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ON P 4-DECOMPOSITION OF GRAPHS

C. Sunil Kumar

Abstract. A graph G is decomposable into subgraphs G1, G2, . . . , Gn of
G if no Gi (i = 1, 2, . . . , n) has isolated vertices and the edge set E(G)
can be partitioned into the subsets E(G1), E(G2), . . . , E(Gn). If Gi ∼= P4
for all i, then G is called P4-decomposable. In this paper, we show the
P4-decomposability of some classes of graphs, and prove in particular that a
complete r-partite graph is P4-decomposable if and only if its size is a multiple
of 3. We also give an example of a 2-connected graph of size 3k which is not
P4-decomposable, disproving a conjecture of Chartrand.

1. INTRODUCTION

In this paper we only consider simple graphs. A graph G is said to be H-
decomposable, denoted by H|G, if E(G) can be partitioned into subgraphs such
that each subgraph is isomorphic to H . Such a factorization is called an isomorphic
factorization. The concept of isomorphic factorization was studied by F. Harary
et al. [4]. In this paper we consider a conjecture of Chartrand et al. [3] that a
2-connected graph of order p ≥ 4 and size q ≡ 0 (mod 3) is P4-decomposable. We
prove the conjecture for certain 2-connected graphs. We also show by an example
that it is not true in general.
We follow standard notations in graph theory. The cardinality of the vertex set

of a graph G, the order of G is denoted by p(G); and the cardinality of the edge
set of G, the size of G is denoted by q(G).

Theorem 1. Km,n is P4-decomposable if and only if m ≥ 2, n ≥ 2 and
mn ≡ 0 (mod 3).
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Proof. As the conditions are clearly necessary, we only need to prove the
sufficiency. Without loss of generality, we may assume that m = 3r. Write n =
2s+3t with s ≥ 0 and t ≥ 0. ThenKm,n can be decomposed into rs copies ofK2,3
and rt copies of K3,3. It is easily verified that K2,3 and K3,3 are P4-decomposable.
Hence Km,n is P4-decomposable.

Theorem 2. If G1, G2 and Km1,m2 are H-decomposable, where m1 = p(G1)
and m2 = p(G2), then G1 +G2 is H-decomposable.

Proof. As E(G1 +G2) is equal to the edge-disjoint union E(G1)
S
E(G2)

S
E(Km1,m2), we have that G1 +G2 is H-decomposable.

Theorem 3. If G1 and G2 are P4-decomposable graphs and p(G1) or p(G2)
is a multiple of 3, then G1 +G2 is P4-decomposable.

Proof. Let p(G1) = m and p(G2) = n. Then Km,n is P4-decomposable by
Theorem 1. By Theorem 2, G1 +G2 is P4-decomposable.

Theorem 4. If G1, G2, . . . , Gn are P4-decomposable graphs and p(Gi) ≡ 0
(mod 3) for i = 1, 2, . . . , n, then G1 +G2 + . . .+Gn is P4-decomposable.

Proof. The theorem holds for the case n = 2 by Theorem 3. The general case
follows from an induction on n, as G1 +G2 + . . .+Gn ∼= (G1 +G2) + . . .+Gn.

Lemma 5. If Kr and Kr,r are H-decomposable, then Knr is H-decomposable
for any positive integer n.

Proof. We prove the lemma by induction on n. When n = 1, Kr is H-
decomposable by the assumption. Assume the lemma is true for n = m − 1 ≥ 1.
We prove that the lemma is true for n = m. Notice that Kmr = K(m−1)r+r
and E(K(m−1)r+r) = E(K(m−1)r)

S
E(Kr)

S
E(K(m−1)r,r). By the induction

hypothesis, K(m−1)r is H-decomposable. As K(m−1)r,r can be decomposed into
m − 1 copies of Kr,r, we have that K(m−1)r,r is H-decomposable. Thus Kmr is
H-decomposable. These prove the lemma.

Using Theorems 1 and 2 and Lemma 5, we have the following propositions.

Proposition 6. When n ≥ 2 and m ≥ 1, K3n + P3m+1 is P4-decomposable.

Proposition 7. When n ≥ 2 and m ≥ 2, K3n + C3m is P4-decomposable.

Proposition 8. When n ≥ 2 and m ≥ 2, C3n + C3m is P4-decomposable.
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Theorem 9. Kn is P4-decomposable if and only if n > 3 and n 6≡ 2 (mod 3).

Proof. Clearly Kn is not P4-decomposable for n ≤ 3. Also, if n ≡ 2 (mod 3),
then q(Kn) = n(n−1)

2 is not divisible by 3 and hence Kn is not P4-decomposable.

It can be easily verified that K4 is P4-decomposable. So, let n be an integer
such that n 6≡ 2 (mod 3) and n ≥ 6.

Case 1. n ≡ 0 (mod 3).
When n is odd, Kn is decomposable into n−12 Hamiltonian cycles each of which

is P4-decomposable. It is also easily verified that K6 is P4-decomposable. Notice
that E(K6r) = E(K6(r−1))

S
E(K6)

S
E(K6(r−1),6). It follows from an induction

on r that K6r is P4-decomposable.

