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PERIODIC SOLUTIONS OF A RATIO-DEPENDENT FOOD CHAIN
MODEL WITH DELAYS

Hai-Feng Huo and Wan-Tong Li*

Abstract. By using the continuation theorem base on Gaines and Mawhin'’s
coincidence degree, sufficient and realistic conditions are obtained for the
global existence of positive periodic solutions for a delayed food chain model.
Indeed, our result are applicable to distributed delays.

1. INTRODUCTION

Recently, there has been considerable interest in ratio-dependent predator-prey
model; see [1], [5], [6], [7]. [8], and the references therein. In their paper [7], Hsu,
Hwang and Kuang considered the following ratio-dependent food chain model
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where x; y and z represent the population density of prey, predator and top predator,
respectively. Observe that the simple relation of these three species: z consumes y
and y consunes on x and nutrient recycling is not accounted for. They show that
this model is rich in boundary dynamics and is capable of generating extinction
dynamics. Specifically, theyprovide partial answers to question such as: under what
scenarios a potential biological control may be successful, and when it may fail.
Since the variation of the environment plays an important role in many bio-
logical and ecological systems. In particular, the effects of a periodically varing
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environment are important for evolutionary theory as the selective forces on systems
in a fluctuating environment differ from those in a steady environment. Thus, the
assumption of periodicity of the parameters in the way (in a way) incorporates the
periodicity of the environment ( e.g., seasonal affects of weather, food supplies,
mating habits, etc.). Therefore, it is interesting and important to study the following
nonautonomous delayed ratio-dependent food chain model
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1)
where r(t); b(t); c1(t); co(t); d1(t); d2(t); my(t); ma(t) € C(R; R™); R = (0; +00)
are 1-periodic function; ¢;(t); i = 1;2;3 € C(R; R) are I-periodic function; a; and
a, are positive constants.

An important ecological problem associated with the study of multispecies pop-
ulation interaction in a periodic environment is the global existence of periodic
solution. The main purpose of this paper is to derive sufficient conditions for the
global existence of positive periodic solutions of systems (2). The method used here
will be the coincidence degree theory developed by Gaines and Mawhin [3]. Such
approach was adopted in [2], [4], [9] and [10].

2. Periobic SoLuTions oF A RATIO-DEPENDENT Foob CHAIN MopEeL wiTH DELAYS

In order to obtain the existence of a positive periodic solution of the system (2),
we first introduce the followings.
Let X and Z be two Banach spaces. Consider an operator equation

Lx = NXx;, € (0;1);

where L :DomL N X — Z is a linear operator and _ is a parameter. Let P and Q
denote two projectors such that

P :XnNnDomL — KerL and Q : Z — Z=ImL.:

Let J :ImQ —KerL be an isomorphism of ImQ onto KerL: In the sequel, we will
use the following result of Mawhin [3, p.40]

Lemma 2.1. Let X and Z be two Banach spaces and L a Fredholm mapping
of index zero. Assume that N : Q — Z is L-compact on © with € open bounded
in X. Furthermore we assume:
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(a) for each , € (0;1), x € @2 N Doml;
Lx #£ _NX;
(b) for each x € @2 N KerL;
QNX # 0
and
deg{JQN; QN KerlL;0} # 0:

Then the equation Lx = Nx has at least one solution in Q.

Recall that a linear mapping L :DomL N X — Z with KerL = Li%(0) and
ImL = L(DomL); is called a Fredholm mapping if the following two conditions
hold:

(i) KerL has a finite dimension;

(if) ImL is closed and has a finite codimension.

We also note that the codimension of ImL is the dimension of Z=ImL; i.e., the
dimension of the cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer IndL = dim ker L—codimImL.:

We say that a mapping N is L-compact on Q if the mapping QN : Q —
Z is continuous, QN () is bounded, and K, (1 —Q)N : Q — X is com-
pact, i.e., it is continuous and K, (I — Q)N (ﬁ) is relatively compact, where
Ky :ImL —DomLNKerP is a inverse of the restriction L, of L to DomLNKerP;
so that LK, =1 and KoL =1 — P

For convenience, we shall introduce the notation:

where u is a periodic continuous function with period !:
Now we state our first theorem for the existence of a positive !-periodic solution
of system (2).

