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A CLASS OF THIRD ORDER MULTI-POINT BOUNDARY VALUE

PROBLEM

Zengji Du, Guolan Cai and Weigao Ge

Abstract. This paper deals with a class of third order multi-point boundary

value problem at resonance case. Some existence theorems are obtained by

using the coincidence degree theory of Mawhin.

1. INTRODUCTION

In this paper, we are concerned with the following third order ordinary differ-

ential equation:

(1.1) x′′′(t) = f(t, x(t), x′(t), x′′(t)), t ∈ (0, 1),

with the following multi-point boundary conditions:

(1.2) x(0) = αx(ξ), x′′(0) = 0, x′(1) =
m−2∑

j=1

βjx
′(ηj).

Where f : [0, 1]×R3 −→ R is a continuous function, α ≥ 0, βj ( j = 1, · · · , m−2, )
∈ R, 0 < ξ < 1, 0 < η1 < η2 < · · · < ηm−2 < 1, all β′

is have the same sign.
Similar to [1, 2], if the linear equation x′′′(t) = 0, with boundary conditions

(1.2) has only zero solution, and the differential operator defined in a suitable

Banach space, with boundary conditions taken into account, is invertible, the so-

called non-resonance case; otherwise, is non-invertible, then the so-called resonance

case.
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For the resonance case, it is more delicate. Ma [3] studied existence and mul-

tiplity results for the following boundary value problem:

(1.3) x′′′ + k2x′ + g(x, x′) = p(t),

(1.4) x′(0) = x′(π) = x(η) = 0,

by combining the well-known Lyapunov-Schmidt procedure with the continuum

theory for O-epi maps. In the case k = 1, the solvability of (1.3), (1.4) has been
considered by Nagle and Pothoven [4] under the condition that g is bounded on one
side. Gupta [5] studied the existence of boundary value problem, similar to (1.3),

(1.4) of the type

(1.5) x′′′ + π2x′ + g(t, x, x′, x′′) = p(t),

(1.6) x′(0) = x′(1) = x(η) = 0, 0 ≤ η ≤ 1,

under some appropriate conditions.

Feng [1], Liu [6] and Gupta [7] studied the existence results for some second

order multi-point boundary value problems at resonance case.

Inspired by the work of the above papers, in the present article, we use the

coincidence degree theory of Mawhin [8] to discuss the existence of solution for third

order multi-point BVP (1.1), (1.2) at resonance case, and establish some existence

theorems under sub-linear growth restriction of f . For some recent results on third
order nonlinear boundary value problems and second order multi-point boundary

value problems at resonance case we refer the reader to [9-12].

2. MAIN RESULTS

We first recall some notation and an abstract existence result.

Let Y , Z be real Banach spaces and let L : domL ⊂ Y −→ Z be a linear

operator which is Fredholm map of index zero (that is, ImL, the image of L, KerL,

the kernel of L is finite dimensional with the same dimension as the Z/ImL.)
and P : Y −→ Y , Q : Z −→ Z be continuous projectors such that ImP =

KerL, KerQ = ImL and Y = KerL ⊕ KerP , Z = ImL ⊕ ImQ. It follows that
L|domL∩KerP : domL ∩ KerP −→ ImL is invertible, we denote the inverse of

that map by KP . Let Ω be an open bounded subset of Y such that domL ∩ Ω
6= ∅, the map N : Y −→ Z is said to be L-compact on Ω if QN(Ω) is bounded
and KP (I − Q)N : Ω −→ Y is compact. Let J : ImQ −→ KerL be a linear

isomorphism.

The theorem we use in the following is the Theorem IV.13 of [8].

