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INTEGRATED CROSS-VALIDATION FOR THE RANDOM DESIGN

NONPARAMETRIC REGRESSION

Tzu-Kuei Chang, Wen-Shuenn Deng, Jung-Huei Lin, and C. K. Chu

Abstract. For the random design nonparametric regression, cross-validation

is a popular bandwidth selector. It is constructed by using the criterion of

“weighted” integrated square error. In practice, however, the weighting scheme

by the design density in the criterion causes that its associated cross-validation

function puts more emphasis in regions with more data, gives little atten-

tion to regions with few data, but has no consideration for regions without

data. In such a case, the value of the cross-validated bandwidth depends on

the distribution of the design points, but is independent of the location of

the interval on which the regression function value is estimated. Hence, if

there are sparse regions in the realization of the design, then the resulting

cross-validated bandwidth is usually not large enough in magnitude such that

its corresponding kernel regression function estimate has rough appearance

in these sparse regions. To avoid this drawback to cross-validation, we sug-

gest using the criterion of ”unweighted” integrated square error to construct

the bandwidth selector. Under the criterion, a bandwidth selector called inte-

grated cross-validation is proposed, and the resulting bandwidth is shown to be

asymptotically optimal. Empirical studies demonstrate that the kernel regres-

sion function estimate obtained by using our proposed bandwidth is better than

that employing the ordinary cross-validated bandwidth, in both senses of hav-

ing smoother appearance and yielding smaller sample unweighted integrated

square error.

1. INTRODUCTION

In the field of kernel regression function estimation, it is well known that choos-

ing a suitable value of bandwidth is the essence of the smoothing problem. See the
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works by Eubank (1988), Müller (1988), Härdle (1990, 1991), Scott (1992), Wand

and Jones (1995), Fan and Gijbels (1996), and Simonoff (1996) for a detailed intro-

duction of the kernel regression function estimator. For independent observations,

cross-validation introduced by Clark (1975) is an extremely popular data-driven

bandwidth selector. It is constructed by using the criterion of weighted integrated

square error (WISE) of the kernel regression function estimator. For asymptotic

properties of the cross-validated bandwidth and asymptotic equivalence of some

popular data-driven bandwidth selectors to cross-validation, see for example Rice

(1984), Härdle and Marron (1985), and Härdle, Hall, and Marron (1988). For other

bandwidth selectors, see also Marron (1988), a survey paper, and inferences cited

therein.

However, in practice, the weighting scheme by the design density in the WISE

criterion has an adverse effect. Its associated cross-validation function puts more

emphasis in regions with more data, gives little attention to regions with few data,

and no consideration for regions without data. In such a case, the magnitude of the

cross-validated bandwidth depends on the distribution of the design points, but is

independent of the location of the interval on which the regression function value is

estimated. Hence, if there are sparse regions in the realization of the design, then the

resulting cross-validated bandwidth is usually not large enough in magnitude such

that its corresponding kernel regression function estimate has rough appearance in

these sparse regions.

This drawback to ordinary cross-validation (OCV) is illustrated in Figure 1 using

the shampoo data (Bayhan and Bayhan 1998). Figure 1a shows that the kernel

regression function estimate produced by employing the ordinary cross-validated

bandwidth has rough appearance; hence, it is difficult to explain the economic

sense between the two variables considered by using this kernel estimate. The

result is due to the fact that the magnitude of this ordinary cross-validated bandwidth

ĥOCV = 1.14 is not large enough since it is less or slightly larger than the six largest
spacings 2.5, 2.2, 1.6, 1.1, 1.1, and 1.1 among the design points and the boundary

points of the interval on which value of the regression function is estimated. The

formulations and the computation procedures for quantities in Figure 1 will be

introduced in Sections 2 and 4, respectively.

