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SPECTRAL DISTRIBUTIONS AND GELFAND’S THEOREM

M. Fakhri and M. Jazar

Abstract. This paper highlights a new short proof of a generalization of
Gelfand’s theorem through the use of spectral distributions. But above all
it aims at studying, when the spectrum is discrete, if the operator admits a
spectral resolution of the identity.

1. INTRODUCTION

Gelfand showed in 1941 the following theorem (see [6]): Let A be a linear
bounded operator satisfying Supn2ZkAnk < +1. If ¾(A) = f1g, then A = I.

The semigroup version of this theorem is as follows: Let A be a linear (un-
bounded) operator that generates a C0-group satisfying supt2R ketAk < +1. As-
sume ¾(A) = f0g, then A = 0.

This is probably the first result that highlights a very particular class of operators:
linear (unbounded) operators that generate bounded groups.
Results found in [5], [7] and [8] permit to say that this class can be generalized
to linear (unbounded) operators that generate temperate integrated groups, where a
complete study of a symbolic calculi for such operators using spectral distributions
is done.

Recall that a linear operator A generates a k-times integrated semigroup if there
exists a family of bounded operators fG(t)gt2R satisfying

(¸¡A)¡1 = ¸k

Z +1

0
e¡¸tG(t) dt for all ¸ > w;
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for some positive real number w (see [2] and [9]). Of course, a 0-times integrated
semigroup is a continuous semigroup. fG(t)g is said to be temperate if there exists
a positive constant C such that kG(t)k ∙ Cjtjk for all t > 0.

In the second section, we recall definitions and results on spectral distributions
that are needed.

In the third section, the following generalization of Gelfand’s theorem will be
shown: Let A be a linear (unbounded) operator that generates a temperate integrated
group. If ¾(A) = f0g, then A = 0.

In the last section, it will be shown that in case of discrete spectrum: ¾(A) =
f¸n; n 2 Zg, then A admits a resolution of the identity. More precisely, there exist
projectors Pn satisfying

P
Pn = I and A =

P
¸nPn. This is related to almost

periodicity. See for example [3], [4] and the references therein.

2. SPECTRAL DISTRIBUTIONS

Let X be a Banach space and L(X) the algebra of bounded linear operators with
uniform operator topology. In the following we recall basic results and definitions
on spectral distributions (for more details see [5] or [7]).

Definition 1. [5, Definition 1.1] By a spectral distribution we mean a linear
mapping E from D (the space of all functions in C1(R) with compact support) into
L(X) which satisfies:

(i) E('Ã) = E(')E(Ã), for all '; Ã 2 D.
(ii) For any function ' 2 D such that '(0) = 1, E('n) converges strongly to the

identity I, where 'n(t) := '(t=n).

Lemma 1. [5. Lemma 1.2] Let E be a spectral distribution, then we have
(a) N :=

T
Á2D KerE(Á) = 0.

(b) R := S
Á2D ImE(Á) is everywhere dense in X.

Definition 2. [5. Definition 1.3] For any f 2 C1(R) define E(f) as follows;

D(E(f )) : = fx 2 X
¯̄
limn!1 E(fÁn)x exists for any Á 2 D; Á(0) = 1g

E(f)x : = limn!1 E(fÁn)x for x 2 D(E(f)):

Proposition 1. [5, Proposition 1.4] For any f 2 C1(R), E(f) is a densely
defined closable linear operator.
In the sequel for any f 2 C1(R) we denote by E(f) the smallest closed extension
of E(f).
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Corollary 1. [5, Corollary 1.5] Let E be a spectral distribution on X. Then
E(1) = I (the identity operator on X).

Definition 3. [5, Definition 1.6] We say that an unbounded linear operator B
admits the spectral distribution E , or B is the momentum of E , if there is a spectral
distribution E such that B = E(t). Here t denotes the identity function in R.

