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ON SOME SPECIAL GENERALIZED FUNCTIONAL IDENTITIES

Daniel Eremita

Abstract. We consider some special generalized functional identities on a
prime ring R, such that the existence of nonstandard solutions of these iden-
tities yields a more refined conclusion than just that R satisfies a generalized
polynomial identity.

1. INTRODUCTION

Speaking in a loose manner we can say that a generalized functional identity
(GFI) on a ring R is an identity holding for all elements in R which besides maps on
R also involves some fixed elements. The usual goal of the study of (generalized)
functional identities is to find the form of the maps involved, or, when this is not
possible, to determine the structure of the ring. Usually we first search for the
solutions of GFI’s that do not depend on structual properties of the ring but are
merely consequences of a formal calculation. We call them standard solutions. In
case there exists a nonstandard solution, it turns out that the ring has a special
structure. The study of GFI’s was initiated in 1995 by M. Bre∙sar [4]. The basic
result about GFI’s is a theorem due to M.A. Chebotar [10, Theorem 1.3]. It states
that a GFI on a prime ring R consisting of expressions of the form

E(x1; : : : ; xi¡1; xi+1; : : : ; xn)xia and bxiF (x1; : : : ; xi¡1; xi+1; : : : ; xn)

(here E; F are arbitrary maps from R £ ::: £R to R and a; b are fixed elements)
has only standard solutions, unless R is a GPI ring (i.e. it satisfies a generalized
polynomial identity). For more details we refer the reader to [10] and also to the
survey [5].

While the theorem of Chebotar deals with a rather generalclassof GFI’s, it is the
purpose of this paper to study certain quite special GFI’s, which, however, enable
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a stronger conclusion than the one obtained by Chebotar. We were motivated by the
study of some special GPI’s (see [3, Section 6.6] and also the more recent paper
[2] and by resuts on some special functional identities [7,8].

The result of Bre∙sar [4, Proposition 8] shows that the GFI

kX
i=1

Fi(x)yai +
lX

j=1

bjxGj(y) = 0

has only standard solutions in arbitrary (GPI or non-GPI) prime rings. Note that here
the indeterminates x and y always appear in the same order. Let us mention that
this result has turned out to be applicable to the study of the so-called generalized
derivations [11]. In Section 3 we shall give a shorter proof and a generalization of
Bre∙sar’s result, using similar methods as developed in [1, 10].

By Chebotar’s theorem a prime ring admitting a GFI with a nonstandard solution
is GPI, and so, by a well-known Martindale’s theorem, its central closure has nonzero
socle. In Section 4 we shall see that in some special GFI’s one can say more, namely,
that the coefficients of these GFI’s actually lie in the socle. In this context we also
mention the recent paper [9] which contains some results in a similar direction.

There are various results on some special GPI’s and functional identities (see
[3, Theorem 6.6.2] and main theorems in [2], [7] and [8] where the conclusion is
that the considered prime ring is GPI and its associated division algebra is a field,
i.e. is of dimension 1 over the extended centroid. Given any positive integer n, we
shall in Section 5 characterize via some special GFI those GPI prime rings that their
associated division algebra is of dimension ∙ n2.

2. PRELIMINARIES

In this section we introduce some notation and recall some basic facts from the
theory of rings with generalized identities that will be used in the sequel without
specific mention. For a complete account on this theory we refer the reader to the
book of Beidar, Martindale and Mikhalev [3].

Throughout the paper R denotes a prime ring. As usually in the theory of
(generalized) functional identities we will need some rings of quotients of R and
other related notions. By C, A = RC, and Qml we denote the extended centroid, the
central closure, and the maximal left ring of quotients of R, respectively. We refer to
[3] for definitions and basic properties; let us just point out here that R µ A µ Qml,
that C is a field defined as the center of Qml, and that A is the subring of Qml

generated by R and C. One of the most useful properties of the extended centroid
is the following well-known fact: If ai; bi 2 Qml, i = 1; : : : n, are nonzero elements
such that

Pn
i=1 aixbi = 0 for all x 2 R, then the ai’s are linearly dependent over C,
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and the bi’s are linearly dependent over C: This is essentially a result of Martindale
[12, Theorem 2], but the version we stated follows for example from [3, Proposition
6.3.13].

