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UNIFORM CONVERGENCE IN THE DUAL OF A
VECTOR-VALUED SEQUENCE SPACE

Charles Swartz and Christopher Stuart

Abstract. In this note the authors establish several results concerning the
uniform convergence of series in vector-valued sequence spaces. Corollaries
include sufficient conditions for the weak sequential completeness of β-duals
of sequence spaces, versions of the Uniform Boundedness Theorem and the
Banach-Steinhaus Theorem for elements of operator-valued β-duals, and a
characterization of weakly convergent sequences in β-duals. A further appli-
cation establishes a vector-valued version of the Hahn-Schur Lemma.

1. INTRODUCTION

In [5] and [12] Li Ronglu and his collaborators established several interest-
ing results concerning the uniform convergence of series generated by elements of
vector-valued sequence spaces and their operator β-duals. It was shown in [5] that
one of these uniform convergence results implies the Hahn-Schur Lemma on weakly
convergent sequences in l1. In this note we continue this theme on the uniform con-
vergence of series in vector-valued sequence spaces. As a consequence of our results
for β-duals, we establish a result of Stuart on the weak sequential completeness of
β-duals, versions of the Uniform Boundedness Principle and the Banach-Steinhaus
Theorem for elements of operator-valued β-duals, and give a characterization of
weakly convergent sequences in β-duals. We also define another operator-valued
dual using unordered convergent series and establish results on uniform unordered
convergence in such duals. As an application of one of these uniform convergence
results, we establish a vector-valued version of the Hahn-Schur Lemma.

We begin by fixing the notation and terminology which will be used. Let X
and Y be Hausdorff topological vector spaces and let L(X,Y ) be the space of all
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continuous linear operators from X into Y . Let E be a vector space of X-valued
sequences which contains the space c00(X) of all X valued sequences which are
eventually zero. If x ∈ E, the kth coordinate of x is denoted by xk so x = {xk}. The
β-dual of E with respect to Y, EβY , is defined to be all sequences {yk} ⊂ L(X,Y )
such that the series

P∞
k=1 ykxk converges in Y for every {xk} ∈ E; if Y is the

scalar field we write EβY = Eβ. If y = {yk} ∈ EβY and x = {xk} ∈ E, we
write y · x = P∞

k=1 ykxk. If F ⊂ EβY , we let w(F,E) be the weakest topology
on F such that each map y → y · x is continuous for each x ∈ E. We consider the
uniform convergence of series generated by subsets of E and EβY .
An interval in N is a set of the form [m,n] = {k ∈ N : m ≤ k ≤ n} where

m,n ∈ N and m ≤ n. If σ ⊂ N, χσ will denote the characteristic function of σ,
and if x ∈ E, χσx will denote the coordinatewise product of χσ and x. A sequence
{Ik} of finite subsets of N is increasing if max Ik < min Ik+1; {sk} is a sequence
of signs if sk = ±1 for every k. The space E has the signed weak gliding hump
property (signed WGHP) if whenever x ∈ E and {Ik} is an increasing sequence
of intervals, there exist a sequence of signs {sk} and an increasing sequence {nk}
such that the coordinatewise sum of the series

P∞
k=1 skχInkx belongs to E ([7],

[8]). E has the weak gliding hump property (WGHP) if the signs above are all
equal to 1 ([6], [10]). Any monotone space has WGHP and bs, the sequence space
of bounded series, is an example of a space with signed WGHP but not WGHP
([7], [8]). One of the important consequences of the weak gliding hump properties
is the weak sequential completeness of β-duals ([6], [7], [8], [10]). We show that
our first uniform convergence theorem implies this weak sequential completeness
result as a corollary.

Theorem 1. Assume that E has the signed WGHP. If {yk} is w(EβY , E)
Cauchy and x ∈ E, then the series P∞

j=1 y
k
j xj converge uniformly for k ∈ N.

Proof. If the conclusion fails,

(∗) there exists a neighborhood, U , of 0 in Y such that for every n there exist
kn, nn > mn > n such that

Pnn
j=mn

yknj xj /∈ U .
By (∗), for n = 1 there exist k1, m1 < n1 such that

Pn1
j=m1

yk1j xj /∈ U. There
exists m0 > n1 such that

Pn
j=m y

k
j xj ∈ U for n > m > m0, 1 ≤ k ≤ k1. By

(∗) there exist k2, n2 > m2 > m
0 such that

Pn2
j=m2

yk1j xj /∈ U. Hence, k2 > k1.
Continuing this construction produces increasing sequences ki, mi, ni with mi <
ni < mi+1 and

(#) yki · χIix /∈ U where Ii = [mi, ni].