Now we introduce an integer which measures in some sense the regularity of a
spectral distribution. This integer which we will call the order of E is by Fourier
transformation the distributional order of E . For a precise definition we have to
introduce the following distribution spaces.
For ` 2 N, let p` be the following norm on D:

p`(') :=
X̀
k=0

ktk dk'

dtk
kL1 :

Let T` denote the completion of D for p`. We designate by

[Ff ](t) :=

Z
R

e¡2i¼stf(s)ds

the Fourier transformation and by

∙T` := F¡1T` = ff 2 S 0
¯̄ Ff 2 T`g;

where S 0 is the space of temperate distributions.

Definition 4. [5, Definition 1.8] We say that a spectral distribution E is of
order ` if E can be extended as a linear continuous mapping on ∙T` equipped with
the norm

¦`(f) :=
X̀
k=0

ktk dk

dtk
FfkL1 :

By virtue of Peetre’s inequality, we have

`!pk(') ∙ k!p`('); for any k ∙ `;

so ∙T` ,! ∙Tk.
The following lemma shows the particularity of these norms. The proof is a direct
change of variable calculation.

Lemma 2. For all ' 2 ∙Tk , s > 0, define 's(t) := '(st). Then ¦k('s) is
independent of s.

Theorem 1. (Stone’s generalized theorem) [5, Theorem 3.4] Let A be a
linear densely defined operator and k a nonnegative integer. The following are
equivalent:
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(1) A generates a k-times integrated temperate group.

(2) iA is the momentum of a spectral distribution of order k.

Theorem 2. [5, Theorem 4.2] Let B be the momentum of a spectral distribution
E of order k. Then suppE = ¾(B).

We deduce directly:

Corollary 2. Let f; g be two C1 functions satisfying f ´ g on a neighborhood
of ¾(B). Then as unbounded operators E(f) = E(g).

3. GELFAND’S GENERALIZED THEOREM

In 1941, Gelfand showed that if a bounded operator whose spectrum is f1g and
doubly bounded then it is the identity operator:

Theorem 3. (Gelfand’s theorem) Let A be a a bounded operator satisfying
¾(A) = f1g. If supn2Z kAnk < +1, then A = I.

The original proof was not as simple as the statement above. This theorem can
be proved in different ways (see [1], [6] and [10] and the references given in there).
The following is the semigroup version of Gelfand’s theorem:

Theorem 4. (Gelfand’s theorem) Let A be an operator that generates a
uniformly bounded group (G(t)) (satisfying kG(t)k ∙ C for some positive constant
C). If ¾(A) = f0g, then A = 0.

Corollary 3. If ¾(A) = f¸g then A = ¸I .

Proof. First of all notice that ¸ 2 iR. Now set A¸ := A¡ ¸I . A¸ generates
the uniformly bounded group (e¡¸tG(t)) and ¾(A¸) = f0g.
Therefore A¸ = 0.

We will need the following lemma:

Lemma 3. There exists a positive constant C such that for all f 2 ∙Tk ,

¦k(f) ∙ C
X

0∙j∙k

ktjf (j)kH1:

Proof. We have

xk(Ff)(k)(x) = (¡1)kF ¡
(tkf)(k)

¢
(x)

= (¡1)k P
0∙j∙k

µ
k
j

¶
k!

(k ¡ j)!
F

³
tk¡jf (k¡j)

´
(x):
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We terminate using the well known inequality kFfkL1 ∙ CkfkH1 .
The following is the natural generalization of Gelfand’s theorem for momentum

of a spectral distribution of order k. Remark that the case k = 0 is Gelfand’s
theorem. However it is a new approach and the proof is very simple.

Theorem 5. (Gelfand’s generalized theorem) Let A be the generator of
a k-times integrated group (G(t)) satisfying kG(t)k ∙ Cjtjk for some positive
constant C. If ¾(A) = f0g, then A = 0.