Given x 2 Qml we denote by degC(x) the degree of x over C (if x is algebraic
over C) or 1 (if x is not algebraic over C). For any nonempty subset S µ Qml we
define degC(S) = sup fdegC(x) j x 2 Sg. Using standard facts of the PI theory
we see that degC(R) =

p
dimC(A) holds in case R is a PI ring.

The fundamental result of the GPI theory is due to Martindale [12] (see also [3,
Theorem 6.1.6]. It states that a prime ring R is GPI if and only if A is a primitive
ring with nonzero socle and for each minimal idempotent e 2 A the associated
division algebra eAe is finite dimensional over C.

For a positive integer n and elements x1; x2; : : : ; xn 2 R we write

xn = (x1; x2; : : : ; xn) 2 Rn,
where Rn denotes the Cartesian product of n copies of R. Further, for any 1 ∙ i ∙ n
we define

xi
n = (x1; : : : ; xn)

i = (x1; : : : ; xi¡1; xi+1; : : : ; xn) 2 Rn¡1:

3. GFI’S WITH ONLY STANDARD SOLUTIONS IN ALL PRIME RINGS

Lemma 3.1. Let F : R ! Qml be an additive map and let a 2 Qml be a
nonzero element. Assume that there is a dense left ideal L of R such that La µ R
and F (yax) = ayF (x) for all x 2 R, y 2 L. Then there exists a unique q 2 Qml

such that F (x) = axq for all x 2 R.
Lemma 3.1 is a slight modification of [1, Lemma 2.9]. More precisely, instead

of taking the element a from R (as in [1, Lemma 2.9]), we take it from Qml.
However, almost the same proof works in this more general situation, sowe omit it.

Theorem 3.2. Let R be a prime ring and let k; l; m; n be positive integers.
Suppose that

kX
i=1

Fi(xn)y1a1
i y2a2

i :::ymam
i +

lX
j=1

b1
jx1b2

jx2:::bn
j xnGj(ym) = 0(1)

for all xn 2 Rn, ym 2 Rm, where Fi : Rn ! Qml; Gj : Rm ! Qml are any maps
and a®

i ; b¯
j 2 Qml are nonzero elements, i = 1; :::; k, j = 1; :::; l, ® = 1; : : : ; m,

¯ = 1; : : : ; n. If fam
1 ; :::; am

k g and
©

b1
1; :::; b1

l

ª
are C-independent sets, then there

exist elements qij 2 Qml, i = 1; :::; k; j = 1; :::; l, such that

Fi(xn) =
lX

j=1

b1
j x1b2

j x2:::bn
j xnqij ;(2)
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Gj(ym) = ¡
kX

i=1

qijy1a1
i y2a2

i :::ymam
i(3)

for all xn 2 Rn, ym 2 Rm, i = 1; :::; k; j = 1; :::; l.

Proof. It is enough to show that only the maps Gj have the desired form.
Namely, if Gj’s are of the form (3), then a standard argument based on the C-
independence of fam

1 ; :::; am
k g shows that Fi’s must satisfy (2). Moreover, we fix

some s 2 f1; :::; lg and note that it suffices to show that Gs has the desired form.
By [3, Theorem 2.3.3] there exist elements u° ; v° 2 R; ° = 1; :::; N; such that

NX
°=1

u°b1
sv° = b 6= 0 and

NX
°=1

u°b1
j v° = 0 for all j 6= s:

Let Ei(xn) =
PN

°=1 u°Fi(v°x1; x2; :::; xn) for each i. Then

kX
i=1

Ei(xn)y1a1
i y2a2

i :::ymam
i

=
kX

i=1

NX
°=1

u°Fi(v°x1; x2; :::; xn)y1a1
i y2a2

i :::ymam
i

=
NX

°=1

u°

Ã
kX

i=1

Fi(v°x1; x2; :::; xn)y1a1
i y2a2

i :::ymam
i

!