Theorem 2.1. If
ayf — T > 0;May — dia, — T >0 and M, — dp > 0;
then the system (2) has at least one positive -periodic solution.
Proof. Let

©) X(t) = exp {x1(t) }; y(t) = exp {Xz(t)} ; 2(t) = exp {x3(t)} ;
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Then the system (2) becomes

dxy (t) , C1 (t) exp{xz(t)} :
ai P eRbaltmal) T g e O + expba @)
dxa(t) My (1) exp{xy (t — ¢2(t)) } —dy(t)
A dt ag exp{Xa(t—¢2(t))} + exp{X1(t — ¢2(t))}
@  aepdet)
az exp{X3(t)} + exp{x2(t)}’
dxs(t) Mo (1) exp ot — 43(1)} _ oyl
dt az exp{Xs(t — ¢3(t))} + exp{Xa(t — ¢3(t))} '

In order to apply Lemma 2.1 to system (2), we take
X =Z = {x(t) = (X1(t); X2(t); x3(t))T € C(R;R®) : x(t+ 1) =x(t)};
and denote

= t): X2(1): X3 (1) || = X1 (t Xo(t X3 ()]
[1X][ = [](X2(t); x2(t); X3(t)) " || tgﬁ]! 1()!+t12%3>!<]! 2( )Htgﬁf]! 3(t)]

Then X and Z are Banach spaces when they are endowed with the norms || - ||:
Set

[ r(t) — b(t) exp{xi(t—¢1(t))} — a engiz)(igpixjig{}xl 1}
m; (t) exp{Xl(t —¢2 (t))} — dl(t)

a1 exp{Xz(t — ¢2(t))} + exp{Xa (t — ¢2(1)) }
3 C2(t) exp{x3(t)}
az exp{X3(t)} + exp{xz(t)}
M (t) exp{Xa(t — ¢3(t)) }
L @z exp{X3(t — ¢3(t))} + exp{Xa(t — ¢3(1)) }

NX =

—da(t)

and
1

! 1 /!
Lx:xo; Px:%/ X(t)dt; x € X; Qz:T/ z(tdt;z € Z:
= Jo = Jo
Evidently, KerL = {x|x € X;x =R3}; ImL = {z|z € Z; [} z(t)dt =0} are

closed in Z and dimKerL = codim ImL = 3: Hence, L is a Fredholm mapping of
index zero. Furthermore, the generalized inverse of L, K, : ImL —KerP ndomL

has the form
t 1 1 t
Kp(z):/ z(s)dsT/ /z(s)dsdt:
0 = JO 0

Thus
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c1(t) exp{xz2(t)}
/ { t) exp{X1(t — ¢ (b))} — a; exp{x2(t)} + exp{Xl(t)}] a

/ |: eXp{Xl(t — {2 (t))} _ dl(t)
0o a1 eXp{Xz t —é2()} + exp{X1(t —¢2(t))}
_ Co(t)exp{xs(t)} dt
ap exp{Xz(t)} + exp{x2(t)}
1 My (t) exp{Xa(t — ¢3(t))} B
1 (st o s e gty 0] &

-lH -lH

QNXx =

and
/O [r(s) — b(s) exp{Xa(s — ¢1(s))}
B ci(s) exp{Xa(s)} ] ds
a1 exp{X2(s)} + exp{x1(s)}
B t M1 (s) exp{X1(s —¢2(8))} _
-0 = | [ T et~ )
B C2(s) exp{Xs(s)} ] ds
az exp{Xs(s)} + exp{X2(s)}
/t { M2 (S) exp{X2(s — ¢3(s))} _ dz(s)] ds

a2 exp{Xs(s — ¢3(s))} + exp{Xa(s — ¢3(s))}

1) [ embatatn gy oo |
. i) {alexp{xZ o Earr e R
& ex;f{z)((3)(se)x}pixe3>£p){};(2 o7
[ et ) -l st
(R L
| G3) | [t o et~
ca(t) explxa(t)}

apexp{xa(t)} + exp{x2(t)}
(t 1) A{ my(t) exp{Xa(t — ¢3(t))} _dz(t)] dt

T2 ag exp{Xa(t — ¢3(t))} + exp{xa(t — ¢3(t))}
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Clearly, QN and Kp(I — Q)N are continuous and, moreover, QN () ; Ky (I —

Q)N () are relatively compact for any open bounded set 2 C X: Hence, N is
L-compact on €, here Q is any open bounded set in X.