To avoid the above drawback to OCV, we suggest using the criterion of ”un-

weighted” integrated square error (UISE) to construct the bandwidth selector. This

UISE criterion puts equal emphasis at each point on which the regression function

value is estimated. Using the criterion, a bandwidth selector called integrated cross-

validation (ICV) is proposed. The ICV function is constructed by the same idea

of the OCV function in Härdle and Marron (1985). First, the unknown regression

function value in the UISE criterion is replaced with its kernel estimate using the

k-nearest neighbor (kNN) bandwidth (Härdle 1990). Then, to avoid the problem
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Fig. 1. Plot of the shampoo data of size n = 75 and their kernel regression func-
tion estimates (1a), the ordinary cross-validation function (1b), and the

integrated cross-validation function (1c). The vertical line in (1b) and the

solid lines on the top of (1c) stand for the locations of minimizers of their

associated functions. For better visual performance, both the ordinary and

the integrated cross-validations are expressed by taking natural logarithm.

of using the same data to both construct and assess the kernel regression function

estimate, the kernel estimate using the global bandwidth originally in the UISE

criterion is taken as its ”leave-kNN-out” version. The minimizer of the ICV function

over the global bandwidth is taken as the integrated cross-validated bandwidth. For

the related modified cross-validation criterion in the case of dependent observations,

see for example Chu and Marron (1991a) and references cited therein. The same

idea of UISE criterion has been used in the field of kernel density estimation to

produce the least-squares cross-validated bandwidth (Silverman 1986).

Figure 1a shows that the kernel regression function estimate using our inte-

grated cross-validated bandwidth has smoother appearance and makes nice economic

senses. For example, it shows a direct linear relationship between the two variables

considered. Since soap and shampoo are close substitutes, when the price of soap

goes up, people use more shampoo to replace soap.

The organization of this paper is as follows. Section 2 describes the regression

settings and gives the precise formulation of our suggested bandwidth. Section 3

shows that the integrated cross-validated bandwidth is asymptotically optimal for

the UISE criterion. Section 4 contains empirical results which demonstrate that ICV

is better than OCV in the sense of yielding both smoother appearance and smaller

sample UISE for the kernel regression function estimate. Finally, sketches of the
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proofs are given in Section 5.

2. REGRESSION SETTINGS AND BANDWIDTH SELECTORS

In this paper, the random design nonparametric regression model is given by

(2.1) Yi = m(Xi) + εi,

for i = 1, ···, n. Here (Xi, Yi) are independently and identically distributed bivariate
random vectors, and εi are unobservable regression errors with mean 0 and variance
σ2, 0 < σ < ∞. For the sake of simplicity, the design points Xi are assumed

to have the probability density function f supported on the bounded region [0,1],
and are assumed to be independent of the regression errors εi. The purpose of the

regression is to use the data points (Xi, Yi) to estimate the regression functionm(x),
for each x ∈ [0, 1].

To estimate the regression function m, the local linear estimator (LLE; Fan

1992, 1993) using the global bandwidth is considered. It has many advantages. For

example, it achieves full asymptotic minimax efficiency among all linear estimators

(Fan 1993), has a nice asymptotic bias quality and a superior asymptotic variance

quantity (Gasser and Engel 1990, Chu and Marron 1991b, Wu and Chu 1992), and

adapts automatically to the boundary of the support of the design density (Fan and

Gijbels 1992). However, it has a disadvantage of having unbounded finite sample

conditional variance when a kernel function with compact support is used (Seifert

and Gasser 1996). Compactly supported kernels are often employed for compu-

tational convenience (Härdle 1991) and for optimal performance (Epanechnikov

1969). This adverse effect causes that the regression function estimate produced by

the LLE sometimes has rough appearance.

We now give the formulation of the LLE. For simplicity of presentation, assume

that the regression function m has two derivatives. Given the kernel function K

as a probability density function supported on [-1,1] and the bandwidth h = hn

tending to 0 as n → ∞, the LLE m̂(x) for m(x) is defined by

m̂(x) = {T0(x)S2(x)− T1(x)S1(x)}/{S0(x)S2(x)− S2
1(x)},

for each x ∈ [0, 1]. Here

Tj(x) = n−1h−1
n∑

i=1

YiZ
j
i K(Zi), Sj(x) = n−1h−1

n∑

i=1

Zj
i K(Zi), Zi = (x−Xi)/h,

for j ≥ 0. If the denominator of m̂(x) is 0, take m̂(x) = 0.
For constructing m̂(x), the optimal value hU of h is taken as the minimizer of

the UISE of m̂(x) in this paper. For each given value of h, the UISE of m̂(x) is
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defined by

dU(h) =
∫ 1

0
{m̂(x) − m(x)}2dx.