Define the matrix M = [yki · χIjx]. We claim that M is a signed K-matrix
([7], [8], [10, 2.2.4]). First, the columns of M converge since {yk} is w(EβY , E)
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Cauchy. Second, given any increasing sequence of integers, there is a subsequence
{pk} and a sequence of signs {sk} such that z =

P∞
k=1 skχIpkx ∈ E. ThenP∞

k=1 y
ki · χIpkx = yki · z and limi yki · z exists. Hence, M is a signed K-matrix

so the diagonal of M converges to 0 ([7], [8], [10, 2.2.4]), contradicting (#).

Example 2. Theorem 1 fails if the signed WGHP assumption is dropped.
Take E = c so Eβ = l1. Let ek be the canonical unit vector with 1 in the kth

position and 0 otherwise. Then {ek} is w(l1, c) Cauchy and if x is the constant
sequence {1}, the series P∞

j=1 e
k
jxj do not converge uniformly.

We next observe that Theorem 1 implies the result in [7] and [8] on the weak
sequential completeness of β-duals. The pair (X,Y ) is said to have the Banach-
Steinhaus property if whenever {Tk} ⊂ L(X,Y ) is pointwise convergent, limTkx =
Tx exists for each x ∈ X, then T ∈ L(X,Y ). If X is barrelled or a complete metric
space, then (X,Y ) has the Banach-Steinhaus property ([9], [11]).

Corollary 3. ([7], [8]) If E has the signed WGHP and (X,Y ) has the Banach-
Steinhaus property, then w(EβY , E) is sequentially complete.

Proof. Let {yk} be w(EβY , E) Cauchy. For each j and z ∈ X,
lim
k
yk · (ej ⊗ z) = yj(z)exists,

where ej ⊗ z denotes the sequence with z in the jth position and 0 otherwise. By
the Banach-Steinhaus property, yj ∈ L(X,Y ); put y = {yj}.
We claim that y ∈ EβY and yk → y in w(EβY , E). Let U be a balanced

neighborhood of 0 in Y and pick a balanced neighborhood V such that V +V +V ⊂
U. By Theorem 1, there exists p such that

P∞
j=n y

k
j xj ∈ V for k ∈ N, n ≥ p. Fix

n ≥ p. Pick kn = k such that
P∞
j=1 y

k
j xj − u ∈ V and

Pn
j=1

³
ykj − yj

´
xj ∈ V.

Then
Pn
j=1 yjxj−u =

³P∞
j=1 y

k
j xj − u

´
+
Pn
j=1

³
yj − ykj

´
xj−

P∞
j=n+1 y

k
j xj ∈

V + V + V and the result follows.
A subset F of EβY is said to be conditionally w(EβY , E) sequentially compact

if every sequence {yk} ⊂ F has a subsequence {ynk} which is w(EβY , E) Cauchy
([5]). From Theorem 1 we have an analogue of Theorem 2 of [12].

Corollary 4. Assume the E has signed WGHP. If F ⊂ EβY is conditionally
w(EβY , E) sequentially compact and x ∈ E, then the series P∞

j=1 yjxj converge
uniformly for y ∈ F.
We next use Theorem 1 to give a characterization of w(EβY , E) convergent

series in spaces with signed WGHP.

Proposition 5. Let {yk} ⊂ EβY .
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(1) If yk → 0 w(EβY , E), then (a) limk ykj = 0 pointwise on X for each j.
(2) If (a) holds and for every x ∈ E the series P∞

j=1 y
k
j xj converges uniformly

for k ∈N, then yk → 0 w(EβY , E).
(3) If E has signed WGHP, then the converse of (1) holds.

Proof. (1) follows by considering ej ⊗ z for z ∈ X. For (2) let x ∈ E and
consider

(+) yk · x =
nX
j=1

ykj xj +
∞X

j=n+1

ykj xj .