Proof. By Theorem 1, B = ¡iA admits a spectral distribution E of order k.
Let Â 2 D satisfying Â(t) = 1 on a neighborhood of zero, and for z 2 C set
G(z) := E(t 7¡! eztÂ(t)) 2 L(X). Let’s show that (G(z)) is an entire group
generated by B. By corollary 2, G(0) = E(t 7¡! Â(t)) = I. For z; u 2 C,
using Definition 1(i) we have: G(u)G(z) = E(t 7¡! eutÂ(t))E(t 7¡! eztÂ(t)) =
E(t 7¡! e(u+z)tÂ(t)) = G(u+ z). Remainder to show that the group is analytic.
Writing eztÂ(t) =

P
n¸0

zntn

n! Â(t), and since E is continuous from ∙Tk into L(X),
it suffices to show that the series

P
n¸0

zntn

n! Â(t) converges, in ∙Tk , to eztÂ(t). For
this, using lemma 3, we have

¦k(t
nÂ) ∙ C

kX
j=0

°°°tj(tnÂ)(j)
°°°

H1

∙ C1n(n¡ 1) ¢ ¢ ¢ (n¡ k + 1)an;

where a := max(1; supfjxj; x 2 suppÂg) and C; C1 are positive constants. Since
E is continuous on ∙Tk and

E ¡
t 7¡! eztÂ(t)

¢
=

m¡1X
n=0

zn

n!
E (t 7¡! tnÂ(t))+E

Ã
t 7¡! eztÂ(t)¡

m¡1X
n=0

zntn

n!
Â(t)

!
for m = 1; 2; ¢ ¢ ¢ and z 2 C, it suffices to show that°°°°°°E

0@t 7¡!
X
n¸m

zntn

n!
Â(t)

1A°°°°°° ! 0 as m!1

uniformly on z in compact subsets of C.
We have°°°°°°E

0@t 7¡!
X
n¸m

zntn

n!
Â(t)

1A°°°°°° ∙ C¦k

24 X
n¸m

zntn

n!
Â(t)

35
∙ C1

X
0∙j∙k

°°°°°°°tj

24X
n¸m

zntn

n!
Â(t)

35(j)
°°°°°°°

H1
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∙ C1

X
0∙j∙k

X
n¸m

jzjn
n!

°°°tj [tnÂ(t)](j)
°°°

H1

∙ C2

X
n¸m

jzjn
n!

n(n¡ 1) ¢ ¢ ¢ (n¡ k + 1)

that tends to zero uniformly on z in compact subsets of C.
This proves

E ¡
t 7¡! eztÂ(t)

¢
=

X
n¸0

zn

n!
E (t 7¡! tnÂ(t))

and hence fG(z)g is entire.
From the other hand, writing z = r®, ® 2 C and j®j = 1, we get G(z) = E(fr),

where fr(t) := f®(rt) with f ®(t) = e®tÂ(t) (since fr(t) = er®tÂ(rt) = er®tÂ(t)
on a neighborhood of zero). Now using Lemma 3, and since supp f® is bounded,
we see that ¦k(f

®) can be bounded by a constant independent of ®, j®j = 1. Hence
by Lemma 2, kG(z)k ∙ K¦k(fr) ∙ K¦k(f

®) ∙ M , where M is a constant. Thus
the entire group (G(z)) is bounded hence constant, i.e. B = 0.

Remark 1. The main idea of the proof lies on the basic property of the
semi-norms ¦k: invariance by homothety, see Lemma 2.

The following proposition shows that in this case the operator is bounded:

Proposition 2. Let A be the generator of a k-times integrated group (G(t))
satisfying kG(t)k ∙ Cjtjk for some positive constant C. If ¾(A) is bounded then
A is a bounded operator.

Proof. B := iA admits a spectral distribution of order k and ¾(B) is in a
bounded interval of R. Let ' 2 D satisfying ' := 1 on a neighborhood of ¾(B).
By corollary 2, B = E(t) = E(t') which is a bounded operator.

