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ON CONJECTURE OF R. BRÜCK CONCERNING THE ENTIRE
FUNCTION SHARING ONE VALUE CM WITH ITS DERIVATIVE

Zong-Xuan Chen and Kwang Ho Shon

Abstract. In this paper, we investigate the conjecture of R. Brück, and prove
that the conjecture of R. Brück holds for entire functions of infinite order and
hyper order less than 1

2 :

1. INTRODUCTION AND RESULTS

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution theory of
meromorphic functions (e.g. see [9, 10]). In addition, we will use the notations
¸(f) to denote the exponents of convergence of the zero-sequence of meromorphic
function f(z); ¾(f ) to denote the order growth of f(z): We recall the definition of
hyper-order (see [21]), ¾2(f) of f(z) is defined by

¾2(f) = lim
r!1

log log T (r; f)

log r
:

Let f and g be two non-constant meromorphic functions, and let a be a finite
value in the complex plane. We say that f and g share the value a CM (IM)
provided that f ¡a and g¡a have the same zeros counting multiplicities (ignoring
multiplicities). Nevanlinna four values theorem (see [16]) says that if two non-
constant meromorphic functions f and g share four values CM, then f ´ g or f is
a Möbius transformation of g. The condition “f and g share four values CM” has
been weakened to “f and g share two values CM and two values IM” by Gundersen
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[7,8], as well as by Mues [14] and Wang [19]. But whether the condition can be
weakened to “f and g share three values IM and another value CM” or not, is still
an open question. In a special case, it was shown [17] that if an entire function f
share two finite values CM with its derivative, then f ´ f 0: This result has been
generalized to sharing values IM by Gundersen [6] and by Mues-Steinmetz [15]
independently.

How is the relation between f with f 0 if an entire function f share one finite
value CM with its derivative f 0? In [1], R. Brück raised the following.

Conjecture. Let f be a non-constant entire function such that hyper order
¾2(f ) < 1 and ¾2(f ) isn’t positive integer. If f and f 0 share the finite value a
CM, then

f 0 ¡ a

f ¡ a
= c

where c is a nonzero constant.
For the case that a = 0 had been proved by Brück in [1]. From differential

equations
f 0 ¡ 1

f ¡ 1
= ezn

;
f 0 ¡ 1

f ¡ 1
= eez

;

we see that when the hyper order ¾2(f ) of f is a positive integer or infinite, the
conjecture of Brück don’t holds. For the case that the zero-points of f 0 are fewness,
Brück obtain the following in [1].

Theorem A. Let f be a nonconstant entire function. If f and f 0 share a value
1 CM, and satisfy N(r; 0; f 0) = S(r; f); then

f 0 ¡ 1

f ¡ 1
= c

where c is a nonzero constant.
For entire functions with finite order, Lianzhong Yang proved following two

theorems in [20].

Theorem B. Let f be a nonconstant entire function with finite order. If f and
f 0 share a finite value a CM, then

f 0 ¡ a

f ¡ a
= c

where c is a nonzero constant.
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Theorem C. Let f be a nonconstant entire function with finite order. If f and
f (k)(k ¸ 1) share a finite value a 6= 0 CM, then

f (k) ¡ a

f ¡ a
= c

where c is a nonzero constant, k is a positive integer.
In this paper, we investigate the case that an entire function is of infinite order,

and get the following theorem.

Theorem 1. Let f(z) be a nonconstant entire function with hyper order
¾2(f) = ® < 1

2 : If f and f 0 share the finite value a CM, then

f 0 ¡ a

f ¡ a
´ c

where c is a nonzero constant.
By Theorem 1, we can obtain the following corollary.

Corollary 1. Let f be a nonconstant entire function with hyper order ¾2(f) <
1
2 : If f and f 0 share a finite value a CM, and there exists a point z0 satisfying
f 0(z0) = f(z0) 6= a; then f ´ f 0:

Corollary 2. Let f be a nonconstant entire function with hyper order ¾2(f) <
1
2 : If f and f 0 share a finite value a CM and a finite value b( 6= a) IM, then f ´ f 0:

Corollary 3. Let f be a nonconstant entire function with hyper order ¾2(f) <
1
2 : If f and f 0 share a finite value a CM, and there exists a point z0 satisfying
f (k)(z0) = f (k+1)(z0) 6= 0; k is a positive integer, then f ´ f 0:

2. LEMMAS FOR THE PROOF OF THEOREM 1

The Hadamard Theorem of entire functions of infinite order can be found in
[11].