Case 2. n ≡ 1 (mod 3), say n = 3k + 1.
We first show that K7 is P4-decomposable. Let the vertices of K7 be v0, v1, v2,

v3, v4, v5, v6. Then K7 can be decomposed into 3 Hamiltonian cycles as follows:

C1 : v0, v1, v2, v6, v3, v5, v4, v0;

C2 : v0, v2, v3, v1, v4, v6, v5, v0;

C3 : v0, v3, v4, v2, v5, v1, v6, v0.

The edges {v4, v0} from C1, {v0, v2} from C2 and {v2, v5} from C3 form a path
P4. The other edges of C1, C2, C3 form 2 paths P4 each. Hence K7 is P4-
decomposable. Notice that E(K3k+1) = E(K3(k−1))

S
E(K4)

S
E(K3(k−1),4) and

each of the graphs on the right is P4-decomposable if k ≥ 3. Hence K3k+1 is P4-
decomposable for all integers k ≥ 1.
These complete the proof of the theorem.

Theorem 10. If n ≡ 2 (mod 3) and n > 4, then Kn − e is P4-decomposable.

Proof. It can be easily verified that K5 − e is P4-decomposable. For n > 5,
we have E(Kn − e) = E(K2,n−2)

S
E(Kn−2). Since n− 2 ≡ 0 (mod 3), K2,n−2

is P4-decomposable by Theorem 1, and Kn−2 is P4-decomposable by Theorem 9.
The theorem then follows.

Proposition 11. If n ≡ 0 (mod 3), then K2n − F is P4-decomposable, where
F is a 1-factor of K2n.

Proof. The proposition follows from the fact that K2n−F can be decomposed
into n− 1 Hamiltonian cycles, each of which is P4-decomposable.
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Proposition 12. A wheel Wn is P4-decomposable if and only if n ≡ 0 (mod
3).

Proof. The condition is clearly necessary.

Conversely, suppose that n ≡ 0 (mod 3). It is clear that Wn = Cn +K1. Let
Cn be the cycle v0, v1, v2, . . . , vn−1, v0 and K1 = x. Notice that q(Wn) = 2n ≡ 0
(mod 3). It is a routine to check that E(Wn) can be decomposed into 2n

3 P4's of
the form x v0+3i, v1+3i, v2+3i, and v1+3i, xv2+3i, v3+3i, where 0 ≤ i =≤ n

3 −1 and
vn = v0.

Theorem 13. Let G be a complete tripartite graph Km1,m2,m3 . Then G is
P4-decomposable if and only if q(G) ≡ 0 (mod 3) and q(G) > 3.

Proof. We only need to prove the sufficiency. Since q(G) ≡ 0 (mod 3), there
are three possibilities:

1. mi ≡ 1 (mod 3) for all i;
2. mi ≡ 2 (mod 3) for all i;
3. mi ≡ 0 (mod 3) for at least two i.

Case 1. mi ≡ 1 (mod 3) for i = 1, 2, 3.
Let m1 = 3a+ 1, m2 = 3b+ 1 and m3 = 3c+ 1. Notice that

E(K3a+1,3b+1,3c+1) = E(K3a,3b+1+3c+1)
S
E(K1,3b+1,3c+1),

E(K1,3b+1,3c+1) = E(K3b,1+3c+1)
S
E(K1,1,3c+1),

E(K1,1,3c+1) = E(K3(c−1),2)
S
E(K1,1,4).

By Theorem 1, K3a,3b+1+3c+1, K3b,1+3c+1 and K3(c−1),2 are P4-decomposable. [If
c = 1, K3(c−1),2 is a null graph.]
A P4-decomposition of K1,1,4 is shown below.



On P4-Decomposition of Graphs 661

(1, u, v, 4), (1, v, 2, u), (v, 3, u, 4) is a P4-decomposition ofK1,1,4. ThusKm1,m2,m3

is P4-decomposable when mi ≡ 1 (mod 3) for i = 1, 2, 3.

Case 2. mi ≡ 2 (mod 3) for i = 1, 2, 3.
Let m1 = 3a+ 2, m2 = 3b+ 2 and m3 = 3c+ 2. Notice that

E(K3a+2,3b+2,3c+2) = E(K3a,3b+2+3c+2)
S
E(K2,3b+2,3c+2),

E(K2,3b+2,3c+2) = E(K3b,2+3c+2)
S
E(K2,2,3c+2),

E(K2,2,3c+2) = E(K3c,2+2)
S
E(K2,2,2).

By Theorem 1, K3a,3b+2+3c+2, K3b,2+3c+2 and K3c,4 are P4-decomposable. A
P4-decomposition of K2,2,2 is shown below.

a1 b2 a2 b1; b1 c2 b2 c1; a2 c2 a1 c1; a1 b1 c1 a2 is a P4-decomposition of K2,2,2.

Thus Km1,m2,m3 is P4-decomposable when mi ≡ 2 (mod 3) for i = 1, 2, 3.