Now we are in a position to search for an appropriate open bounded subset €2 for
the application of Lemma 2.1. Corresponding to equation Lx = _NXx, , € (0;1);
we have

(T s bt - o dE R
dxo(t) _ { My (t) exp{X1(t—¢2(t))} —dl(t)]
(5) dt “lag eXp{Xz (t—(',z (t))} +€‘Xp{X1 (t—(',z(t))}
B Cz(t) exp{x3 (t)} :| .
az exp{xs(t)} + exp{xz2(t)} | ’
dxs(t) [ M2 (t) exp{Xa(t — ¢3(t)) } _ dz(t)] :
dt “la exp{x3(t —¢3 (t))} + eXp{Xz(t — 3 (t))} '

Suppose that x(t) = (X1;X2;%3) € X is a solution of system (5) for a certain
. €(0;1). By integrating (5) over the interval [0; 1], we obtain

/ [r(t) ~b(t) exp{xa(t - (D)) - 1 ex}f{lx(?(fj}pjxjig{}xl (t)}] gt — 0;
/! { My (t) exp{Xa (t — ¢2(t)} i (1)
o | et — ca(0)} + explxalt— ()]
 oMeps®)} .
2 xp (X (0} + exp X (D)}
' My (t) exp{Xz(t — ¢3(t))} 3 o
/ [az St~ (D)) + exp et ()] dz“)] =0

Hence we have the followings:

' | () exp{x2(t)} o
® | {b“) et = alth + Zer e my + exp{xl(t)}] dr=rh

/ ) { My (t) exp{Xq (t—¢2(t)} Ca(t) exp{xs(t)} ] dt
(1) Jo

ag exp{Xz(t—i2(t)) }+exp{xi(t—¢2(t))} Ca exp{Xz(t)} +exp{x2(t)}

:al!;

@ /O! l: mz(t) exp{Xz (t —¢3 (t))} :| dt = 62 L

a2 exp{X3(t — ¢3(t))} + exp{xa(t — ¢a(t))}
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From (5), (6), (7) and (8), we obtain
| paise < [ boesmixalt— o))
0 0
©) Y () explxa(t)} !
+/O [ ]dt+/o Ir(t)| dt

ag exp{Xz(t)} + exp{x1(t)}

=2r}!;
and
LI ! My (t) exp{Xy(t — ¢2(t))}
/O Xp(t)[dt < /O a1 exp{Xa(t — ¢2(1))} + exp{x1(t — ¢2(t))}
(10) Co(t) exp{xs(t)} 3
~agexp{x3(t)} + exp{x2(t)} dt !
<2di!:

Note that (X1 (t); X2(t); X3(t))T € X, then for i = 1;2; 3 there exists »; " € [0; 1];
i = 1;2; 3 such that

(11) Xi(»i) = tg[loll}] Xi(t);xi("i) = G Xi (1);

By (6) and (11), we have

T! > Dbl exp{x; (»)};

and so .
X1 ())1) S In {:} .
b
Then
1
(12) X1(t) < X1(»1) +/ |x01(t)]dt <In {%} +2rh:
0

By (6) and (11), we also have
_ T
T <blexp{x; ("1)}+ a—1!:
1

and

X1("1) > In {

ayr—=0C | .
8.15 ’

Thus
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! T-CT
(13) mmzxwg/|ﬁmmzmﬁl_l]2ﬂ:
0 aib
From (12) and (13) it follows that
T ar —C
14 t)| < In< = 2rt ;|1 = —2rt| s :=B1:
R =S e =

Similarly, by (7) and (11), we obtain
dq! / ! { my (t) exp{X1(»1)} Cz(t)] it
0

a; exp{x2("2)} +exp{x1(»)}  a

M P exp{X1(»1)} Tl
arexp{xz("2)} +exp{x1(»1)} @’
The above and (13) imply that

(Tﬁlaz — Hlaz — Cz)(ral —C1

) .
— — —2ril:
a%(azdl +Cz)b eXp{ }

exp {x2("2)} >

Then

(Tﬁlaz — Hlaz — Cz)(i’al —
af (azal + Cz)B

xo("2) > m{ %) exp(—2r1 }} —Hy:

and consequently
1

(15) mmzxxg/|gmmzleak
0

In addition, by (7) and (11), we obtain

my ! exp {x1("1)}.

di! < :
Y T e (xe(2)}
Thus
Xa(») < ln{mleXp{_Xl( 1)}}
a;d;
1
< m{%}:: e
a1d1b
and so