By hypothesis there exists n such that the last term in (+) belongs to V for all k,
where we continue the notation from Corollary 3. By (a) there exists p such that
the first term on the right hand side of (+) belongs to V if k ≥ p. Hence, if k ≥ p,
then yk · x ∈ V + V ⊂ U and (2) holds.
In Theorem 1 and Corollary 4 we considered the uniform convergence of series

generated by subsets of EβY and a single element of E. We now consider uniform
convergence of series generated by subsets of both EβY and E. For this we need an
additional assumption on E. Assume that E has a Hausdorff vector topology under
which E is a K-space, that is, the coordinate maps x → xk from E into X are
continuous for each k. E has the zero gliding hump property (0-GHP) if whenever
xk → 0 and {Ik} is an increasing sequence of intervals, there exists a subsequence
{nk} such that the coordinatewise sum of the series

P∞
k=1

χInkx
nk belongs to E.

This property was introduced by Lee ([4]); examples of spaces with 0-GHP are
given in ([10], 12.5).

Lemma 6. Assume that E has 0-GHP. If y ∈ EβY and xk → 0 in E, thenP∞
j=1 yjx

k
j converges uniformly for k ∈ N.

See [12], Theorem 2.
Without the 0-GHP assumption the conclusion of Lemma 6 can fail.

Example 7. Let X = c00 be the space of all scalar sequences which are
eventually zero with the sup-norm. Then Xβ = s, the space of all scalar sequences.
Let y be the constant sequence {1} and xk =

Pk
j=1 e

j

k . Then xk → 0 but
P∞
j=1 x

k
j yj

does not converge uniformly for k ∈ N.
Corollary 8. ([12] Corollary 4) Assume that E has 0-GHP. Each y ∈ EβY is

sequentially continuous.

Theorem 9. Assume that E has signed WGHP and 0-GHP. If {yk} is w(EβY , E)
Cauchy and xl → 0, then the series

P∞
j=1 y

k
j x
l
j converge uniformly for k, l ∈N.

Proof. If the conclusion fails,
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(∗∗) there is a neighborhood U of 0 in Y such that for every n there exist kn, ln,
nn > mn > n such that

Pnn
j=mn

yknj x
ln
j /∈ U .

By (∗∗) for n = 1 there exist k1, l1, n1 > m1 such that
Pn1
j=m1

yk1j x
l1
j /∈ U.

By Theorem 1 and Lemma 6, there exist m0 > n1 such that
Pp
j=m y

k
j x
l
j ∈ U for

p > m ≥ m0 and for 1 ≤ l ≤ l1, k ∈ N or 1 ≤ k ≤ k1, l ∈ N. By (∗∗) there
exist k2, l2, n2 > m2 > m0 such that

Pn2
j=m2

yk2j x
l2
j /∈ U. Hence, k2 > k1 and

l2 > l1. Continuing this construction produces increasing sequences ki, li, mi, ni
with mi < ni < mi+1 and

(##) yki · χIixli /∈ U, where Ii = [mi, ni].

Define the matrix M = [yki ·χIjxlj ]. By an argument like that in Theorem 1 it
is easily checked that M is a K-matrix ([10], 2.2.2) so the diagonal of M should
converge to 0 ([10], 2.2.2). But this contradicts (##).
We next give examples which show that neither assumption on the space E can

be dropped from Theorem 9.

Example 10. Example 2 shows that signed WGHP cannot be dropped even
when 0-GHP holds.

Example 11. Let E be as in Example 7. Let yk =
Pk
j=1 e

j in s = cβ00 and
xl =

Pl
j=1

ej

l so {yk} is w(s, c00) Cauchy and xl → 0. Then
P∞
j=N y

k
j x
l
j =

k−l
l

if k > l ≥ N so the series do not converge uniformly for k, l ∈ N.
Corollary 12. Assume that E has signed WGHP and 0-GHP. If F ⊂ EβY is

conditionally w(EβY , E) sequentially compact and xl → 0 in E, then
P∞
j=1 yjx

l
j

converges uniformly for y ∈ F, l ∈ N.
Remark 13. The conclusion in Corollary 12 is the same as in Theorem 4 of [5]

but their hypothesis is that E is an AK-space with 0-GHP. The following proposition
shows their hypothesis implies the hypothesis in Corollary 12.

Proposition 14. 0-GHP and AK imply WGHP.

Proof. Let x ∈ E and {Ik} be an increasing sequence of intervals. Since E has
AK, χIkx → 0. By 0-GHP there is a subsequence nk such that

P∞
k=1

χInkx ∈ E
so WGHP holds.
The following example shows that Corollary 12 is stronger than Theorem 4 of

[5].