The same Gelfand’s theorem still valid in the case where k is any real positive
number.

The next step is to show that if ¾(A) = fig then A = iI . Unfortunately
rescaling the generator of a temperate k-times integrated group is in general no
more temperate. The integrated group is bounded by a polynomial of degree 2k.
One expect to obtain spectral decomposition with nilpotent remainder. See [5, Th.
5.1].

By the following example we will show that ¾(A) = f¸g does, in general, not
imply A = ¸I . In the general case, it can be shown that A ¡ ¸I is nilpotent of
order k + 1.

Example In the following, we give a bounded operator A, in the finite di-
mensional case, with A 6= iI, ¾(A) = fig, while A generates a temperate once
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integrated group: Let A =

µ
i 1
0 i

¶
, then etA =

µ
eit teit

0 eit

¶
.

We have ¾(A) = fig, while the once integrated group

G(t) =

Ã
eit¡1

i (1¡ it)eit ¡ 1
0 eit¡1

i

!

is temperate: kG(t)k ∙ M jtj.
Notice that here we had to choose “double eigenvalue”.

4. RESOLUTION OF THE IDENTITY IN THE CASE OF DISCRETE SPECTRUM

In the finite dimensional case, let A be a matrix whose spectrum is purely
imaginary, then it is easy to see that if A is diagonalizable then supt2R ketAk is
finite. The converse is true also: If supt2R ketAk < 1 then A is diagonalizable
and the spectrum is purely imaginary). Of course the same hold in Hilbert situation.

One of aims of spectral theory is to generalize this setting to the infinite dimen-
sional Banach situation.

In the following theorem we will show that if the spectrum is discrete (infinite)
then the operator admits a resolution of the identity.

We start by the following general results:

Lemma 4. Let xm ! x, (Am) bounded operators satisfying:

(1) For every y 2 X , Amy ! Ay where A is a bounded operator;

(2) there is a constant C such that kAmk ∙ C for every m.

Then Amxm ! Ax.

Proof. Writing Amxm ¡Ax = Amxm ¡Amx+Amx¡Ax we get
kAmxm ¡Axk ∙ kAmkkxm ¡ xk+ kAmx ¡Axk.

Proposition 3. Let X be a Banach space and E a spectral distribution on
X . Suppose that (hn)n2Z is a two-sided sequence of elements of D satisfying the
following conditions:

(i) hnhm = 0 for all n 6= m;

(ii) inf jsupphnj ¡! +1 as jnj ! +1;

(iii) h :=
P

n2Z hn 2 C1.
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Define the (unbounded) operator Q : D(Q) ½ X ¡! X by

D(Q) : = fx 2 X;
P

n kE(hn)xk < 1g
Qx : =

P
n E(hn)for x 2 D(Q):

Then Q is closable and E(h) = Q.

Proof. First notice that if ' 2 D, then h' =
P
jnj∙N'

'hn for some positive
integer N'. Hence for all x 2X , E(')x 2 D(Q) and

QE(')x =
X

jnj∙N'

E('hn)x:

Thus R ½ D(Q). Let’s show that D(Q) ½ D(E(h)) and for all x 2 D(Q),
Qx = E(h)x. Let 'j be as in Definition 1(ii). For all j denote by Nj a positive
integer so that for all jnj ¸ Nj , supphn \ supp'j = ;. Let x 2 D(Q), we have

E(h'j)x =
X
jnj<Nj

E(hn'j)x = E('j)
X
jnj<Nj

E(hn)x:

Observing that Nj ! +1 as jjj ! +1 and using Lemma 4, we deduce that
limj E(h'j)x exists and is equal to Qx, i.e. x 2 D(E(h)) and D(Q)x = E(h)x.
Therefore E(h) is an extension of Q. Since by construction (proposition 1) E(h)
is the smallest closed extension and E(h) = Q on R, remainder to show that Q is
closable. For this assume that yj ! 0, yj 2 D(Q) and Qyj ! z. Then, using the
lemma 4 and the closedness of E('m) and E(hi), we have

z = limm E('m)z = limm E('m) limj Qyj

= limm limj E('m)Qyj = limm limj QE('m)yj

= limm limj
P
jij<Nm

E(hi'm)yj = limm
P
jij<Nm

limj E(hi'm)yj

= limm E('m)
P
jij<Nm

limj E(hi)yj = 0:

Theorem 6. Let A be the generator of a bounded group (G(t)). Assume
that ¾(A) = f¸n; n 2 Zg is a discrete set. Then there exist projectors Pn, n 2 Z,
satisfying

P
n Pn = I and A =

P
n ¸nPn.

Remark 2.

(1) The operators
P

n Pn and
P

n ®nPn are defined as in Proposition 3.
(2) In the finite dimensional case, this correspond to simple eigenvalues:
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Using the notations of the last example we see that fetAg is not bounded.
While if we consider a matrix with simple eigenvalues then it is diagonaliz-
able:
For example, let A =

µ
i 1
0 2i

¶
, then ¾(A) = fi; 2ig, and

etA =

µ
eit 1

i (e
2it ¡ eit)

0 e2it

¶
is bounded. It is not difficult to see that setting

P1 =

µ
1 i
0 0

¶
and P2 =

µ
0 ¡i
0 1

¶
we have: P1P2 = 0, P1 + P2 = I,

iP1 + 2iP2 = A.

Proof of the theorem The proof is in the four following steps.

1: Let B := iA. B admits a spectral distribution of order k and ¾(B) =
f®n; n 2 Zg ½ R, with ®n := i¸n. Without loss of generality we can
assume that the sequence (®n) is increasing. Since (®n) is discrete, let, for
every n, hn 2 D(R) satisfying hn := 1 on a neighborhood of ®n and hn := 0
on a neighborhood of ®m for m 6= n, and Pn := E(hn). Since h2

n = hn on a
neighborhood of ¾(B), by Corollary 2, , P 2

n = Pn. Now set h(t) =
P

hn(t),
clearly h is a C1 function and h := 1 on a neighborhood of ¾(B) hence, by
corollary 2, E(h) = I .

2: By the proposition ??, the operator E :=
P

Pn, with maximal domain, is a
closable operator and its closure is the identity operator.

3: BPn = ®nPn: For n 2 N, setting Qn = I ¡ Pn = E(gn), with gn =
1 ¡ hn. Qn is a projector and since for m 6= n, ®m is not in the enclo-
sure of the set fthn(t); t 2 Rg, then by [5, Theorem 4.3], ®m 62 ¾(BPn)
therefore ¾(BPn) = f®ng. On the space Xn := PnX, define En(') :=
E('hn), for ' 2 D. Let’s show that En is a spectral distribution of or-
der 0 on Xn generated by BPn: By corollary 2, En('Ã) = E('Ãhn) =
E('Ãh2

n) = E('hn)E(Ãhn) = En(')En(Ã). If ('j) is as in Definition 1(ii),
then En('j) = E('jhn) ! E(hn) = IXn

, and En(t) = E(t 7¡! thn(t)) =
BPn. Finally, for f 2 ∙T0, the inequality

kEn(f)k ∙ C¦0(fhn) = CkF(fhn)kL1 = CkFf¤FhnkL1 ∙ C¦0(hn)¦0(f);

shows that the spectral distribution En is of order 0. Now using corollary 3
we get BPn = ®nIXn = ®nPn.

4: A =
P

n ¸nPn. Applying the proposition 3 to the functions t 7¡! thn(t) we
see that B = E(t) is the closure of

P
n E(thn) =

P
n ®nPn.
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Remark 3. Using the technique of spectral distributions, we cannot give more
information about the convergence of the sums

P
Pnx and

P
¸nPnx. By the last

proof, we showed that we have convergence in some dense subset. It would be
interesting to remedy this.
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