= ¡
NX

°=1

u°

0@ lX
j=1

b1
j v°x1b2

j x2:::bn
j xnGj(ym)

1A
= ¡

lX
j=1

0@ NX
°=1

u°b1
jv°

1A x1b2
j x2:::bn

j xnGj(ym)

= ¡bx1b2
sx2:::bn

s xnGs(ym):

So we have
H(x1; :::; xn; y1; :::; ym)

kX
i=1

Ei(xn)y1a1
i y2a2

i :::ymam
i + bx1b2

sx2:::bn
s xnGs(ym) = 0(4)

for all xi; yi 2 R.
We proceed by induction on n. If n = 1, we have
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H(x1; y1; :::; ym) =
kX

i=1

Ei(x1)y1a1
i y2a2

i :::ymam
i + bx1Gs(ym) = 0(5)

for all x1; y1; :::; ym 2 R: Let L be a dense left ideal of R such that Lb µ R. Pick
any z 2 L. Then

0 = H(zbx1; y1; :::; ym)¡ bzH(x1; y1; :::; ym)

=
kX

i=1

(Ei(zbx1)¡ bzEi(x1)) y1a1
i y2a2

i :::ymam
i

for all x1; y1; :::; ym 2 R, and so, by the same standard argument as at the beginning
of the proof, it follows that Ei(zbx1) = bzEi(x1) for all x1 2 R, z 2 L, i = 1; :::; k.
According to Lemma 3.1 there exist uniquely determined elements qis 2 Qml,
i = 1; :::; k; such that Ei(x1) = bx1qis. Now (5) readily implies that Gs is of the
form (3). So the proof is complete in the case when n = 1.

Now let n > 1. Fix x2; :::; xn 2 R in (4). Then

kX
i=1

eEi(x1)y1a1
i y2a2

i :::ymam
i + bx1

eGs(ym) = 0

for all x1; y1; :::; ym 2 R, where eEi(x1) = Ei(xn) and eGs(ym) =
b2

sx2:::bn
s xnGs(ym). By the argument above there exist pis = pis(x2; :::; xn) 2 Qml,

i = 1; :::; k, such that eEi(x1) = bx1pis. Thus

kX
i=1

pis(x2; :::; xn)y1a1
i y2a2

i :::ymam
i + b2

sx2:::bn
s xnGs(ym) = 0

for all x2; :::; xn 2 R, ym 2 Rm. Now, the induction hypothesis yields Gs(ym) =
¡Pk

i=1 qisy1a1
i y2a2

i :::ymam
i for some qis 2 Qml, i = 1; : : : ; k.

4. GFI’S AND THE SOCLE

Lemma 4.1. Suppose there exist nonzero maps f; g : R ! A and nonzero
elements a; b 2 A such that

f(x)ya = g(y)xb(6)

for all x; y 2 R. Then R is GPI, the associated division algebra of A is a field, and
both elements a; b belong to the same minimal left ideal of A.
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Proof. Pick a nonzero ideal I of R such that bI µ R, and let z 2 I. Replacing
x by xbz in (6) and using (6) once again we obtain

f(xbz)ya = g(y)xbzb = f(x)yazb

for all x; y 2 R. Since f 6= 0 it follows that a and azb are linearly dependent over
C for each z 2 I. Take u 2 I such that ub 6= 0. Then 0 6= aRub µ aIb µ Ca:
Consequently, aAub = Ca and so a 2 aAub. Whence we see that aAa = Ca. We
claim that Aa is a minimal left ideal. Namely, if there was a nonzero left ideal L of
A such that L µ Aa, there would exist s; t 2 A such that sa; ta 2 L and sata 6= 0.
Therefore, ata 6= 0 and hence ata = ¸a for some nonzero ¸ 2 C. This would yield

Aa = A
¡
¸¡1ata

¢ µ Ata µ L µ Aa;

showing that L = Aa. Thus our claim is true and so there exists a minimal
idempotent e 2 A such that Aa = Ae [3, Proposition 4.3.3]. In particular, e = va
for some v 2 A which readily implies eAe = Ce. Therefore, R is a GPI ring
and the associated division algebra is a field. Clearly, a 2 aAa µ Aa = Ae.
Multiplying (6) by 1¡ e we get g(y)x(b¡ be) = 0 for all x; y 2 R. Accordingly,
b = be 2 Ae.