In practice, however, the value of hU is not available because the quantity depends

on the unknown function m(x). Since the value of hU can not be calculated, our

ICV is designed with the purpose of providing an estimate of hU .
We now give the motivation of ICV. Decompose dU(h) into

(2.2)
∫ 1

0
m̂2(x)dx + (−2)

∫ 1

0
m̂(x)m(x)dx +

∫ 1

0
m2(x)dx.

Under some regularity conditions, the first term in (2.2) may be approximated by∫ 1
0 m̂2

k(x)dx, and the second term may be estimated by (-2)
∫ 1
0 m̂k(x) Ŷk(x)dx. On

the other hand, the third term in (2.2) is independent of h, and may be replaced
by another term

∫ 1
0 Ŷ 2

k (x)dx still independent of h. Here k is a given positive

integer, m̂k(x) is the “leave-kNN-out” version of m̂(x), that is, the observations
{X(i), Y(i)} for 1 ≤ i ≤ k are left out in constructing m̂(x), and Ŷk(x) is m̂(x)
using only the data deleted by m̂k(x), where for each x ∈ [0, 1], X(i) denote the

rearranged Xi such that the values of |x− Xi| are in ascending order, and Y(i) are

the response variables corresponding to the design points X(i). Note that Ŷk(x) is
exactly m̂(x) using the kNN bandwidth ϕk(x) = |x − X(k)| for each x, where the

window width varies with location, and it has the same number of design points

in each window. Hwang (1995) shows that the regression function estimator Ŷk(x)
for m(x) has similar advantages of the LLE. For example, it does not suffer from
boundary effects. Combining these results, our ICV function is taken as

ICV (h, k) =
∫ 1

0
{m̂k(x)− Ŷk(x)}2dx.

Let (ĥICV , k̂ICV ) be the minimizer of ICV (h, k) over (h, k), and ĥICV is called

the integrated cross-validated bandwidth for hU . By subtracting and adding the term

m(x), it will be shown in Section 5 that ICV (h, k) approaches dU (h)+dU{ϕk(x)},
as the sample size n increases, where dU{ϕk(x)} =

∫ 1
0 {Ŷk(x)−m(x)}2dx. By this

result, it can be seen that ĥICV approaches hU in some mode, and its asymptotic

behavior is independent of the value of k. The asymptotic behavior of ĥICV will

be studied in Section 3.

We now close this section by giving the OCV criterion for the purpose of

comparison. It is constructed by taking the optimal bandwidth hW as the minimizer

of the WISE of m̂(x). For each given value of h, the WISE of m̂(x) is defined by

dW (h) =
∫ 1

0
{m̂(x) − m(x)}2f(x)dx.
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In the uniform design case, dW (h) = dU(h). The OCV function is taken as

OCV (h) = n−1
n∑

i=1

{m̂1(Xi) − Yi}2.

Here m̂1(Xi) is m̂k(Xi) with k = 1. The ordinary cross-validated bandwidth ĥOCV

is taken as the minimizer of OCV (h) over h. By subtracting and adding the term
m(Xi), OCV (h) approaches dW (h) + σ2, as the sample size n increases, hence

ĥOCV converges to hW in some mode.

3. THEORETICAL RESULTS

In this section, we shall study the asymptotic behavior of ĥICV . For this, in

addition to the assumptions given in Section 2, we impose the following assumptions:

(A1) The regression function m has two Lipschitz continuous derivatives on the

interval [0,1].

(A2) The design density f is Lipschitz continuous and bounded away from zero

on the interval [0,1].

(A3) The regression errors εi are independently and identically distributed random

variables with mean 0, variance σ2, and all other moments finite.

(A4) The kernel function K is a Lipschitz continuous and symmetric probability

density function with support [-1,1].

(A5) The values of h and k are selected on the intervalsHn = [ρ n−1+2ρ, ρ−1n−2ρ]
and Kn = [ρ nρ, ρ−1nρ], respectively, where ρ is an arbitrarily small positive

constant.