Example 15. Let E = l∞ with the sup-norm. Then E has WGHP and 0-GHP
but not AK.
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We note that in general there is no comparison between WGHP and AK.

Eexample 16. Any scalar sequence space λ is AK for w(λ,λβ) so (c, w(c, l1))
has AK but does not have WGHP.

We next consider weakly convergent sequences in β-duals and show that such
sequences converge in a stronger topology if E has signed WGHP and 0-GHP.

Notation. If B is a subset of E or EβY , set Bj = {xj : x ∈ B} for j ∈ N.

Lemma 17. Let {yk} ⊂ EβY . If (I) ∀j limk ykj x = 0 uniformly for x ∈ Bj
and (II)

P∞
j=1 y

k
j xj converges uniformly for k ∈ N, x ∈ B, then limk yk · x = 0

uniformly for x ∈ B.

Proof. The proof uses (+) and proceeds as in the proof of (2) in Proposition 5.

Corollary 18. Assume that E has signed WGHP and 0-GHP and that X is
barrelled. If yk → 0 w(EβY , E) and xl → 0 in E, then limk yk · xl = 0 uniformly
for l ∈N.

Proof. Put B = {xl : l ∈N}. Since X is barrelled, limk yk · xlj = 0 uniformly
for l ∈ N ([9], [11]) so (I) of Lemma 17 holds by Theorem 9. The result then
follows from Lemma 17.

Garnir, DeWilde, and Schmets have compared uniform convergence on null
sequences as in Corollary 18 with uniform convergence on precompact subsets ([2]
III.II.19). In particular, if E in Corollary 18 is a metrizable locally convex space,
then whenever yk → 0 in w(EβY , E) yk → 0 uniformly on precompact subsets of
E ([2] III.II. 19b).
We next consider uniform convergence on subsets of β-duals for null sequences

in E.

Lemma 19. If F ⊂ EβY is such that Fj is sequentially equicontinuous for
every j, xl → 0 and the series

P∞
j=1 yjx

l
j converge uniformly for y ∈ F, l ∈ N,

then lim y · xl = 0 uniformly for y ∈ F.

Proof. Let U be a neighborhood of 0 in Y and pick a balanced neighborhood
of 0, V, such that V + V ⊂ U. There exists p such that

P∞
j=p+1 yjx

l
j ∈ V for

y ∈ F, l ∈ N. Since each Fj is sequentially equicontinuous, there exists q such
that l ≥ q implies

Pp
j=1 yjx

l
j ∈ V for y ∈ F. Hence, if l ≥ q, then y · xl =Pp

j=1 yjx
l
j +

P∞
j=p+1 yjx

l
j ∈ V + V ⊂ U for all y ∈ F.
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Corollary 20. Assume that E has signed WGHP and 0-GHP and that X is
barrelled. If F ⊂ EβY is either conditionally w(EβY , E) sequentially compact or
the range of a w(EβY , E) Cauchy sequence and xl → 0 in E, then liml y · xl = 0
uniformly for y ∈ F.

Proof. Each Fj is pointwise bounded on X and is, therefore, equicontinuous
since X is barrelled. The result now follows from Theorem 9 or Corollary 12 and
Lemma 19.

We can easily obtain a uniform boundedness result from the sequential conver-
gence result above.

Corollary 21. (Uniform Boundedness) Assume that E has signed WGHP and
0-GHP and X is barrelled. If B ⊂ EβY is w(EβY , E) bounded and A ⊂ E is
bounded, then {y · x : y ∈ B, x ∈ A} is bounded.

Proof. Let {yk} ⊂ B, {xk} ⊂ A. It suffices to show 1
ky
k · xk → 0. Since

1√
k
yk → 0 w(EβY , E) and 1√

k
xk → 0 in E, this follows from Corollary 18.

We now show that the uniform convergence result of Theorem 9 can be strength-
ened if we make a stronger gliding hump assumption on E. If E is a K-space, then
E has the strong gliding hump property (SGHP) if {xk} is a bounded sequence in
E and {Ik} is an increasing sequence of intervals, then there is a subsequence {nk}
such that the coordinatewise sum of the series

P∞
k=1

χInkx
nk belongs to E ([6]).

For example, l∞ has SGHP; see [6] for other examples.

Lemma 22. Assume that E has SGHP. If y ∈ EβY and A ⊂ E is bounded,
then

P∞
j=1 yjxj converges uniformly for x ∈ A.

