TAIWANESE JOURNAL OF MATHEMATICS Vol. 7, No. 4, pp. 657-664, December 2003 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON P_4 -DECOMPOSITION OF GRAPHS

C. Sunil Kumar

Abstract. A graph G is decomposable into subgraphs G_1, G_2, \ldots, G_n of G if no G_i $(i=1,2,\ldots,n)$ has isolated vertices and the edge set E(G) can be partitioned into the subsets $E(G_1), E(G_2), \ldots, E(G_n)$. If $G_i \cong P_4$ for all i, then G is called P_4 -decomposable. In this paper, we show the P_4 -decomposability of some classes of graphs, and prove in particular that a complete r-partite graph is P_4 -decomposable if and only if its size is a multiple of 3. We also give an example of a 2-connected graph of size 3k which is not P_4 -decomposable, disproving a conjecture of Chartrand.

1. Introduction

In this paper we only consider simple graphs. A graph G is said to be H-decomposable, denoted by H|G, if E(G) can be partitioned into subgraphs such that each subgraph is isomorphic to H. Such a factorization is called an *isomorphic factorization*. The concept of isomorphic factorization was studied by F. Harary et al. [4]. In this paper we consider a conjecture of Chartrand et al. [3] that a 2-connected graph of order $p \geq 4$ and size $q \equiv 0 \pmod{3}$ is P_4 -decomposable. We prove the conjecture for certain 2-connected graphs. We also show by an example that it is not true in general.

We follow standard notations in graph theory. The cardinality of the vertex set of a graph G, the *order* of G is denoted by p(G); and the cardinality of the edge set of G, the size of G is denoted by q(G).

Theorem 1. $K_{m,n}$ is P_4 -decomposable if and only if $m \geq 2$, $n \geq 2$ and $mn \equiv 0 \pmod{3}$.

Received September 1, 2001; revised May 30, 2002.

Communicated by G. J. Chang.

2000 Mathematics Subject Classification: 05C70.

Key words and phrases: Edge decomposition.

658 C. Sunil Kumar

Proof. As the conditions are clearly necessary, we only need to prove the sufficiency. Without loss of generality, we may assume that m=3r. Write n=2s+3t with $s\geq 0$ and $t\geq 0$. Then $K_{m,n}$ can be decomposed into rs copies of $K_{2,3}$ and rt copies of $K_{3,3}$. It is easily verified that $K_{2,3}$ and $K_{3,3}$ are P_4 -decomposable. Hence $K_{m,n}$ is P_4 -decomposable.

Theorem 2. If G_1 , G_2 and K_{m_1,m_2} are H-decomposable, where $m_1 = p(G_1)$ and $m_2 = p(G_2)$, then $G_1 + G_2$ is H-decomposable.

Proof. As $E(G_1 + G_2)$ is equal to the edge-disjoint union $E(G_1) \bigcup E(G_2) \bigcup E(K_{m_1,m_2})$, we have that $G_1 + G_2$ is H-decomposable.

Theorem 3. If G_1 and G_2 are P_4 -decomposable graphs and $p(G_1)$ or $p(G_2)$ is a multiple of 3, then $G_1 + G_2$ is P_4 -decomposable.

Proof. Let $p(G_1) = m$ and $p(G_2) = n$. Then $K_{m,n}$ is P_4 -decomposable by Theorem 1. By Theorem 2, $G_1 + G_2$ is P_4 -decomposable.

Theorem 4. If G_1, G_2, \ldots, G_n are P_4 -decomposable graphs and $p(G_i) \equiv 0 \pmod{3}$ for $i = 1, 2, \ldots, n$, then $G_1 + G_2 + \ldots + G_n$ is P_4 -decomposable.

Proof. The theorem holds for the case n=2 by Theorem 3. The general case follows from an induction on n, as $G_1+G_2+\ldots+G_n\cong (G_1+G_2)+\ldots+G_n$.

Lemma 5. If K_r and $K_{r,r}$ are H-decomposable, then K_{nr} is H-decomposable for any positive integer n.

Proof. We prove the lemma by induction on n. When n=1, K_r is H-decomposable by the assumption. Assume the lemma is true for $n=m-1\geq 1$. We prove that the lemma is true for n=m. Notice that $K_{mr}=K_{(m-1)r+r}$ and $E(K_{(m-1)r+r})=E(K_{(m-1)r})\bigcup E(K_r)\bigcup E(K_{(m-1)r,r})$. By the induction hypothesis, $K_{(m-1)r}$ is H-decomposable. As $K_{(m-1)r,r}$ can be decomposed into m-1 copies of $K_{r,r}$, we have that $K_{(m-1)r,r}$ is H-decomposable. Thus K_{mr} is H-decomposable. These prove the lemma.

Using Theorems 1 and 2 and Lemma 5, we have the following propositions.

Proposition 6. When $n \ge 2$ and $m \ge 1$, $K_{3n} + P_{3m+1}$ is P_4 -decomposable.

Proposition 7. When $n \ge 2$ and $m \ge 2$, $K_{3n} + C_{3m}$ is P_4 -decomposable.

Proposition 8. When $n \ge 2$ and $m \ge 2$, $C_{3n} + C_{3m}$ is P_4 -decomposable.

Theorem 9. K_n is P_4 -decomposable if and only if n > 3 and $n \not\equiv 2 \pmod{3}$.

Proof. Clearly K_n is not P_4 -decomposable for $n \leq 3$. Also, if $n \equiv 2 \pmod{3}$, then $q(K_n) = \frac{n(n-1)}{2}$ is not divisible by 3 and hence K_n is not P_4 -decomposable.

It can be easily verified that K_4 is P_4 -decomposable. So, let n be an integer such that $n \not\equiv 2 \pmod{3}$ and $n \geq 6$.