(A6) The total number of observations in this regression setting is n, with n→∞ .

Following Shibata (1981), ĥICV is said to be asymptotically optimal with respect

to the UISE criterion if

lim
n→∞

{dU(ĥICV ) / inf
h∈Hn

dU(h)} = 1

with probability one. The following Theorem 3.1 gives such optimality of ĥICV ,

and its proof will be given in Section 5.

Theorem 3.1. Given the regression model (2.1), if the assumptions (A1)-(A6)

hold, then ĥICV is asymptotically optimal with respect to the UISE criterion.
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4. EMPIRICAL RESULTS

To evaluate the performance of our integrated cross-validated bandwidth, empir-

ical studies were carried out. Simulation studies and real data examples are given

respectively in Subsections 4.1 and 4.2.

4.1 Simulations

In this subsection, a simulation study was performed to compare the performance

of OCV and ICV. The simulation settings were as follows. Four regression functions

m1(x) = x3(1 − x)3 with σ = 0.003 (Rice 1984), m2(x) = (3/10) exp{−4(4x−
1)2}+(7/10) exp{−16(4x−3)2} with σ = 1/10 (Fan and Gijbels 1995), m3(x) =
sin(5πx) with σ = 1/2 (Ruppert, Sheather, and Wand 1995), and m4(x) = 2 −
5x + 5 exp{−400(x− 1/2)2} with σ = (1/2)1/2 (Seifert and Gasser 1996) were

chosen. Four design densities supported on [0,1], including f1 : Uniform[0,1], f2 :
Normal{1/2, (1/3)2}∩[0, 1] (truncated-normal design), f3(x) = 4(1−b)|x−1/2|+b

with b = 1/5 (central-hole design), and f4 : Beta(1/2, 1) (uniform-square design),
were employed. These design densities have been considered by Seifert and Gasser

(1996), Hall and Turlach (1997), and Deng, Chu, and Cheng (2001) for studying

the performance of the LLE. For each regression function and each design density,

three sample sizes n = 50, 100, and 200 were considered. For each setting, the
regression errors εi were taken as the Normal(0, σ2) variables, and 500 independent
sets of observations (Xi, Yi) were generated by using the regression model (2.1).
The kernel functionK used by the LLE m̂(x) was the Epanechnikov kernelK(u) =
(3/4)(1−u2)I[−1,1](u). It is the optimal kernel for constructing m̂(x) (Fan, Gasser,
Gijbels, Brockmann, and Engel 1993).

Given each data set, the values of ICV (h, k) were calculated on the equally
spaced logarithmic grid of 200 values of h in [0.02,0.5] and k = 1, · · ·, [n/5],
and those of dU(h) and OCV (h) were computed on the same grid of h employed
by ICV (h, k), where the notation [x] denotes the integer part of x. See Marron

and Wand (1992) for a discussion that an equally spaced grid of parameters is

typically not a very efficient design for this type of grid search. For the given values

of h and k, the values of dU(h) and ICV (h, k) were approximated respectively
by (1/u)

∑u
i=1{m̂(ti) − m(ti)}2 and (1/u)

∑u
i=1{m̂k(ti) − Ŷk(ti)}2, where ti =

(2i− 1)/(2u) and u = 500. After evaluation on the grid, the global minimizers hU

of dU(h), ĥOCV of OCV (h), and (ĥICV , k̂ICV ) of ICV (h, k) were taken on the
grid. In our simulation study, the value of k̂ICV derived from each data set is less

than the right boundary point [n/5] of the grid of k.

When the values of hU over the 500 pseudo data sets were obtained, the sample

average and standard deviation of their corresponding dU(hU) were calculated. The
former quantity measures the best performance of m̂. On the other hand, the sample

average of dU (ĥOCV ) and that of dU(ĥICV ) over the 500 pseudo data sets measure
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the performance of m̂(x) which can be obtained in practice by using the ordinary
and the integrated cross-validated bandwidths, respectively. The simulation results

are summarized in the following figures and tables.