Proof. If the conclusion fails,

(∗ ∗ ∗) there is a neighborhood U of 0 such that for every n there exist
xn ∈ A,nn > mn > n such that

Pnn
j=mn

yjx
n
j /∈ U.

By (∗ ∗ ∗) for n = 1, there exist x1 ∈ A, n1 > m1 such that
Pn1
j=m1

yjx
1
j /∈ U.

By (∗ ∗ ∗) again, there exist x2 ∈ A, n2 > m2 > n1 such that
Pn2
j=m2

yjx
2
j /∈

U. Continuing produces increasing sequences nk, mk, nk+1 > mk+1 > nk and
{xk} ⊂ A such that

(z) y · χIkxk /∈ U, where Ik = [mk, nk].

By SGHP, there exists {pk} such that x =
P∞
k=1

χIpkx
k ∈ E. But (z) implies

that the series
P∞
j=1 yjxj does not converge or y /∈ EβY .
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Example 23. The SGHP assumption in Lemma 22 cannot be replaced by
WGHP. Let A be the unit ball of l1 and let y ∈ (l1)β = l∞ be the constant
sequence {1}.

Example 24. The SGHP assumption in Lemma 22 is only a sufficient condition
for the uniform convergence conclusion of Lemma 22. If A ⊂ l2 is bounded and
y ∈ l2, then

¯̄̄P∞
j=N yjxj

¯̄̄2 ≤P∞
j=N |yj |2

P∞
j=N |xj |2 so the conclusion of Lemma

22 holds but l2 does not have SGHP.

Theorem 25. Assume that E has SGHP. If {yk} ⊂ EβY is w(EβY , E) Cauchy
and A ⊂ E is bounded, then P∞

j=1 y
k
j xj converges uniformly for x ∈ A, k ∈ N.

Proof. Using Lemma 22 and Theorem 1, the proof proceeds as the proof of
Theorem 9 where SGHP is used to show that M is a K-matrix.

Corollary 26. ([5] Theorem 1) Assume that E has SGHP. If F ⊂ EβY is condi-
tionally w(EβY , E) sequentially compact and A ⊂ E is bounded, thenP∞

j=1 yjxj
converges uniformly for y ∈ F, x ∈ A.

We next establish a stronger conclusion than that in Corollary 18 under the
stronger assumption of SGHP. The pair (X,Y ) is said to have the strong Banach-
Steinhaus property if whenever {Tk} ⊂ L(X,Y ) is such that limk Tkx = Tx exists
for each x ∈ X, then T ∈ L(X,Y ) and the convergence is uniform for x belonging
to precompact subsets of X (i.e., the conclusion of the classical Banach-Steinhaus
Theorem holds ([9], [11]).

Corollary 27. ([10] 12.5.10) Assume that E has SGHP and (X,Y ) has the
strong Banach-Steinhaus property. If yk → 0 w(EβY , E) and A ⊂ E is bounded
with precompact coordinates, then limk yk · x = 0 uniformly for x ∈ A.

Proof. Let U be a neighborhood of 0 and pick a balanced neighborhood V
such that V + V ⊂ U. By Theorem 25 there exists p such that P∞

j=p+1 y
k
j xj ∈ V

for k ∈ N, x ∈ A. For each j limk ykj = 0 pointwise on X so the convergence on
Aj is uniform since (X,Y ) has the strong Banach-Steinhaus property. Therefore,
there exists q such that k ≥ q impliesPp

j=1 y
k
j xj ∈ V for x ∈ A. Hence, if k ≥ q,

yk · x =Pp
j=1 y

k
j xj +

P∞
j=p+1 y

k
j xj ∈ V + V ⊂ U for x ∈ A.

Finally, we define a new dual for a vector-valued sequence space using unordered
convergent series, establish an analogue of Theorem 1 and show that the result has
as a corollary a vector version of the Hahn-Schur Lemma. Let F be the finite
subsets of N. Then F is a net if F is directed by set inclusion. A series

P
yj in
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Y is unordered convergent if the net limσ∈F
P
j∈σ yj converges ([1]). We define

the unordered dual of E, EuY , to be( {yj} : yj ∈ L(X,Y ) and the series
P
j yjxj is unordered convergent

for every x ∈ E

)
.