Lemma 1. Let f be a transcendental entire function of infinite order and
hyper order ¾2(f) = ® < 1; then f can be represented in

f(z) = U(z)eV (z);

where U and V are entire functions such that

¸(f) = ¸(U) = ¾(U); ¸2(f) = ¸2(U) = ¾2(U);
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¾2(f) = maxf¾2(U); ¾2(eV )g;
where notation ¸2(f ) denotes the hyper exponent of convergence of zeros of entire
function f by

¸2(f) = lim
r!1

log log N(r; 1
f )

log r
:

Lemma 2. [4] Let g(z) be an entire function of infinite order with the hyper
order ¾2(g) = ¾; and let º(r) be the central index of g. Then

lim
r!1

log log º(r)

log r
= ¾2(g) = ¾:

Using the similar proof as in proof of Remark 1 of [5], we can obtain the
following Lemma 3.

Lemma 3. Let f(z) be an entire function with ¾(f ) = 1 and ¾2(f) =
® < +1; let a set E ½ [1;1) have finite logarithmic measure. Then there exists
fzk = rkeiµkg such that jf(zk)j = M (rk; f); µk 2 [0; 2¼); limk!1 µk = µ0 2
[0; 2¼); rk =2 E; rk ! 1 and for any given " > 0; for sufficiently large rk, we
have if ® > 0 then

expfr®¡"
k g < º(rk) < expfr®+"

k g;
if ® = 0 then for any large M(> 0); we have as rk sufficiently large

º(rk) > rM
k :

Lemma 4. (see [13]) Let

Q(z) = bnzn + bn¡1zn¡1 + ¢ ¢ ¢+ b0

where n is a positive integer and bn = ®neiµn; ®n > 0; µn 2 [0; 2¼): For any given
"; 0 < " < ¼=(4n), we introduce 2n opened angles

Sj : ¡µn

n
+ (2j ¡ 1)

¼

2n
+ " < µ < ¡µn

n
+ (2j + 1)

¼

2n
¡ " (j = 0; 1; : : : ; 2n¡ 1):

Then there exists a positive number R = R(") such that for jzj = r > R;

RefQ(z)g > ®n(1¡ ") sin(n")rn

if z 2 Sj where j is even; while

RefQ(z)g < ¡®n(1¡ ") sin(n")rn



On Conjecture of R. Brück 239

if z 2 Sj where j is odd.
Now for any given µ 2 [0; 2¼); If µ 6= ¡ µn

n +(2j¡1) ¼
2n ; (j = 0; 1; : : : ; 2n¡1);

then we take " sufficiently small, there is some Sj ; j 2 f0; 1; : : : ; 2n¡1g such that
µ 2 Sj .

Lemma 5. [2] Let h(z) is an entire function with order ¾(h) = ¾ < 1
2 ; set

A(r) = inf
jzj=r

log jh(z)j; B(r) = sup
jzj=r

log jh(z):

If ¾ < ® < 1, then

log densfr : A(r) > (cos ¼®)B(r)g ¸ 1¡ ¾

®
;

where the lower logarithmic density log densH of subset H ½ (1; +1) is defined
by

log densH = lim
r!1

(

Z r

1

(ÂH(t)=t)dt)= log r;

and the upper logarithmic density log densH of subset H ½ (1; +1) is defined by

log densH = lim
r!1(

Z r

1
(ÂH(t)=t)dt)= log r;

where ÂH(t) is the characteristic function of set H:

Lemma 6. [3] Let h(z) is an entire function with lower order ¹ = ¹(h) < 1
2 ;

and ¹ < ¾ = ¾(h): If ¹ ∙ ± < min(¾; 1
2 ) and ± < ® < 1

2 ; then

log densfr : A(r) > (cos ¼®)B(r) > r±g ¸ C(¾; ±; ®);

where C(¾; ±; ®) is a positive constant only dependent on ¾; ±; ®:

Remark. By definitions of the logarithmic measure and the logarithmic density,
we see that if the upper logarithmic density log densH > 0; then the logarithmic
measure lmH = +1:

3. PROOF OF THEOREM 1

Since f and f 0 share the finite value a CM, by Lemma 1, we can write

(3:1)
f 0 ¡ a

f ¡ a
= eQ(z)
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where Q(z) is an entire function. The case that a = 0 had been proved by R. Brück
[1], the case that f is an entire function of finite order had been proved by L. Z.
Yang [20]. Now we can suppose that a 6= 0 and ¾(f) = 1: Set F = f

a ¡ 1; then
F is an entire function,

¾(F ) = ¾(f) = 1; ¾2(F ) = ¾2(f) = ®

and F satisfies the linear differential equation

(3:2) F 0 ¡ eQ(z)F = 1:

Because of ¾2(f) = ® < 1
2 ; we know that for Q(z), there are three cases: (1)

Q(z) is a constant; (2) Q(z) is a polynomial with degree deg Q ¸ 1; (3) Q(z) is a
transcendental entire function with order

¾(Q) = ¯ ∙ ® <
1

2
; ¾2(eQ) = ¾(Q) = ¯:

Now we split this into three cases to prove.

Case 1. Q(z) is a constant. Then Theorem 1 holds.

Case 2. Q(z) is a polynomial with degree deg Q = n ¸ 1: We will show
¾2(f ) = n ¸ 1 which contradict with condition ¾2(f) = ® < 1

2 :
From the Wiman-Valiron theory (see [10, 12, 18]), there is a set E1 ½ (1;1)

having logarithmic measure lmE1 < 1; we choose z satisfying jzj = r 62 [0; 1]
S

E1

and jF (z)j = M(r; F ), then we have

(3:3)
F 0(z)

F (z)
=

º(r)

z
(1 + o(1));

where º(r) is the central index of F: Substituting (3.3) into (3.2), we obtain

(3:4)
º(r)

z
(1 + o(1)) = eQ(z) +

1

F (z)
:

Since ¾(F ) = ¾(f) = 1; and deg Q = n ¸ 1; jF (z)j = M(r; F ); for sufficiently
large jzj = r and any given "1(> 0), by (3.4), we have

(3:5)
º(r)

r
∙ ern+"1

:

Since "1 is arbitrary, by (3.5) and Lemma 2, we have ¾2(F ) ∙ n: We assert that
¾2(F ) = n: Now we assume that ¾2(F ) = ±(0 ∙ ± < n) and prove that ¾2(F ) = ±
fails.
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By Lemma 3, there is a point range fzk = rkeiµkg such that jf(zk)j =
M(rk; f); µk 2 [0; 2¼); limk!1 µk = µ0 2 [0; 2¼); rk 62 E1

S
[0; 1]; rk ! 1;

for any given " satisfying that if ± = 0; then

0 < 3" < minf"1;
¼

4n
g;

if ± > 0; then
0 < 3" < minf±; "1; n¡ ±;

¼

4n
g;

we see that if ± > 0, then we have

(3:6) expfr±¡"
k g < º(rk) < expfr±+"

k g;
if ± = 0; then for any large M(> 0); we have as rk sufficiently large

(3:7) º(rk) > rM
k :

Let

Q(z) = ®neiµnzn + bn¡1zn¡1 + ¢ ¢ ¢+ b0; ®n > 0; µn 2 [0; 2¼):

By Lemma 4, there are 2n opened angles for above ";

(3:8) Sj : ¡µn

n
+(2j¡1)

¼

2n
+"<µ <¡µn

n
+(2j+1)

¼

2n
¡"; (j =0; 1; ¢ ¢ ¢ ; 2n¡1):

For the above µ0; there three cases: (i) µ0 2 Sj where j is odd; (ii) µ0 2 Sj where
j is even; (iii) µ0 = ¡ µn

n + (2j ¡ 1) ¼
2n

for some j. We again divide this into three
subcases.