Lemma 4.1 in particular shows that a and b lie in soc(A), the socle of A. We
now extend this conclusion to any number of variables.

Theorem 4.2. Let R be a prime ring and let n ¸ 2 be an integer. Suppose
that E1; : : : ; En : Rn¡1 ! A and a1; : : : ; an 2 A are such that

E1(x
1
n)x1a1 +E2(x

2
n)x2a2 + : : :+En(x

n
n)xnan = 0(7)

for all xn 2 Rn. If E1 6= 0 and a1 6= 0, then R is a GPI ring and a1 2 soc(A).

Proof. By Chebotar’s result [10, Theorem 2.6] R is a GPI ring. We use the
induction on n to prove that a1 2 soc(A). Since E1 6= 0, a1 6= 0 and R is prime,
there is no loss of generality in assuming that also En 6= 0 and an 6= 0. If n = 2
the result follows from Lemma 4.1, so let n > 2. Since A is a primitive ring with
nonzero socle, by [3, Theorem 4.3.7(ii)] there exists a minimal idempotent e 2 Aan.
Let u 2 A be such that e = uan. There is a nonzero ideal I of R such that Iu µ R.
Since Ie 6= 0, we can pick b 2 I such that be 6= 0 and hence bu 6= 0. Replacing
xn by xnbu in (7) we get

n¡1X
i=1

Ei (x1; : : : ; xn¡1; xnbu)i xiai +En(x
n
n)xnbe = 0(8)
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for all xn 2 Rn. Since En 6= 0 and be 6= 0, for some 1 ∙ s ∙ n ¡ 1 the
map xn 7! Es(x1; : : : ; xn¡1; xnbu)s is nonzero. Fix cn 2 R such that the map
xn¡1 7! Es(x1; : : : ; xn¡1; cnbu)s is also nonzero. Multiplying (8) from the right
by 1¡ e and setting xn = cn gives us

n¡1X
i=1

Ei (x1; : : : ; xn¡1; cnbu)i xi (ai ¡ aie) = 0(9)

for all xn¡1 2 Rn¡1. By the induction assumption it follows that as¡ase 2 soc(A),
and hence as 2 soc(A). We may therefore assume that s 6= 1, say s = 2 with no
loss of generality. According to Litoff’s theorem [3, Theorem 4.3.11] there exists
an idempotent f 2 soc(A) such that a2 = fa2f . Multiplying (7) from the right by
1¡ f gives us

E1(x
1
n)x1 (a1 ¡ a1f) +E3(x

3
n)x3 (a3 ¡ a3f) + : : :+En(x

n
n)xn (an ¡ anf) = 0

for all x1; x3; : : : ; xn. Since E1 is a nonzero map, there is c 2 R such that the
map (x3; : : : ; xn) 7! E1(c; x3; : : : ; xn) is still nonzero. Setting x2 = c in the last
identity and using the induction hypothesis it follows that a1 ¡ a1f 2 soc(A), and
hence also a1 2 soc(A). The proof is thereby complete.

A simple example illustrating Lemma 4.1 is given by the identity (exbe)ye =
(eye)xbe which holds true for any minimal idempotent e such that eRe = Ce and
any b 2 R. In Theorem 4.2 one certainly cannot conclude in general neither that
the associated division algebra is a field nor that a1 lies in some minimal left ideal.
Indeed, if R is any PI ring, then it satisfies some multilinear polynomial identity of
the smallest possible degree, which can be interpreted as the functional identity

E1(x
1
n)x1 +E2(x

2
n)x2 + : : :+En(x

n
n)xn = 0

for all xn 2 Rn, where E1 (a “polynomial” of degree n ¡ 1) is a nonzero map.
Note that this is just a very special case of (7) with ai = 1 for each i. Now
take for example R = Mn(D), the ring of n £ n matrices (with n ¸ 2) over
a noncommutative division algebra finite dimensional over its center. Then the
associated division algebra of R is D and is not a field, and 1 of course does not
lie in any minimal left ideal of A = R.