If Y is sequentially complete, then unordered convergence and subseries convergence
are equivalent ([1]) so in this case EuY coincides with the σ-dual, EσY . ([10]).
Obviously, we have EuY ⊂ EβY , but, in general, the containment is proper.

Example 28. Let Y be a non-trivial Banach space with
P
yj convergent in Y

but not subseries convergent [
P (−1)j

j y, y 6= 0]. Set E = c00 ⊕ span{1}. Then
{yj} ∈ EβY \EuY .

Definition 29. E has the signed F -weak gliding hump property (signed F -
WGHP) if whenever x ∈ E and {σk} is an increasing sequence of subsets of
F , there exist a sequence of signs {sk} and a subsequence {nk} such that the
coordinatewise sum of the series

P∞
k=1 skχσnkx belongs to E. If all the signs sk

are equal to 1, E is said to have the F -WGHP.

Of course, the difference between the signed WGHP and the property defined
above is the use of the increasing sequences of arbitrary finite subsets of N instead
of intervals. Any monotone space obviously has signed F -WGHP. We give an
example of a non-monotone space with F -WGHP.

Example 30. Haydon has shown the existence of an algebra of subsets of N,
H, which contains F and has the properties that for every pairwise disjoint sequence
{Aj} ⊂ F there is a subsequence {nj} such that ∪∞j=1Anj ∈ H and for no infinite
subset A ∈ H do we have that {A∩B : B ∈ H} equals the power set A ([3]). Now
let S(H) be the vector space of all real-valued H simple functions. If ϕ ∈ S(H),
then ϕ has a representation as

Pn
k=1 akχAk , where ak ∈ R and {Ak : 1 ≤ k ≤ n}

is a pairwise disjoint collection from H. Let {σj} be an increasing sequence from
F. There is a subsequence {nj} such that Bk = ∪∞j=1Ak ∩ σnj ∈ H for every k.
Then

P∞
j=1 χσnjϕ =

Pn
k=1 ak

P∞
j=1 χσnj∩Ak =

Pn
k=1 akχBk ∈ S (H) . Hence,

S(H) has F -WGHP. However, S(H) is not monotone by the second property of
the Haydon algebra H.

Obviously, signed F-WGHP implies signed WGHP but the converse implication
does not hold.

Example 31. The space bs has signed WGHP ([7], [8]) but we show that
it does not have signed F-WGHP. Let x =

n
(−1)k+1

o
∈ bs. Set σ0 = {1} ,
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σ1 = {3, 5, 7} , ... where σk consists of 3k consecutive odd integers. We show that

lim
n

¯̄̄̄
¯̄ nX
k=0

sk
X
j∈σk

xj

¯̄̄̄
¯̄ =∞

for any choice of signs {sk}, which implies that
P
skχσkx /∈ bs. We have¯̄̄̄

¯̄ nX
k=0

sk
X
j∈σk

xj

¯̄̄̄
¯̄ ≥ 3n − n−1X

j=0

3j = 3n − 1− 3
n

1− 3 =
3n

2
+
1

2
.

A similar argument shows
Pn
k=0 sk

P
j∈σk xj /∈ bs for any subsequence {nk} so

bs does not have signed F-WGHP

We now establish the analogue of Theorem 1 for unordered convergent series.
A family of unordered convergent series

P
j y
a
j , a ∈ A, is uniformly unordered

convergent for a ∈ A if for every neighborhood of 0, U, in Y there exists σ0 ∈ F
such that

P
j∈σ y

a
j −

P∞
j=1 y

a
j ∈ U for σ ⊃ σ0 and a ∈ A.

Ttheorem 32. Assume that E has signed F-WGHP. If
©
yk
ª
is w

¡
EuY , E

¢
Cauchy and x ∈ E, then the seriesP∞

j=1 y
k
j xj are uniformly unordered convergent

for k ∈ N.

Proof. If the conclusion fails,

(∗ ∗ ∗∗) there exists a neighborhood of 0, U, such that for every n there exist
k = kn,σ = σn ⊂ [n,∞),σ ∈ F, such that

P
j∈σn y

kn
j xj /∈ U.

