e^{\frac{1}{1-\lambda}}(\lambda \in[0,1])$; So is (3.10).

References

1. T. Carleman, Sur les functions quasi-analytiques. Conferences faties au cinquieme congres des mathematicians scandinaves (Helsingfors, 1923), 181-196.
2. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. Cambridge Univ. press, London, 1952.
3. K. Hu , On Van der Corput inequality. J. of Math., 23 (2003), 126-128.
4. G. Polya, and G. Szeygo, Prollems and theorems in analysis, Vol. 1. Springer Verlag, 1972.
5. J. G. Van der Curput, Generalization of Carleman's inequality. Koninklijke, Akademie Wetenschappen to Amsterdam, 1936, XXXXIX(8).
6. B. Yang, On Hardy's inequality. J. Math. Anal. Appl., 234 (1999), 717-722.
7. B. Yang, On a strengthened version of the more accurate Hardy-Hilbert's inequality. Acta Mathematica Sinica, 42 (1999), 1103-1110.
8. B. Yang and L. Debnath, Some inequalities involving the constant e, and an application to Carlemaan's inequality. J. Math. Anal. Appl., 223 (1998), 347-353.
9. X. Yang, Approximations for constant e and their applications. J. Math. Anal. Appl., 252 (2000), 994-998.

Bicheng Yang
Department of Mathematics,
Guangdong Education College,
Guangzhou, Guangdong 510303,
People's Republic of China
E-mail: bcyang@pub.guangzhou.gd.cn