(16) Xz(t) < X2(»2) + /O- |X02(t)’dt <H,+ 261 L
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The inequalities (15) and (16) imply that

—92d41
(17) tIZI%SI;}!(] |X2 (t)’ < max {’Hl 2d1 L

H2+261! ’} = Bo:

Furthermore, by (8) and (11), we obtain

_ ! my(t) exp{X2(»2)}
d! = /O |:3.3 exp{X3(“3)} + exp{Xa(»2)}
ma ! exp{Xa2(»2)}
azexp{xz(“3)} + exp{x2(»2)}’

The above and (15) imply that

my 762

exp{x3("3)} > s exp{Xa(»2)}
> M2 % otH, —2du);
azds

then

m, —d _
X3("3) > ln{ 2 _ 2 exp{H1 2d1!}} = Iy;
a3d2

and consequently
1
(18) X3(t) > x3("3) — / IXz(t)[dt > 13 — 20,1
0

In addition, from (8) and (11), we also have

M ! exp {X2("2)}.

d,! < .
2= Tay exp{xs(»)}
That is
m: -
X3(»3) < ln{—_zexp{xz( 2)}}
axd,
< In {l_zexp{Hz +2d; 1 }} =1y
axd,
then
1
(19) X3(t) < X3(»3) + / |X03(t)’dt <l + 262! :
0

The inequalities (18) and (19) imply that
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max |X3(t)’ §max{’|1—262! |2+262!

t2[0;1]

: }:=Bg:
Clearly, H;, I;i = 1;2;and Bj, j = 1, 2; 3 are independent of _. By the assumption
of Theorem 2.1, it is easy to show that the system of algebraic equations
( _
T\
Vi + a1V
myvy — CoV3
Vitavz - V2 tapvs
moVvso _
Vo +agvs

—dy +

has a unique solution (v;v5;vE)" € intRZ with v? > 0;i = 1;2;3: Denote
B = B; + B2 + B3z + Bg; where B4 > 0 is sufficiently large satisfying

[(In{vi};n{vz} i In{vs})[| = [In{vi}| +[In{vz} + In{v3}| < B.
Let
Q={x(t) e X:||x|| <B}:
It is clear that 2 satisfies the condition (a) of the Lemma 2.1. of
X = (x1;%2;%3)T € @Q N KerL = @0 NR3;

with [|x|| = M, then

C1 eXp{Xz} 7]
exp{X1} + a1 exp{X2}
my eXp{Xl} - Co eXp{Xg}
NXx = —d; — 0:
Q exp{X1} + a1 exp{X2} ! exp{Xz2} + az exp{Xs} 7

— my eXp{Xz}
—d, +
L 2 oxp{Xa} + @z exp{xa} i

T— Eexp{xl} —

Furthermore, let J :ImQ —KerL, x — X, and by the assumption in Theorem 2.1,
it follows that

deg {JON; Q NKerL;0} # 0

Now 2 satisfies all the conditions in Lemma 2.1, hence the system (4) has at least
one !-periodic solution. By (3), we prove that the system (2) has at least one
positive -periodic solution. The proof is complete.
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Next, we consider the following predator-prey systems with distributed delays

c(t)X(H)y(t) .
apy(t) +x(t)’

[ (O o) [ (-t
0

] mu(t) [ x(trud()

T=y(t) [— e ~h(t

a [ ytewd @+ [ xrdrm)

(20) e 7.

az(t) +y(t)] ’

dz / y(t+p)d (n)
a2/ z(t+ p)dA(u / y(t+p)d ()
ié3 ié

where ¢1:¢2 and ¢3 are positive constants and 1;~ A are nondecreasing functions
such that

Q-‘
—
I
X
—~
—+
~
VR
=
—~
—+
~
\

— dz(t) X

H07) = (=" ) =17(07) = " (=¢') = LAQOT) = A(=¢ )i = 1,2;3:

Theorem 2.2. If
ayF — T > 0;May — dia; — T, >0 and M, — dp > 0;
then the system (20) has at least one positive -periodic solution.
Proof. The proof is similar to that of Theorem 2.1. Hence we omitted the proof.

Remark 2.1. From the proofs of Theorem 2.1, one can see that in (20) , even
if some of the ¢S, ¢,5 and ¢35 or all of them are oo; the conclusion of Theorem 2.2
remains true.
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