Theorem 2.1. Let L be a Fredholm operator of index zero and let N be

L-compact on Ω. Assume that the following conditions are satisfied:
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(i) Lx 6= λNx for every (x, λ) ∈ [(domL\KerL) ∩ ∂Ω]× (0, 1).
(ii) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω.
(iii) deg(JQN |KerL, Ω ∩ KerL, 0) 6= 0, where Q : Z −→ Z is a projection as

above with ImL = KerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In the following, we shall use the classical spaces C[0, 1], C1[0, 1], C2[0, 1] and
L1[0, 1]. For x ∈ C2[0, 1], we use the norm ‖x‖∞ = maxt∈[0,1] |x(t)| and ‖x‖ =
max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞}, and denote the norm in L1[0, 1] by ‖ · ‖1. We will

use the Sobolev space W 3,1(0, 1) which may be defined by
W 3,1(0, 1) = {x : [0, 1] −→ R|x, x′, x′′

are absolutely continuous on [0, 1] with x′′′ ∈ L1[0, 1]}.
Now we prove existence results for BVP (1.1), (1.2) in the following two cases:

(i) α = 0,
∑m−2

j=1 βj = 1;

(ii) α = 1,
∑m−2

j=1 βj = 1.
Let Y =C2[0, 1], Z=L1[0, 1], L is the linear operator from domL⊂Y to Z with

domL = {x ∈ W 3,1(0, 1) : x(0) = αx(ξ), x′′(0) = 0, x′(1) =
m−2∑

j=1

βjx
′(ηj)}

and Lx = x′′′, x ∈ domL. We define N : Y −→ Z by setting

Nx = f(t, x(t), x′(t), x′′(t)), t ∈ (0, 1).

Then BVP (1.1), (1.2) can be written as Lx = Nx.
Our first result is the following one dealing with BVP (1.1), (1.2) in case (i).

Theorem 2.2. Let f : [0, 1]×R3−→R be a continuous function, assume that

(1) There exist functions a, b, c, r ∈ L1[0, 1], such that for all (x, y, z) ∈ R3,

t ∈ [0, 1], satisfying

(2.1) |f(t, x, y, z)| ≤ a(t)|x|+ b(t)|y|+ c(t)|z|+ r(t).

(2) There exists a constant M > 0, such that for x ∈ domL, if |x′(t)| > M , for

all t ∈ [0, 1], then

(2.2)

m−2∑

j=1

βj

[∫ ηj

0
(1 − ηj)f(v, x(v), x′(v), x′′(v))dv

+
∫ 1

ηj

(1 − v)f(v, x(v), x′(v), x′′(v))dv

]
6= 0.
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(3) There exists a constant M∗ > 0, such that either

(2.3) c ·
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, cv, c, 0)dvdτ < 0, for all |c| > M∗,

or else

(2.4) c ·
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0

f(v, cv, c, 0)dvdτ > 0, for all |c| > M∗.

Then BVP (1.1), (1.2) with α = 0,
∑m−2

j=1 βj = 1, has at least one solution in
C2[0, 1] if

‖a‖1 + ‖b‖1 + ‖c‖1 <
1
2
.

We prove this result via the following lemmas.

In the following, we assume that the conditions in Theorem 2.2 are all satisfied.

Lemma 2.1. If α = 0,
∑m−2

j=1 βj = 1, then L : domL ⊂ Y −→ Z is a

Fredholm operator of index zero. Furthermore, the linear continuous projector

operator Q : Z −→ Z can be defined by

Qy =
2

1 −
∑m−2

j=1 βjη2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ,

and the linear operator KP : ImL −→ domL ∩ KerP can be written by

KP y =
∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds.

Furthermore

‖KP‖ ≤ ‖y‖1, for every y ∈ ImL.

Proof. It is clear that

KerL = {x ∈ domL : x = ct, c ∈ R, t ∈ [0, 1]}.

Now we show that

(2.5) ImL = {y ∈ Z :
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ = 0}.

Since the problem

(2.6) x′′′ = y
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has a solution x(t) satisfied x(0) = αx(ξ), x′′(0) = 0, x′(1) =
∑m−2

j=1 βjx
′(ηj), if

and only if

(2.7)
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ = 0.

In fact, if (2.6) has a solution x(t) satisfied x(0) = αx(ξ), x′′(0) = 0, x′(1) =∑m−2
j=1 βjx

′(ηj), then from (2.6) we have

x(t) = x(0) + x′(0)t +
1
2
x′′(0)t2 +

∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds

= x′(0)t +
∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds.

According to
∑m−2

j=1 βj = 1, we obtain

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ = 0.