Given the sample size n = 200 and the regression function m1(x), the practical
performance of m̂(x) using the ordinary cross-validated bandwidth ĥOCV and that

Fig. 2. Practical performance for m1(x).
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employing the integrated cross-validated bandwidth ĥICV are presented in Figure

2. Figure 2a plots the regression function m1(x) (bold-faced dashed curve), one
simulated data set (stars) with the uniform design, and 5 regression function esti-

mates derived from 5 sets of the simulated data by m̂(x) using ĥOCV (solid curves),

and those employing ĥICV (dashed curves). Here, for better visual comparison, the

regression function estimates produced by using ĥICV have been vertically shifted

Fig. 3. Practical performance for m2(x).
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below. Figure 2b contains the regression function m1(x) (bold-faced dashed curve),
and the sample average of the 500 regression function estimates derived by m̂(x)
using ĥOCV (solid curve) and ĥICV (dashed curve). Figure 2c shows the sample

mean square error (MSE) of the 500 regression function estimates derived by m̂(x)
using ĥOCV (solid curve) and ĥICV (dashed curve). The same descriptions given in

(2a)-(2c) for the uniform design apply to (2d)-(2f) for the truncated-normal design,

Fig. 4. Practical performance for m3(x).
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to (2g) - (2i) for the central-hole design, and to (2j) - (2l) for the uniform-square

design. Similar results for the regression functions m2(x), m3(x), and m4(x) are
given respectively in Figures 3-5. These figures all show that the regression function

estimate produced by using ĥICV has smoother appearance, and has smaller sample

mean square error at the point outside the regions of peak and trough of the regression

Fig. 5. Practical performance for m4(x).
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function. Under our simulation settings, these results are caused by the fact that

ĥICV is generally of larger magnitude than ĥOCV . This fact can be seen clearly

from the curves for sample averages, since the curve obtained by using ĥICV has

larger magnitude of sample bias at each point in the regions of peaks and troughs

of the true regression function.

Table 1 contains, for each setting, the sample mean and standard deviation of

dU(ĥICV ), those of dU (ĥOCV ), and those of dU(hU ). Considering the values of
the sample mean and standard deviation, for each setting, the practical performance

Table 1. Values of the sample mean and standard deviation (given in the parentheses) of

dU (ĥOCV ), those of dU (ĥICV ), and those of dU(hU ). Each value corresponding
to the regression functions m1(x), m2(x), m3(x), and m4(x) has been multiplied
respectively by 107, 103, 102, and 101. The positive integer in the upper index

denotes the power of ten by which to multiply

dU (ĥOCV ) dU(ĥICV ) dU (hU) dU(ĥOCV ) dU(ĥICV ) dU (hU)

m1(x) n = 50 m3(x) n = 50
f1 1.025(1.626) 18.7(11.4) 13.1(8.40) f1 2.242(1.653) 12.8(9.40) 8.64(6.17)
f2 8.735(3.846) 29.9(33.5) 18.2(12.4) f2 2.313(2.584) 24.8(18.6) 14.5(12.1)
f3 6.425(3.676) 24.2(20.0) 15.1(10.9) f3 1.754(3.285) 25.4(16.9) 11.0(6.72)
f4 6.365(4.256) 27.9(21.6) 18.5(14.9) f4 1.653(1.864) 25.2(25.4) 14.5(12.0)

m1(x) n = 100 m3(x) n = 100
f1 1.114(2.255) 9.48(5.20) 7.04(3.58) f1 9.66(61.3) 4.89(2.30) 3.66(1.59)
f2 1.105(8.145) 13.4(7.40) 8.97(5.46) f2 1.462(9.992) 9.43(12.1) 5.62(4.39)
f3 2.305(1.636) 11.1(7.61) 7.92(4.74) f3 9.533(1.415) 7.73(6.49) 5.03(3.01)
f4 6.954(7.655) 13.5(8.38) 8.94(5.54) f4 3.772(3.773) 8.99(8.11) 5.21(2.68)