5. A RESULT ON TRACES

Let F be an n-additive map on Rn, i.e. the map that is additive in each
argument. The map q on R defined by q(x) = F (x; : : : ; x) is called the trace of
F .
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Theorem 5.1. Let R be a prime ring, let n be a positive integer and assume
that char(R) = 0 or char(R) > n. Further, let e 6= 0; 1 be an idempotent in A.
Then the following two conditions are equivalent:

(i) There exists a nonzero trace q : R ! A of an n-additive map such that
q(x)xe = 0 for all x 2 R;

(ii) dimC(eAe) ∙ n2.

Proof. Suppose that q is a nonzero trace of an n-additive map F : Rn ! A
such that q(x)xe = 0 for all x 2 R. The complete linearization of this identity
gives us X

¼2Sn+1

F
¡
x¼(1); : : : ; x¼(n)

¢
x¼(n+1)e = 0

for all xn+1 2 Rn+1. Here Sn denotes the symmetric group of order n. Let
E (xn) =

P
¼2Sn

F
¡
x¼(1); : : : ; x¼(n)

¢
. Clearly, E is a symmetric n-additive map-

ping satisfying
n+1X
i=1

E
¡
xi

n+1

¢
xie = 0(10)

for all xn+1 2 Rn+1. Moreover, E 6= 0 in view of the characteristic assumption.
Let us pick a nonzero ideal I of R such that eI; Ie µ R. Fix y 2 I . Replacing x1

by x1ey in (10) we get

E
¡
x1

n+1

¢
x1eye+

n+1X
i=2

E (x1ey; x2 : : : ; xn+1)
i xie = 0:

Using (10) once again we obtain

¡
n+1X
i=2

E
¡
xi

n+1

¢
xieye+

n+1X
i=2

E (x1ey; x2; : : : ; xn+1)
i xie = 0:(11)

Next, replacing x2 by x2ey in (11) gives us

¡ E
¡
x2

n+1

¢
x2eyeye+ E (x1ey; x3; : : : ; xn+1)x2eye

¡
n+1X
i=3

E (x1; x2ey; x3; : : : ; xn+1)
i xieye

+
n+1X
i=3

E (x1ey; x2ey; x3; : : : ; xn+1)
i xie = 0;
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which can be according to (11) written as

n+1X
i=3

E
¡
xi

n+1

¢
xieyeye¡

n+1X
i=3

E (x1ey; x2 : : : ; xn+1)
i xieye

¡
n+1X
i=3

E (x1; x2ey; x3; : : : ; xn+1)
i xieye

+
n+1X
i=3

E (x1ey; x2ey; x3; : : : ; xn+1)
i xie = 0:

After further n¡ 2 repetitions of this procedure we obtain

(¡1)n E (xn) xn+1(eye)n

+ (¡1)n¡1
³

E(x1ey; x2; : : : ; xn)+: : :+E (x1; : : : ; xn¡1; xney)
´

xn+1(eye)n¡1

+ : : :¡
³

E (x1; x2ey; : : : ; xney) + : : :+ E (x1ey; : : : ; xn¡1ey; xn)
´

xn+1eye

+ E (x1ey; x2ey; : : : ; xney) xn+1e = 0

for all xn+1 2 Rn+1. Since we can choose xn 2 Rn such that E (xn) 6= 0,
it follows that e; eye; :::; (eye)n are C-dependent for each y 2 I . Consequently,
C2n+1 (e; eye; : : : ; (eye)n ; x1; : : : ; xn) = 0 for all y 2 I and x1; : : : ; xn 2 I,
where C2n+1 is the so-called Capelli polynomial defined by

C2n+1(x1; : : : ; x2n+1) =
X

¼2Sn+1

²(¼)x¼(1)xn+2x¼(2)xn+3 : : : x¼(n)x2n+1x¼(n+1);

here ²(¼) is the sign of the permutation ¼ 2 Sn+1 (see e.g. [3, Theorem 2.3.7]).
Recall that I and A satisfy the same generalized polynomial identities (this fol-
lows from [3, Proposition 2.1.10 and Theorem 6.4.1]. Thus, C2n+1(e; eye; : : : ;
(eye)n; x1; : : : ; xn) = 0 for all y 2 A and x1; : : : ; xn 2 R. Again using [3, The-
orem 2.3.7] we see that e; eye; :::; (eye)n are C-dependent for each y 2 A. This
means that degC(eAe) ∙ n, and hence dimC(eAe) ∙ n2.