On the other hand, if (2.7) holds, setting

x(t) = ct +
∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds,

where c is an arbitrary constant, then x(t) is a solution of (2.6), and x(0) = x′′(0)
= 0, x′(1) =

∑m−2
j=1 βjx

′(ηj). Hence (2.5) is valid.
For y ∈ Z, define

Qy(t) =
2

1 −
∑m−2

j=1 βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ, 0≤ t ≤ 1.

Let y1 = y − Qy, it is easily shown that

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y1(v)dvdτ = 0,

then y1 ∈ ImL. Hence Z = ImL + Z1, where Z1 = {x(t) ≡ c : t ∈ [0, 1], c ∈ R},
also ImL ∩ Z1 = {0}. So we have Z = ImL ⊕ Z1, and

dim KerL = dim Z1 = co dim ImL = 1.

Thus L is a Fredholm operator of index zero.
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Now we define a projector P from Y to Y by setting

Px = x′(0)t.

Then the generalized inverse KP : ImL −→ domL ∩ KerP of L can be written by

KP y =
∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds.

In fact, for y ∈ ImL, we have

(LKP )y(t) = [(KPy)(t)]′′′ = y(t),

and for x ∈ domL∩KerP , we know

(KP L)x(t) =
∫ t

0

∫ s

0

∫ τ

0
x′′′(v)dvdτds = x(t) − x(0) − x′(0)t− 1

2
x′′(0)t2,

in view of x ∈ domL∩KerP , x(0) = x′′(0) = 0 and Px = 0, thus

(KP L)x(t) = x(t).

This shows that KP = (L|domL∩KerP )−1. Also we have

‖KP y‖∞ ≤
∫ 1

0

∫ 1

0

∫ 1

0
|y(v)|dvdτds = ‖y‖1,

and from (KP y)′(t) =
∫ t
0

∫ τ
0 y(v)dvdτ , (KP y)′′(t) =

∫ t
0 y(v)dv, we obtain

‖(KPy)′‖∞ ≤
∫ 1

0

∫ 1

0
|y(v)|dvdτ = ‖y‖1,

‖(KPy)′′‖∞ ≤
∫ 1

0
|y(v)|dv = ‖y‖1,

then ‖KP y‖ ≤ ‖y‖1. This completes the proof of Lemma 2.1.

Lemma 2.2. Let Ω1 = {x ∈ domL\KerL : Lx = λNx for some λ ∈ [0, 1]}.
Then Ω1 is a bounded subset of Y .

Proof. Suppose that x ∈ Ω1 and Lx = λNx. Thus λ 6= 0 and QNx = 0, so
that

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, x(v), x′(v), x′′(v))dvdτ = 0,
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namely,
m−2∑

j=1

βj

[∫ ηj

0
(1− ηj)f(v, x(v), x′(v), x′′(v))dv

+
∫ 1

ηj

(1− v)f(v, x(v), x′(v), x′′(v))dv

]
= 0.

Thus, by condition (2), there exists t0 ∈ [0, 1], such that |x′(t0)| ≤ M . In view of

x′(0) = x′(t0) −
∫ t0

0
x′′(t)dt, x′′(t) = x′′(0) −

∫ t

0
x′′′(t)dt,

then, we have

(2.8) |x′(0)| ≤ M +
∫ 1

0

∫ 1

0
|x′′′|dt = M +‖x′′′‖1 = M +‖Lx‖1 ≤ M +‖Nx‖1.

Again for x ∈ Ω1, x ∈ domL\KerL, then (I − P )x ∈ domL ∩ KerP, LPx = 0,
thus from Lemma 2.1, we know

(2.9) ‖(I − P )x‖ = ‖KP L(I − P )x‖ ≤ ‖L(I − P )x‖1 = ‖Lx‖1 ≤ ‖Nx‖1.

From (2.8) and (2.9), we have

(2.10) ‖x‖ ≤ ‖Px‖ + ‖(I − P )x‖ = |x′(0)|+ ‖(I − P )x‖ ≤ 2‖Nx‖1 + M.

From (2.1) and (2.10), we obtain

(2.11) ‖x‖ ≤ 2[‖a‖1‖x‖∞ + ‖b‖1‖x′‖∞ + ‖c‖1‖x′′‖∞ + ‖r‖1 +
M

2
].