m1(x) n = 200 m3(x) n = 200
f1 5.24(2.91) 4.92(2.39) 4.04(1.93) f1 2.45(2.91) 2.30(0.93) 1.90(0.75)
f2 3.103(5.014) 7.00(3.90) 5.06(2.99) f2 31.7(3.652) 3.73(2.14) 2.52(1.26)
f3 9.013(1.645) 5.93(3.74) 4.51(2.74) f3 32.3(4.192) 3.37(1.90) 2.40(1.16)
f4 7.273(1.125) 6.57(3.61) 4.92(2.67) f4 14.3(1.952) 3.45(1.77) 2.48(1.06)

m2(x) n = 50 m4(x) n = 50
f1 3.894(8.555) 9.50(7.63) 5.30(3.21) f1 1.764(3.635) 7.14(4.08) 3.32(1.81)
f2 8.162(4.333) 18.7(57.0) 9.30(6.87) f2 1.483(1.044) 8.22(3.64) 4.93(2.42)
f3 9.023(1.695) 13.9(9.86) 7.21(4.13) f3 3.823(6.534) 13.4(2.83) 5.61(3.75)
f4 8.892(8.343) 21.8(18.2) 9.88(8.00) f4 3.163(2.974) 9.42(4.38) 5.11(2.78)

m2(x) n = 100 m4(x) n = 100
f1 1.332(2.683) 3.35(1.89) 2.33(0.97) f1 1.303(2.864) 2.97(3.17) 1.33(0.52)
f2 2.522(2.193) 6.04(4.30) 3.53(2.35) f2 1.033(1.164) 4.29(3.04) 2.18(1.38)
f3 1.133(1.244) 5.05(3.72) 3.30(1.78) f3 7.102(9.993) 8.83(3.48) 2.61(2.44)
f4 3.412(2.643) 8.42(2.27) 3.60(2.76) f4 5.452(5.953) 6.51(3.13) 2.10(1.08)

m2(x) n = 200 m4(x) n = 200
f1 2.26(19.5) 1.44(0.67) 1.15(0.39) f1 1.23(6.58) 0.88(0.73) 0.65(0.21)
f2 35.8(2.402) 2.41(1.35) 1.51(0.80) f2 58.7(4.172) 1.49(1.01) 0.89(0.42)
f3 6.392(1.184) 2.20(0.91) 1.53(0.64) f3 9.07(62.8) 2.92(2.50) 1.05(0.71)
f4 55.4(1.053) 2.30(1.44) 1.56(0.72) f4 52.5(6.102) 1.52(1.58) 0.89(0.41)
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of the regression function estimate produced by m̂(x) using ĥICV is better than that

employing ĥOCV . Note that this remark still holds in the special and important case

of the uniform design. In this case, both ĥICV and ĥOCV estimate the same value

of hU .

4.2 Applications

In this subsection, the performance of ICV is illustrated by using three data sets

in Simonoff (1996), including the gasoline consumption data, the basketball player

data, and the automobile data. The same computation procedures for these three

data sets were also applied to Figure 1 in Section 1 for the shampoo data.

Given each data set, the LLE m̂(x) with the Epanechnikov kernel was used to
estimate the underlying regression function. The global minimizer (ĥICV , k̂ICV ) of
ICV (h, k) was chosen on the equally spaced logarithm grid of 500 values of h in the
interval [w/50, w/2] and k = 1, ···, [n/5]. Here w stands for the width of the interval

on which the regression function value is estimated. Given the values of h and k,
that of ICV (h, k) was approximated by the quantity (1/u)

∑u
i=1{m̂k(ti)−Ŷk(ti)}2,

where u = [100w] and ti are equally spaced partition points of the interval on which
the regression function value is estimated. The values of k̂ICV derived from the

three data sets considered in this section and the shampoo data discussed in Section

1 are 6, 2, 2, and 9, respectively. On the other hand, the ordinary cross-validated

bandwidth ĥOCV for m̂(x) was selected on the same grid of h used for choosing

ĥICV . The results are given in Figure 6.

Fig. 6. Plot of the gasoline consumption data of size n = 27 (6a), the basketball
player data of size n = 96 (6b), and the automobile data of size n = 93
(6c) and their local linear regression function estimates.