By (∗ ∗ ∗∗) for k = 1, there exist k1, σ1 ∈ F such that
P
j∈σ1 y

k1
j xj /∈ U. There

exists m > maxσ1 such that σ ∈ F, σ ⊂ [m,∞) implies
P
j∈σ y

k
j xj ∈ U for 1 ≤

k ≤ k1. There exist k2, σ2 ∈ F, σ2 ⊂ [m,∞) such that
P
j∈σ2 y

k2
j xj /∈ U. Therefore

k2 > k1 and maxσ1 < minσ2. Continuing produces increasing sequences {kj} and
{σj} ⊂ F such that ykj · χσjx /∈ U. Define the matrix M =

£
yki · χσjx

¤
. Using

the signed F-WGHP, it is easily checked as in the proof of Theorem 1 that M is a
signed K-matrix, and the desired contradiction is obtained.

We also have the analogue of Corollary 3 for unordered duals.

Corollary 33. Assume that E has signed F-WGHP and that (X,Y ) is a
Banach-Steinhaus pair. Then w

¡
EuY , E

¢
is sequentially complete.

Proof. Let
©
yk
ª
be w

¡
EuY , E

¢
Cauchy. For each j and z ∈ X, limk ykj (z) =

limk y
k · ¡ej ⊗ z¢ = yj (z) exists and yj ∈ L (X,Y ) by the Banach-Steinhaus
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property. If x ∈ E, then lim yk ·x =P∞
j=1 yjxj by Corollary 3. It suffices to show

that
P∞
j=1 yjxj is unordered convergent. Let U be a neighborhood of 0 and pick a

closed, balanced neighborhood V with V +V ⊂ U. By Theorem 32 there exists σ ∈
F such that σ ⊃ σ0 implies

P
j∈σ\σ0 y

k
j xj ∈ V for all k. Hence,

P
j∈σ\σ0 yjxj ∈

V for σ ⊃ σ0. Let p = maxσ0. By Corollary 3, there exists q ≥ p such thatP∞
j=n yjxj ∈ V for n ≥ q. If σ ⊃ [1, q], we have

P∞
j=1 yjxj −

P
j∈σ yjxj =³P

j∈σ\[1,q] yjxj
´
+
P∞
j=q+1 yjxj ∈ V + V ⊂ U. Hence, limσ∈F

P
j∈σ yjxj =P∞

j=1 yjxj .

Corollary 34. Assume that E has signed WGHP and that (X,Y ) is a Banach-
Steinhaus pair. If {yk} is w(EuY , E) Cauchy, then there exists y ∈ EuY such that
for all x ∈ E limk

P
j∈σ y

k
j xj =

P
j∈σ yjxj uniformly for σ ∈ F.

Proof. By Corollary 33 we may assume that yk → 0 in w
¡
EβY , E

¢
. By

Theorem 32 there exists p such that σ ⊂ [p,∞) implies Pj∈σ y
k
j xj ∈ V for all

k, where we continue the notation from Corollary 33. Since limk ykj (z) = 0 for
each j and z ∈ X, there exists q such that Pj∈σ y

k
j xj ∈ V for k ≥ q, σ ⊂ [1, p].

Therefore,
P
j∈σ y

k
j =

P
j∈σ∩[1,p] y

k
j xj +

P
j∈σ∩[p+1,∞) y

k
j xj ∈ V + V ⊂ U.

Remark 35. If Y is sequentially complete in Corollary 34, then unordered
convergent series are subseries convergent ([1]) so the conclusion in Corollary 34
can be improved to read: limk

P
j∈σ y

k
j xj =

P
j∈σ y

k
j xj uniformly σ ⊂ N.

We observe that Corollary 34 implies the scalar version of the classical Hahn-
Schur Lemma ([9] 16.14, [11], 1.3.2, 14.4.7) and can, therefore, be legitimately
viewed as a vector version of the lemma. Let m0 be the space of all scalar-valued
sequences with finite range. Since m0 is monotone, m0 has F-WGHP and also
mu0 = m

β
0 = l

1.

Corollary 36. (Hahn-Schur) Let {yk} ⊂ l1 be w(l1,m0) Cauchy. Then there
exists y ∈ l1 such that limk

°°yk − y°°
1
= 0.

Proof. Let x be the constant sequence {1} in m0, and ε > 0. From Corollary
34 there exist k0 such that

¯̄̄P
j∈σ y

k
j −

P
j∈σ yj

¯̄̄
< ε for k ≥ k0. Then

∞X
j=1

¯̄̄
ykj − yj

¯̄̄
= kyk − yk1 ≤ 4ε for k ≥ k0 ([9],9.5.1).

Other versions of the classical Hahn-Schur Lemma can be found in ([10]).
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