Subcase (i). µ0 2 Sj where j is odd. Since Sj is an opened set and limk!1 µk =
µ0; there is a K > 0 such that µk 2 Sj when k > K, by Lemma 4, we see that

(3:9) RefQ(rkeiµk)g < ¡drn
k ;

where d = ®n(1 ¡ ") sin(n") > 0: For fzk = rkeiµkg; by (3.4) and jF (z)j =
M(r; F ), we have

(3:10)
º(rk)

zk
(1 + o(1)) = eQ(rkeiµk ) + o(1):

If ± > 0, then by 3" < ± and (3.6), (3.9), (3.10), we have

(3:11) expfr±¡"
k g < º(rk)(1 + o(1)) < rk expf¡drn

kg+ o(rk):

(3.11) is a contradiction. If ± = 0, then by (3.7), (3.10), we have

(3:12) rM¡1
k <

º(rk)

rk
(1 + o(1)) < expf¡drn

kg+ o(1):
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(3.12) is also a contradiction.
Subcase (ii). µ0 2 Sj where j is even. Since Sj is an open set and limk!1 µk =

µ0 there is K > 0 such that µk 2 Sj when k > K: By Lemma 1, we have

(3:13) RefQ(rkeiµk)g > drn
k ;

where d = ®n(1 ¡ ") sin(n") > 0: For fzk = rkeiµkg; by (3.4), (3.6) and (3.13),
we have

(3:14) expfr±+"
k g > º(rk)(1 + o(1)) > rk expfdrn

kg ¡ o(rk);

(3.14) contradicts with ± + " < n:
Subcase (iii). µ0 = ¡ µn

n + (2j ¡ 1) ¼
2n

for some j 2 f0; 1; ¢ ¢ ¢ ; 2n¡ 1g: Since
RefQ(rkeiµ0)g = 0 when rk is sufficiently large, and a straight line arg z = µ0 is
an asymptotic line of frkeiµkg, we see that there is a K > 0 such that when k > K;
we have

(3:15) ¡1 < RefQ(rkeiµk)g < 1;
1

e
∙ jeQ(rkeiµk )j ∙ e:

By (3.6) (or (3.7)), (3.10), (3.15), we have

(3:16)
1

rk
expfr±¡"

k g ¡ o(1) ∙ º(rk)

rk
(1 + o(1))¡ o(1) ∙ jeQ(rkeiµk )j ∙ e;

or

(3:17) rM¡1
k ¡ o(1) ∙ º(rk)

rk
(1 + o(1))¡ o(1) ∙ jeQ(rkeiµk )j ∙ e:

But both (3.16) and (3.17) are contradictory.
Case (3). Q(z) is a transcendental entire function with order ¾(Q) = ¯ ∙ ® <

1
2 : By the equation (3.2), we have

Q(z) = log(
F 0

F
¡ 1

F
);

where log(F 0
F ¡ 1

F ) is a principal branch of Log(F 0
F ¡ 1

F ). Hence we have

(3:18)
jQ(z)j ∙ j log(

F 0

F
¡ 1

F
)j ∙ j log jF

0

F
¡ 1

F
jj+ j arg(

F 0

F
¡ 1

F
)j

∙ j log jF
0

F
¡ 1

F
jj+ 2¼:

As in the proof of Case (2), we choose z satisfying jzj = r 62 [0; 1]
S

E1 and
jF (z)j = M(r; F ); and get

(3:19) jQ(z)j ∙ log(
º(r)

r
(1 + o(1)) + o(1)) + 2¼ ∙ log º(r) + O(1);
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where º(r) is the central index of F: Since

log log º(r)

log r
∙ ® + 1

for sufficiently large r, by (3.19), we get

(3:20) jQ(z)j ∙ r®+1 + O(1):

But by Lemma 5(or 6), we know that there exists a set H ½ (1;1) that have
logarithmic measure lmE = 1; such that for all z satisfying jzj = r 2 H; we have

(3:21) jQ(z)j ¸ M(r; Q)c;

where c(0 < c < 1). Now for all z satisfying jzj = r 2 Hn(E1
S

[0; 1]) and
jF (z)j = M(r; F ), by (3.20) and (3.21), we get

(3:22)
M(r; Q)c

r®+1
∙ 1:

Since Q(z) is transcendental, we see that

M(r; Q)c

r®+1
!1;

which contradicts with (3.22). Theorem 1 is thus proved.
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