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ZEROS OF FINITE WAVELET SUMS

Noli N. Reyes

Abstract. For certain analytic functions ψ, a lower Riesz bound for a finite
wavelet system generated by ψ, yields an upper bound for the number of
zeros on a bounded interval of the corresponding wavelet sums. In particular,

we show that if the Fourier transform of ψ is compactly supported, say on
[−Ω,Ω], and if B > 2eΩ, then any finite sum

∑
|k|≤α/2 akψ(x − k) cannot

have more than Bα zeros in [−α, α] for α > 0 sufficiently large.

1. INTRODUCTION AND NOTATION

In this note, we obtain upper bounds on the number of zeros of finite wavelet

sums on bounded intervals. More precisely, we show that for a class of analytic

functions ψ such that a finite collection of wavelets

ψj,k(x) = 2j/2ψ(2jx− k), (j, k) ∈ I,

is linearly independent, given α > 0 sufficiently large, there exists a positive integer
N(α) such that any sum

∑
(j,k)∈I aj,kψj,k will have at most N(α) zeros in [−α, α].

In particular, we show that if the Fourier transform of ψ is compactly supported,

say on [−Ω,Ω], and if B > 2eΩ, then any finite sum
∑

|k|≤α/2

akψ(x− k)

cannot have more than Bα zeros in [−α, α] for α > 0 sufficiently large.
Our starting point in obtaining such upper bounds is a lower Riesz bound; i.e.,

a finite positive number C0 such that

∑

(j,k)∈I

|aj,k|2 ≤ C2
0 ||

∑

(j,k)∈I

aj,kψj,k||22
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for any finite collection {aj,k : (j, k) ∈ I} of complex numbers. Several authors
([1-4]) have investigated the question of linear independence of Gabor and wavelet

systems and have also obtained estimates for lower Riesz bounds.

In [3], Christensen and Lindner state without proof that if the support of the

Fourier transform of ψ ∈ L2 is contained in (−∞, p] where p > 0, and there is
a non-degenerate interval E contained in [p/2, p] such that ψ̂(x) 6= 0, for x ∈ E,
then any finite family of wavelets ψj,k, (j, k) ∈ I , is linearly independent. This

can be proven using an argument similar to that of the Remark in the next section.

They also obtain lower Riesz bounds, which is a more delicate question.

We shall define the Fourier transform by

f̂(ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx

for integrable functions f . With this convention, the inversion formula becomes

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ)e−iξxdξ,

valid under various conditions. For 1 ≤ p <∞, we adopt the usual notations

||f ||pp =
∫ ∞

−∞
|f(x)|pdx,

while ||f ||∞ denotes the essential supremum of |f |. For a function ψ ∈ L2(R) and
with λ = (j, k) ∈ Z× Z, we let

ψλ(x) = 2j/2ψ(2jx− k).

2. GENERAL ESTIMATE FOR NUMBER OF ZEROS

In Lemma 1 below, ψ : R −→ C is an infinitely differentiable function in

L2(R) and I denotes a finite subset of Z× Z. Suppose that for some constant C0

(possibly depending on I),

(1)
∑

λ∈I

|aλ|2 ≤ C2
0 ||

∑

λ∈I

aλψλ||22

for any finite collection of complex numbers aλ, λ ∈ I . We let

(2) M = max{j : (j, k) ∈ I} and m = min{j : (j, k) ∈ I}.
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Lemma 1. Let α > 0 such that

(3) 2C2
0 |I |

∫

|x|≥2m−1α
|ψ(x)|2dx ≤ 1

and |k|2−j < α/2 whenever (j, k) ∈ I . If a finite sum
∑

λ∈I aλψλ has n zeros in
[−α, α], then

(4) n! ≤ C1

√
α(2M+1α)n||ψ(n)||∞

where C1 = 4C0(2M |I |)1/2.

Proof of Lemma 1. Let f =
∑

λ∈I aλψλ have n zeros in [−α, α]. If
(j, k) ∈ I , then ∫

|x|≥α

|ψj,k(x)|2dx ≤
∫

|y|≥2j−1α

|ψ(y)|2dy

since |k|2−j < α/2.

Combining the above estimate with (1), (3) and the Cauchy-Schwartz inequality,

we obtain

(5) ||f ||22 ≤ 2
∫

|x|≤α

|f(x)|2dx.

Suppose x1, · · · , xn are zeros of f in [−α, α]. Then

(6) |f(x)| ≤ 2
n!
||f (n)||∞|(x− x1) · · ·(x− xn)| ≤ 2(2α)n||f (n)||∞

n!

for any real number x with |x| ≤ α. To see this, we consider the real and imaginary

parts of f . Suppose u is the real or imaginary part of f and x is a fixed real number
in [−α, α]. The function

ux(t) = (x− x1) · · ·(x− xn)u(t)− u(x)(t− x1) · · ·(t − xn)

has n + 1 zeros in [−α, α]. Therefore, there is a point ξ in [−α, α] such that
u

(n)
x (ξ) = 0. This implies (6).
Integrating (6) over the interval [−α, α] leads to

∫ α

−α
|f(x)|2dx ≤ 4(2α)2n+1||f (n)||2∞

(n!)2
.

In view of (5), we conclude that

(7) ||f ||22 ≤ 8(2α)2n+1||f (n)||2∞
(n!)2
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Meanwhile, we differentiate f n times, apply the Cauchy-Schwartz inequality,

and use the lower Riesz bound given in (1). From this, we obtain

||f (n)||∞ ≤ C0|I |1/22M(n+1/2)||f ||2||ψ(n)||∞.

Combining this with (7) gives the desired inequality (4).