Thus, from ‖x‖∞ ≤ ‖x‖ and (2.11), we have

(2.12) ‖x‖∞ ≤ 2
1− 2‖a‖1

[
‖b‖1‖x′‖∞ + ‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]
.

From ‖x′‖∞ ≤ ‖x‖, (2.11) and (2.12), one has

‖x′‖∞ ≤ ‖x‖

≤ 2
[
1+

2‖a‖1

1 − 2‖a‖1

][
‖b‖1‖x′‖∞+‖c‖1‖x′′‖∞+‖r‖1+

M

2

]

=
2

1 − 2‖a‖1

[
‖b‖1‖x′‖∞ + ‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]
,

i.e.,
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(2.13) ‖x′‖∞ ≤ 2
1 − 2‖a‖1 − 2‖b‖1

[
‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]
.

Again from ‖x′′‖∞ ≤ ‖x‖, (2.11), (2.12) and (2.13), we get

‖x′′‖∞ ≤ ‖x‖ ≤
[
2‖b‖1 +

4‖a‖1‖b‖1

1 − 2‖a‖1

]
‖x′‖∞

+
[

4‖a‖1

1− 2‖a‖1
+ 2

] [
‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]

≤
[

4‖b‖1

(1− 2‖a‖1 − 2‖b‖1)(1− 2‖a‖1)
+

2
1 − 2‖a‖1

]

·
[
‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]

=
2

1 − 2‖a‖1 − 2‖b‖1

[
‖c‖1‖x′′‖∞ + ‖r‖1 +

M

2

]
,

i.e.,

(2.14) ‖x′′‖∞ ≤ 2C1

1 − 2‖a‖1 − 2‖b‖1 − 2‖c‖1
,

where C1 = ‖r‖1 + M
2 . From (2.14), there exist M1 > 0, such that

(2.15) ‖x′′‖∞ ≤ M1,

thus from (2.15) and (2.13), there exist M2 > 0, such that

(2.16) ‖x′‖∞ ≤ M2,

therefore from (2.16) and (2.12), there exist M3 > 0, such that

(2.17) ‖x‖∞ ≤ M3.

Hence

‖x‖ = max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞} ≤ max{M1, M2, M3}.

Again from (2.1), (2.15), (2.16) and (2.17), we have

‖x′′′‖1 = ‖Lx‖1 ≤ ‖Nx‖1 ≤ ‖a‖1M3 + ‖b‖1‖M2 + ‖c‖1M1 + ‖r‖1.

We show that Ω1 is bounded.

Lemma 2.3. The set Ω2 = {x ∈ KerL : Nx ∈ ImL} is bounded.
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Proof. Let x ∈ Ω2, then x ∈ KerL = {x ∈ domL : x = ct, c ∈ R, t ∈ [0, 1]},
and QNx = 0, therefore

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, cv, c, 0)dvdτ = 0,

that is

m−2∑

j=1

βj

[∫ ηj

0
(1− ηj)f(v, cv, c, 0)dv +

∫ 1

ηj

(1− v)f(v, cv, c, 0)dv

]
= 0.

From condition (2), ‖x‖∞ = |c| ≤ M , so ‖x‖ = |c| ≤ M , thus Ω2 is bounded.

Lemma 2.3. If the first part of Condition (3) of Theorem 2.2 holds, that is,
there exists M∗ > 0, such that

(2.18) c · 2

1 −
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, cv, c, 0)dvdτ < 0,

for all |c| > M∗. Let

Ω3 = {x ∈ KerL : −λx + (1 − λ)JQNx = 0, λ ∈ [0, 1]},

where J : ImQ −→ KerL is the linear isomorphism given by J(c) = ct, ∀c ∈ R,
t ∈ [0, 1]. Then Ω3 is bounded.

Proof. Suppose that x = c0t ∈ Ω3, then we obtain

λc0t = (1 − λ) · 2t

1 −
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, c0v, c0, 0)dvdτ, 0 ≤ t ≤ 1,

or equivalently

λc0 = (1− λ) · 2

1−
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0

f(v, c0v, c0, 0)dvdτ.
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If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗, in view of (2.18), one has

λc2
0 = c0 · (1− λ) · 2

1−
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, c0v, c0, 0)dvdτ < 0,

which contradicts λc2
0 ≥ 0. Then |x| = |c0t| ≤ |c0| ≤ M∗, we obtain ‖x‖ ≤ M∗,

therefore Ω3 ⊂ {x ∈ KerL : ‖x‖ ≤ M∗} is bounded.
The proof of Theorem 2.2 is now an easy consequence of the above lemmas

and Theorem 2.1.