136 Tzu-Kuei Chang, Wen-Shuenn Deng, Jung-Huei Lin, and C.K. Chu

Figure 6 shows that, for each data set, the local linear regression function esti-

mate produced by employing ĥOCV has rough appearance, and exhibits erroneous

behavior in some regions. For example, in Figure 6a, this regression function esti-

mate shows unreasonably negative gasoline consumption in the left boundary region.

Hence, the relationship between the predictor and the response variables can not be

explained correctly by using such kernel estimate. On the other hand, for each data

set, the drawback caused by ĥOCV does not happen to ĥICV since the corresponding

local linear regression function has smooth appearance, and has all values in the

reasonable range.

5. SKETCHES OF THE PROOFS

Proof of Theorem 3.1. The following notation will be used throughout this sec-
tion. For each x ∈ [0, 1], define v(x; h) =

∑n
i=1 ωi(x)εi, b(x; h) =

∑n
i=1 ωi(x){m

(Xi)−m(x)}, ωi(x) = n−1h−1 K(Zi) {S2(x)−S1(x)Zi} {S0(x) S2(x)−S2
1(x)}−1,

where Sj(x) and Zi have been defined in Section 2, and set vk(x; h) and bk(x; h)
as the “leave-kNN-out” version of v(x; h) and b(x; h), respectively. Hence, m̂(x)−
m(x) = v(x; h)+b(x; h) and m̂k(x)−m(x) = vk(x; h)+bk(x; h). Set vs(x; h) =
vk(x; h)+v(x; h), vd(x; h) = vk(x; h)−v(x; h), bs(x; h) = bk(x; h)+b(x; h), and
bd(x; h) = bk(x; h)− b(x; h). Let An = ou(αn) and Bn = Ou(βn) mean that, as
n → ∞, An/αn converges to 0 and |Bn/βn| is bounded above with probability one,
and uniformly on [0,1], Hn, or Kn if An and Bn involves x, h, or k, respectively,
in each case.

To prove Theorem 3.1, following essentially the same proof of Theorem 1 in

Härdle and Marron (1985) for the optimality of ĥOCV with respect to the WISE

criterion, decompose ICV (h, k) into

ICV (h, k) = dU(h) + dU{ϕk(x)}+ A(h, k) + B(h, k),

where

A(h, k) =
∫ 1

0
{bd(x; h) + vd(x; h)}{bs(x; h) + vs(x; h)}dx,

B(h, k) = (−2)
∫ 1

0
{m̂k(x)− m(x)}{Ŷk(x) − m(x)}dx.

By the decomposition and the fact that the quantity dU{ϕk(x)} is independent of
h, the proof of our Theorem 3.1 is complete by showing that

(5.1) sup
h∈Hn

|{dU(h) − d∗U (h)}/ d∗U(h)| → 0 with probability one,

(5.2) sup
h∈Hn,k∈Kn

|A(h, k)/ d∗U(h)| → 0 with probability one,
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(5.3) sup
h∈Hn,k∈Kn

|B(h, k)/ d∗U (h)| → 0 with probability one,

as n → ∞. Here d∗U(h) = E{dU(h)} =
∫ 1
0 E{v2(x; h)}dx +

∫ 1
0 E{b2(x; h)}dx.

Using (2.1), (A1)-(A6), and approximations to the standard errors of functions of

random variables in Section 10.5 of Stuart and Ord (1987), through a straightforward

calculation, we have

∫ 1

0
E{v2(x; h)}dx = a1n

−1h−1{1 + O(h + n−1h−1)},
∫ 1

0
E{b2(x; h)}dx = b1h

4{1 + O(h + n−1h−1)},
where

a1 = σ2{
∫ 1

−1
K2(u)du}{

∫ 1

0
f−1(x)dx},

b1 = (1/4){
∫ 1

−1

u2K(u)du}2{
∫ 1

0

m2
2(x)dx},

and m2 denotes the second derivative of m; see Fan and Gijbels (1996).