It remains to prove that (ii) implies (i). Suppose dimC(eAe) = k2, where
1 6 k 6 n. Similarly as above, by making use of the Capelli polynomial, we
see that degC(eAe) = degC(eRe) = k. By [6, Lemma 3.3] there exist maps
¿i : eAe ! C, i = 1; :::; k ¡ 1, such that

(exe)k + ¿1(exe) (exe)k¡1 + ¿2 (exe) (exe)k¡2 + : : :+ ¿k¡1 (exe) exe 2 Ce

for all x 2 A, and each ¿i is the trace of an i-additive map.
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We claim that there is x0 2 R such that (ex0e)k + ¿1(ex0e)(ex0e)k¡1 + : : :+
¿k¡1(ex0e)ex0e = ¿e for some nonzero ¿ 2 C (in particular, ex0e is therefore
invertible in eAe). Indeed, if this was not true, then we would have q0(x)xe = 0
for all x 2 R, where q0(x) = (exe)k¡1 + ¿1(exe)(exe)k¡2 + :::::+ ¿k¡1(exe)e is
the trace of a (k¡1)-additive map and so, by the first part of the proof either q0 = 0
or dimC(eAe) ∙ (k¡ 1)2. However, q0 = 0 implies degC(eAe) ∙ k ¡ 1 which in
turn yields dimC(eAe) ∙ (k ¡ 1)2, so we arrive at a contradiction in any case.

Further, pick b 2 R such that eb(1¡ e) 6= 0, and define q00 : R ! A by

q00(x) =
³
(exe)k + ¿1(exe)(exe)k¡1 + : : :+ ¿k¡1(exe)exe

´
eb

¡ebxe
³
(exe)k¡1 + ¿1(exe)(exe)k¡2 + : : :+ ¿k¡1(exe)e

´
.

Clearly, q00(x)xe = 0 for all x 2 R. Defining q : R ! A by

q(x) = (exe)n¡kq00(x)

we see that q is the trace of an n-additive map, q(x)xe = 0 for all x 2 R, and
q 6= 0. Namely, if q was a zero map, then we would have (ex0e)n¡kq00(x0) = 0,
and so 0 = (ex0e)n¡kq00(x0)(1¡ e) = (ex0e)n¡k¿eb(1¡ e), which contradicts the
invertibility of ex0e.

Theorem 5.2. Let R be a prime ring, let n be a positive integer and as-
sume that char(R) = 0 or char(R) > n. Then the following two conditions are
equivalent:

(i) There exist a nonzero a 2 A and a nonzero trace q : R ! A of an n-additive
map such that q(x)xa = 0 for all x 2 R;

(ii) R is a GPI ring, A is not a division algebra, and the associated division
algebra of A is at most n2-dimensional over C.

Proof. Suppose that q is a nonzero trace of an n-additive map F : Rn ! A
such that q(x)xa = 0 for all x 2 R. Similarly as in the proof of Theorem 5.1 we
obtain

n+1X
i=1

E
¡
xi

n+1

¢
xia = 0

for all xn+1 2 Rn+1, where E : xn 7!
P

¼2Sn
F

¡
x¼(1); : : : ; x¼(n)

¢
is a nonzero

symmetric n-additive map. Applying [10, Theorem 2.6] it follows that R is a GPI
ring. Consequently, A is a primitive ring with nonzero socle, which further implies
that the right ideal aA contains a minimal idempotent e [3, Theorem 4.3.7]. So,
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we have q(x)xe = 0 for all x 2 R. Note that e 6= 0; 1, since e is minimal and q
is nonzero. Thus, using Theorem 5.1 we see that dimC(eAe) ∙ n2. Obviously, A
can not be a division algebra.

Let us prove that (ii) implies (i). Since R is GPI there exists a minimal idem-
potent e 2 A such that eAe is a finite dimensional division algebra over C. Note
that e 6= 1 since A is not a division algebra. Now apply Theorem 5.1.

We conclude the paper by remarking that according to Theorem 4.2 the element
a from Theorem 5.2 lies in soc(A).
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