Proof of Theorem 2.2. Let Ω = {x ∈ Y : ‖x‖ < d} such that
⋃3

i=1 Ωi ⊂ Ω.
By the Ascoli-Arzela theorem, it can be shown that KP (I − Q)N : Ω −→ Y is

compact, thus N is L-compact on Ω. Then by the above Lemmas, we have

(i) Lx 6= λNx for every (x, λ) ∈ [(domL\KerL)∩ ∂Ω]× (0, 1).

(ii) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω.

(iii) Let H(x, λ) = −λx + (1 − λ)JQNx, with J as in Lemma 2.4. We know
H(x, λ) 6= 0, for x ∈ KerL∩∂Ω. Thus, by the homotopy property of degree,
we get

deg(JQN |KerL, Ω∩ KerL, 0) = deg(H(·, 0),Ω∩ KerL, 0)
= deg(H(·, 1),Ω∩ KerL, 0)
= deg(−I, Ω∩ KerL, 0).

According to definition of degree on a space which is isomorphic to Rn, n < ∞,
and

Ω
⋂
KerL = {ct : |c| < d}.

We have

deg(−I, Ω∩ KerL, 0) = deg(−J−1IJ, J−1(Ω∩ KerL), J−1{0})
= deg(−I, (−d, d), 0) = −1 6= 0,

and then

deg(JQN |KerL, Ω∩ KerL, 0) 6= 0.

Then by Theorem 2.1, Lx = Nx has at least one solution in domL∩Ω, so that the
BVP (1.1), (1.2) has at least one solution in C2[0, 1]. The proof is completed.
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Remark 2.1. If the second part of Condition (3) of Theorem2.2 holds, that is,

(2.19) c · 2

1 −
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, cv, c, 0)dvdτ > 0,

for all |c| > M∗, then in Lemma 2.4, we take

Ω3 = {x ∈ KerL : λx + (1− λ)JQNx = 0, λ ∈ [0, 1]},

and exactly as there, we can prove that Ω3 is bounded. Then in the proof of Theorem

2.2, we have

deg(JQN |KerL, Ω∩ KerL, 0) = deg(I, Ω∩ KerL, 0) = 1,

since 0 ∈ Ω ∩ KerL. The remainder of the proof is the same.
By using the same method as in the proof of Theorem 2.2 and Lemmas 2.1−2.4,

we can show Lemma 2.5 and Theorem 2.3, when BVP (1.1), (1.2) satisfies the case

(ii).

Lemma 2.5. If α = 1,
∑m−2

j=1 βj = 1, then L : domL ⊂ Y −→ Z is a

Fredholm operator of index zero. Furthermore, the linear continuous projector

operator Q : Z −→ Z can be defined by

Qy =
2

1−
m−2∑

j=1

βjη
2
j

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
y(v)dvdτ,

and the linear operator KP : ImL −→ domL ∩ KerP can be written by

KP y = − t2

ξ2

∫ ξ

0

∫ s

0

∫ τ

0
y(v)dvdτds +

∫ t

0

∫ s

0

∫ τ

0
y(v)dvdτds.

Furthermore

‖KP ‖ ≤ ∆1‖y‖1, for all y ∈ ImL,

here ∆1 = 2
ξ + 1.

Notice that the KerL = {x ∈ domL : x = d, d ∈ R}, ImL = {y ∈ Z :∑m−2
j=1 βj

∫ 1
ηj

∫ τ
0 y(v)dvdτ = 0}.