We now give the proof of (5.1). Using (A1)-(A6), Whittle’s inequality in Whittle

(1960), and the large deviation theorem in Section 10.3.1 of Serfling (1980), through

a straightforward calculation, we have the following asymptotic results: for any h,
h1 ∈ Hn, with h ≤ h1,

v(x; h) = h−1ou(1), b(x; h) = Ou(h2),
∫ 1

0

{ρ1(x; h)− ρ1(x; h1)}dx = h−2|(h− h1)/h|ou(1),
∫ 1

0
{ρ2(x; h)− ρ2(x; h1)}dx = h1|(h− h1)/h|ou(1),

∫ 1

0
{ρ3(x; h)− ρ3(x; h1)}dx = h3

1|(h− h1)/h|ou(1),

where ρ1(x; h) = v2(x; h)− E{v2(x; h)}, ρ2(x; h) = v(x; h)b(x; h), and ρ3(x; h)
= b2(x; h)−E{b2(x; h)}. Using these asymptotic results, it is sufficient to restrict
the supremum in (5.1) to a set H∗

n which is a subset of Hn so that #(H∗
n) ≤ nr+1

and so that for any h ∈ Hn there is an h1 ∈ H∗
n with h ≤ h1 and |(h−h1)/h| ≤ n−r.

Then, for any constant r ≥ 3, we have

sup
h∈Hn

|dU(h) − d∗U (h)| ≤ sup
h1∈H∗

n

|dU(h1)− d∗U(h1)|+

sup
h∈Hn,h1∈H∗

n,|(h−h1)/h|≤n−r

|{dU(h)− d∗U(h)} − {dU(h1) − d∗U (h1)}|

≤ sup
h1∈H∗

n

|dU(h1) − d∗U(h1)|+ ou(n−1).
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To prove (5.1), combining this result with the fact that d∗U(h) = O(h4 + n−1h−1),
it is enough to show

(5.4) sup
h∈H∗

n

|
∫ 1

0
ρ1(x; h)dx / d∗U(h)| → 0 with probability one,

(5.5) sup
h∈H∗

n

|
∫ 1

0
ρ2(x; h)dx / d∗U(h)| → 0 with probability one,

(5.6) sup
h∈H∗

n

|
∫ 1

0

ρ3(x; h)dx / d∗U(h)| → 0 with probability one.

To verify (5.4), given η > 0, for any t = 1, 2, · · ·, we have

Prob( sup
h∈H∗

n

|
∫ 1

0
ρ1(x; h)dx / d∗U (h)| > η)

≤ η−2t#(H∗
n) sup

h∈H∗
n

E[{
∫ 1

0
ρ1(x; h)dx / d∗U(h)}2t],

where #(H∗
n) = O(nr+1). The proof of (5.4) is complete when it is seen that there

is a constant τ > 0, so that for t = 1, 2, · · ·, there are constants ct so that

(5.7) sup
h∈H∗

n

E[{
∫ 1

0
ρ1(x; h)dx / d∗U(h)}2t] ≤ ctn

−τt.

Using (5.7) and the Borel-Cantelli lemma, there is a sufficiently large t to make

r + 1 − τt < −1, then, for any given η > 0,

∞∑

n=1

Prob( sup
h∈H∗

n

|
∫ 1

0
ρ1(x; h)dx / d∗U(h)| > η) ≤ ct

∞∑

n=1

nr+1−τt < ∞.

Hence the proof of (5.4) is complete.

To prove (5.7), ρ1(x; h) is expressed as ϕ1(x; h) + ϕ2(x; h), where

ϕ1(x; h) =
n∑

i=1,i 6=j,

n∑

j=1

ωi(x)ωj(x)εiεj , ϕ2(x; h) =
n∑

i=1

[ω2
i (x)ε2i − E{ω2

i (x)}σ2].

Using (A1)-(A6), Whittle’s inequality, and approximations to the standard errors of

functions of random variables, through a straightforward calculation, we have

E[{
∫ 1

0
ϕ1(x; h)dx}2t] = O(n−2th−t), E[{

∫ 1

0
ϕ2(x; h)dx}2t] = O(n−3th−2t).
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Hence, the proof of (5.7) is complete.

The proofs for (5.5)-(5.6) and those for (5.2)-(5.3) are essentially the same as

that of (5.4) and that of (5.1), respectively. Hence they are omitted. The proof of

Theorem 3.1 is complete.
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