Case 3. mi ≡ 0 (mod 3) for at least two i.

Subcase 3.1. m1, m2 ≡ 0 (mod 3) and m3 6= 1.
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Notice that E(Km1,m2,m3) = E(Km1,m2+m3)
S
E(Km2,m3). Km1,m2+m3 and

Km2,m3 are complete bipartite graphs of size a multiple of 3 and hence they are
P4-decomposable. Thus Km1,m2,m3 is P4-decomposable.

Subcase 3.2. m1,m2 ≡ 0 (mod 3) and m3 = 1.

Let m1 = 3a and m2 = 3b. Notice that

E(K1,3a,3b) = E(K3(a−1),1+3b)
S
E(K1,3,3b),

E(K1,3,3b) = E(K3(b−1),1+3)
S
E(K1,3,3).

By Theorem1,K3(a−1),1+3b andK3(b−1),1+3 are P4-decomposable. A P4-decomposition
of K1,3,3 is shown below.

K1,3,3 can be decomposed into 3 paths P4: v1, u, v2, 1; 1, u, 2, v2; v2, 3, u, v3;
and the remaining edges form K3,2 which is P4-decomposable.
Thus Km1,m2,m3 is P4-decomposable.

Observation 14. Let G = K3n1+r1,3n2+r2,... ,3nk+rk , where r1, r2, . . . , rk are
positive integers and n1, n2, . . . , nk are non-negative integers. Then E(G) =
E(K3n1,3(n2+...+nk)+(r2+...+rk))

S
E(Kr1,3n2+r2,... ,3nk+rk). A similar argument as

in Case 2 of Theorem 13 shows that G is P4-decomposable if Kr1,r2,... ,rk is P4-
decomposable. This observation is repeatedly used in the proof of the next theorem.

Theorem 15. Let G be the graph Km1,m2,... ,mr with r ≥ 4. Then G is
P4-decomposable if and only if q(G) ≡ 0 (mod 3).
Proof. It is enough to prove the sufficiency of the condition. We prove the

result by induction on q = q(G). When q = 6, G = K4 is P4-decomposable.
When q = 9, G = K2,1,1,1 is also P4-decomposable.
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Case 1. At least one mi ≡ 0 (mod 3).

Letm1 ≡ 0 (mod 3). ThenE(G) = E(Km1,m2+m3+...+mr)
S
E(Km2,m3,... ,mr).

Let G1 be the graph Km1,m2+m3+...+mr and G2 be the graph Km2,m3,... ,mr . G1
is P4-decomposable by Theorem 1. If r > 4, G2 is P4-decomposable by the
induction hypothesis. If r = 4, except in the case m2 = m3 = m4 = 1, it
follows by Theorem 13 that G2 is P4-decomposable. So, let us assume r = 4,
m2 = m3 = m4 = 1. It is easily verified that K3,1,1,1 is P4-decomposable. If
n > 1, E(K3n,1,1,1) = E(K3,1,1,1)

S
E(K3(n−1),3) and it can be proved by induc-

tion on n that K3n,1,1,1 is P4-decomposable for all n ≥ 4. Thus G2 and hence G
is P4-decomposable in this case.

Case 2. At least three of the mi's ≡ 2 (mod 3).

Let m1 ≡ m2 ≡ m3 = 2 (mod 3). Hence m1 +m2 +m3 ≡ 0 (mod 3) and
E(G) = E(Km1,m2,m3)

S
E(Km1+m2+m3,m4,m5,... ,mr). By Theorem 13, the first

graph on the right side is P4-decomposable. Again, as in Case 1, if either r ≥ 5, or
if r = 4,m4 > 1, the second graph on the right side is P4-decomposable. Hence we
may assume r = 4 and m4 = 1. K2,2,2,1 is easily verified to be P4-decomposable.
Hence, by Observation 14, G is P4-decomposable.

Case 3. Exactly two mi's = 2 (mod 3).

In this case, it can be verified that q(G) 6≡ 0 (mod 3).

Case 4. Exactly one mi ≡ 2 (mod 3).

In this case r ≡ 1 (mod 3). K2,1,1,... ,1 ∼= Kr+1 − e is P4-decomposable
when r + 1 ≡ 2 (mod 3), by Theorem 10. Hence by Observation 14, G is P4-
decomposable.

Case 5. No mi ≡ 2 (mod 3). That is, all mi's ≡ 1 (mod 3).
In this case r ≡ 0 or 1 (mod 3). K1,1,1,... ,1 is P4-decomposable, by Theorem 9.

Hence by Observation 14, G is P4-decomposable.

These complete the proof of the theorem.

Conjecture (Chartrand et al. [3]). If G is a 2-connected graph of order p ≥ 4
and size q ≡ 0 (mod 3), then G is P4-decomposable.

The following example shows that this conjecture is not true.
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It is easy to see that every P4 must contain at least one of the edges b, e and h.
Since the graph is of size 12, it cannot be decomposed into 4 edge-disjoint paths
P4.

Conjecture. Every 3-connected graph of size q ≡ 0 (mod 3), is P4-decomposable.
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