Remark We point out that any finite family ψj,k, (j, k) ∈ I, will also be

linearly independent if for some p > 0, ψ̂(x) = 0 for 0 ≤ x ≤ p and there exists a
non-degenerate interval E contained in [p, 2p] such that ψ̂(x) 6= 0 for x ∈ E. The

proof is quite straightforward. Assuming

J2∑

j=J1

nj∑

k=mj

aj,kψj,k = 0 in L2(R),

passing to the fourier transform, we obtain
∑J2

j=J1
Pj(2−jξ)ψ̂(2−jξ) = 0 almost

everywhere, where the Pj ’s are trigonometric polynomials. However,

J2∑

j=J1+1

Pj(2−jξ)ψ̂(2−jξ) = 0

for a.e. ξ ∈ [0, 2J1+1p]. This implies PJ1(ω)ψ̂(ω) = 0 for 0 ≤ ω ≤ 2p. From
the hypothesis, we conclude that PJ1(ω) = 0 for ω ∈ E. Thus, PJ1 must be

identically zero. Iterating this argument, we deduce that all of the Pj’s must be

identically zero.

CONCRETE EXAMPLES

In this section, we shall apply the general estimate of Lemma 1 to two concrete

cases. In Theorem 1 below, we obtain a rough upper bound for the number of zeros

of finite wavelet sums where the Fourier transform of the “mother” wavelet ψ is

exponentially decaying. Theorem 2 focuses on sums of translates of ψ such that ψ̂
is compactly supported. Up to a constant factor, the result of Theorem 2 is optimal.

We assume the same conditions as in section 1. Suppose ψ : R −→ C is an

infinitely differentiable function in L2(R) and I denotes a finite subset of Z× Z.
Moreover, there is a constant C0 such that

(8)
∑

λ∈I

|aλ|2 ≤ C2
0 ||

∑

λ∈I

aλψλ||22,

for any finite collection of complex numbers aλ, λ ∈ I . We let

(9) M = max{j : (j, k) ∈ I} and m = min{j : (j, k) ∈ I}.
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Theorem 1. Suppose that for some constants B > 0 and β > 1,

|ψ̂(ξ)| ≤ exp(−B|ξ|β)|

for all real numbers ξ. Let α > 0 such that (3) holds and |k|2−j < α/2 whenever
(j, k) ∈ I . Then any finite sum

∑
λ∈I aλψλ cannot have more than N zeros in

[−α, α] where

N =
C1A

√
α√

2π

∫ ∞

−∞
|ξ| exp(A|ξ| − B|ξ|β)dξ ,

A = 2M+1α and C1 is given in the statement of Lemma 1.

Proof of Theorem 1. Fix a finite sum
∑

λ∈I aλψλ having n zeros in [−α, α].
By the inversion formula,

||ψ(n)||∞ ≤ 1√
2π

∫ ∞

−∞
|ξ|n exp(−B|ξ|β)dξ.

Combining this with Lemma 1, we obtain

n! ≤ C1
√
α√

2π

∫ ∞

−∞
|Aξ|n exp(−B|ξ|β)dξ.

Applying the estimate eu > uk/k! with k = n− 1, we obtain the desired result.

Theorem 2 Suppose ψ and xψ(x) belong to L2(R) and satisfies (8) for any
finite collection of complex numbers aλ, λ ∈ I . Furthermore, assume that ψ̂ is
compactly supported:

(10) ψ̂(ω) = 0 if |ω| ≥ Ω.

If B > 2eΩ, any finite sum
∑

|k|≤α/2

akψ(x− k)

cannot have bBαc zeros in [−α, α] for α > 0 sufficiently large.
Here, bxc denotes the greatest integer less than or equal to x. The exponent 1

of α is clearly optimal as shown by the example ψ(x) = x−k sink x.

Proof of Theorem 2. Suppose there exists a sequence {αm}∞m=1 in [1,∞)
tending to infinity such that for each m, there exists a function

fm(x) =
∑

|k|≤αm/2

am,kψ(x− k)
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with bBαmc zeros in [−αm, αm]. Since xψ(x) ∈ L2, we may assume that

4C2
0αm

∫

{|x|≥αm/2}
|ψ(x)|2dx < 1

for each m. Therefore, we may apply Lemma 1 with I taken as

Im = {(0, n) : n ∈ Z, |n| ≤ αm/2}.

In this context, m = M = 0 and C1 ≤ 4C0(2αm)1/2.

Therefore, (4) implies that n! ≤ C(2αm)n+1Ωn with n = bBαmc. Here and in
what follows, C denotes a positive constant, possibly different at each occurrence,
and depending only on ψ. Since n! ≥ nne−ne,

C1/αm ≤ α1/αm
m

(
2eΩαm

Bαm − 1

)B

for each positive integer m. Finally, letting m tend to infinity, we obtain

1 ≤
(

2eΩ
B

)B

.

Therefore B < 2eΩ.

ACKNOWLEDGEMENT

The author acknowledges support from the Research and Creative Scholarship

Program of the University of the Philippines.

REFERENCES

1. P. Casazza, and O. Christensen, Hilbert space frames containing a Riesz basis and

Banach spaces which have no subspace isomorphic to c0, J. Math. Anal. Appl. 202
(1996), 940-950.

2. O. Christensen, Frames, Riesz Bases, and Discrete Gabor/Wavelet expansions, Bull.

Amer. math. Soc. 38 (2001), 273-291.

3. O. Christensen and A. Lindner, Lower bounds for finite wavelet and Gabor systems,

preprint (2001).

4. C. Heil, J. Ramanathan, and P. Topiwala, Linear independence of time-frequency

translates, Proc. Amer. Math. Soc. 124 (1996), 2787-2795.

Noli N. Reyes

Department of Mathematics,

College of Science,

University of the Philippines,

Quezon City 1101,

Philippines

E-mail: noli@math.upd.edu.ph