Theorem 2.3. Let f : [0, 1]×R3 −→ R be a continuous function, assume that

(1) The condition (1) in Theorem 2.2 is satisfied.
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(2) There exists a constant M > 0, such that for x ∈ domL, if |x(t)| > M , for

all t ∈ [0, 1], then

m−2∑

j=1

βj

[∫ ηj

0
(1 − ηj)f(v, x(v), x′(v), x′′(v))dv

+
∫ 1

ηj

(1 − v)f(v, x(v), x′(v), x′′(v))dv

]
6= 0,

(3) There exists a constant M∗ > 0, such that either

d ·
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0
f(v, d, 0, 0)dvdτ < 0, for all |d| > M∗,

or else

d ·
m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0

f(v, d, 0, 0)dvdτ > 0, for all |d| > M∗.

Then BVP (1.1), (1.2) with α = 1,
∑m−2

j=1 βj = 1, has at least one solution in
C2[0, 1] provided that

‖a‖1 + ‖b‖1 + ‖c‖1 <
1

∆2
,

where ∆2 = ∆1 + 1, ∆1 as in Lemma 2.5.

Proof. Let

Ω1 = {x ∈ domL\KerL : Lx = λNx for some λ ∈ [0, 1]}.

Then for x ∈ Ω1, Lx = λNx, thus λ 6= 0, Nx ∈ ImL = KerQ, hence

m−2∑

j=1

βj

∫ 1

ηj

∫ τ

0

f(v, x(v), x′(v), x′′(v))dvdτ = 0,

that is
m−2∑

j=1

βj

[∫ ηj

0
(1 − ηj)f(v, x(v), x′(v), x′′(v))dv

+
∫ 1

ηj

(1− v)f(v, x(v), x′(v), x′′(v))dv

]
= 0.

Thus, from condition (2), there exists t0 ∈ [0, 1], such that |x(t0)| < M , in view of

x(0) = x(t0)−
∫ t0
0 x′(t)dt, we obtain

(2.20) |x(0)| ≤ M + ‖x′‖∞.
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From x(0) = αx(ξ) = x(ξ), there exists t1 ∈ (0, ξ), such that x′(t1) = 0, thus
from x′(t) = x′(t1) +

∫ t
t1

x′′(t)dt, one has

(2.21) ‖x′‖∞ ≤ ‖x′′‖1.

Again from x′′(0) = 0, thus from x′′(t) = x′′(0) +
∫ t
t2

x′′′(t)dt, we obtain

(2.22) ‖x′′‖∞ ≤ ‖x′′′‖1.

We let Px = x(0), hence from (2.20), (2.21) and (2.22), we have

‖Px‖ = |x(0)| ≤ M + ‖x′‖∞ ≤ M + ‖x′′‖1 ≤ M + ‖x′′‖∞
≤ M + ‖x′′′‖1 = M + ‖Lx‖1 ≤ M + ‖Nx‖1,

thus, by using the same method as in the proof of Lemma 2.2, we can prove that

Ω1 is bounded too. Similar to the other proof of Lemmas 2.3-2.4 and Theorem 2.2,

we can verify Theorem 2.3.

3. EXAMPLE

Example. Consider the following boundary value problem:

(3.1) x′′′ = t2 + 4 + sin(x)2 +
1
5
(t + 1)x′ + cos(x′′)3, t ∈ (0, 1),

(3.2) x′(0) = 0, x′′(0) = 0, x(1) =
1
4
x(

1
4
) +

1
6
x(

1
3
) +

7
12

x(
1
2
),

where

f(t, x, y, z) = t2 + 4 + sin(x)2 +
1
5
(t + 1)y + cos z3, t ∈ (0, 1),

α = 0, β1 =
1
4
, β2 =

1
6
, β3 =

7
12

, η1 =
1
4
, η2 =

1
3
, η3 =

1
2
, then β1 + β2 + β3 = 1,

β1η1 + β2η2 + β3η3 =
59
144

< 1, we can choose a(t) = c(t) = 0, b(t) =
2
5
,

r(t) = 7, for t ∈ [0, 1], thus

|f(t, x, y, z)| ≤ 2
5
|y|+ 7,

‖a‖1 + ‖b‖1 + ‖c‖1 =
2
5

<
1
2
.

Since f has the same sign as x′(t) when |x′(t)| > 35 , we may chooseM = M∗ =
35, and then the conditions (1) - (3) of Theorem 2.2 are satisfied. Theorem 2.2
implies that the BVP (3.1)-(3.2) has at least one solution x ∈ C2[0, 1].
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