Case 1.
$$n \equiv 0 \pmod{3}$$
.

When n is odd, K_n is decomposable into $\frac{n-1}{2}$ Hamiltonian cycles each of which is P_4 -decomposable. It is also easily verified that K_6 is P_4 -decomposable. Notice that $E(K_{6r}) = E(K_{6(r-1)}) \bigcup E(K_6) \bigcup E(K_{6(r-1),6})$. It follows from an induction on r that K_{6r} is P_4 -decomposable.

Case 2.
$$n \equiv 1 \pmod{3}$$
, say $n = 3k + 1$.

We first show that K_7 is P_4 -decomposable. Let the vertices of K_7 be v_0 , v_1 , v_2 , v_3 , v_4 , v_5 , v_6 . Then K_7 can be decomposed into 3 Hamiltonian cycles as follows:

$$C^1: v_0, v_1, v_2, v_6, v_3, v_5, v_4, v_0;$$

$$C^2: v_0, v_2, v_3, v_1, v_4, v_6, v_5, v_0;$$

$$C^3: v_0, v_3, v_4, v_2, v_5, v_1, v_6, v_0.$$

The edges $\{v_4,v_0\}$ from C^1 , $\{v_0,v_2\}$ from C^2 and $\{v_2,v_5\}$ from C^3 form a path P_4 . The other edges of C^1 , C^2 , C^3 form 2 paths P_4 each. Hence K_7 is P_4 -decomposable. Notice that $E(K_{3k+1}) = E(K_{3(k-1)}) \bigcup E(K_4) \bigcup E(K_{3(k-1),4})$ and each of the graphs on the right is P_4 -decomposable if $k \geq 3$. Hence K_{3k+1} is P_4 -decomposable for all integers $k \geq 1$.

These complete the proof of the theorem.

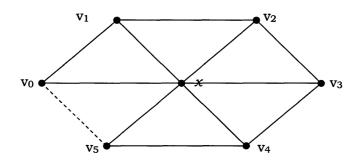
Theorem 10. If $n \equiv 2 \pmod{3}$ and n > 4, then $K_n - e$ is P_4 -decomposable.

Proof. It can be easily verified that K_5-e is P_4 -decomposable. For n>5, we have $E(K_n-e)=E(K_{2,n-2})\bigcup E(K_{n-2})$. Since $n-2\equiv 0\pmod 3$, $K_{2,n-2}$ is P_4 -decomposable by Theorem 1, and K_{n-2} is P_4 -decomposable by Theorem 9. The theorem then follows.

Proposition 11. If $n \equiv 0 \pmod{3}$, then $K_{2n} - F$ is P_4 -decomposable, where F is a 1-factor of K_{2n} .

Proof. The proposition follows from the fact that $K_{2n} - F$ can be decomposed into n-1 Hamiltonian cycles, each of which is P_4 -decomposable.

Proposition 12. A wheel W_n is P_4 -decomposable if and only if $n \equiv 0 \pmod{3}$.



Proof. The condition is clearly necessary.

Conversely, suppose that $n\equiv 0\pmod 3$. It is clear that $W_n=C_n+K_1$. Let C_n be the cycle $v_0,v_1,v_2,\ldots,v_{n-1},v_0$ and $K_1=x$. Notice that $q(W_n)=2n\equiv 0\pmod 3$. It is a routine to check that $E(W_n)$ can be decomposed into $\frac{2n}{3}$ P_4 's of the form x $v_{0+3i},v_{1+3i},v_{2+3i}$, and $v_{1+3i},xv_{2+3i},v_{3+3i}$, where $0\le i\le \frac{n}{3}-1$ and $v_n=v_0$.

Theorem 13. Let G be a complete tripartite graph K_{m_1,m_2,m_3} . Then G is P_4 -decomposable if and only if $q(G) \equiv 0 \pmod{3}$ and q(G) > 3.

Proof. We only need to prove the sufficiency. Since $q(G) \equiv 0 \pmod{3}$, there are three possibilities:

- 1. $m_i \equiv 1 \pmod{3}$ for all i;
- 2. $m_i \equiv 2 \pmod{3}$ for all i;
- 3. $m_i \equiv 0 \pmod{3}$ for at least two i.

Case 1. $m_i \equiv 1 \pmod{3}$ for i = 1, 2, 3.

Let $m_1 = 3a + 1$, $m_2 = 3b + 1$ and $m_3 = 3c + 1$. Notice that

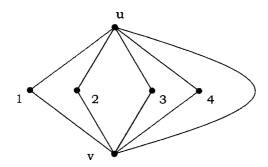
$$E(K_{3a+1,3b+1,3c+1}) = E(K_{3a,3b+1+3c+1}) \bigcup E(K_{1,3b+1,3c+1}),$$

$$E(K_{1,3b+1,3c+1}) = E(K_{3b,1+3c+1}) \bigcup E(K_{1,1,3c+1}),$$

$$E(K_{1,1,3c+1}) = E(K_{3(c-1),2}) \bigcup E(K_{1,1,4}).$$

By Theorem 1, $K_{3a,3b+1+3c+1}$, $K_{3b,1+3c+1}$ and $K_{3(c-1),2}$ are P_4 -decomposable. [If $c=1, K_{3(c-1),2}$ is a null graph.]

A P_4 -decomposition of $K_{1,1,4}$ is shown below.



(1,u,v,4), (1,v,2,u), (v,3,u,4) is a P_4 -decomposition of $K_{1,1,4}$. Thus K_{m_1,m_2,m_3} is P_4 -decomposable when $m_i \equiv 1 \pmod 3$ for i=1,2,3.

Case 2. $m_i \equiv 2 \pmod{3}$ for i = 1, 2, 3.

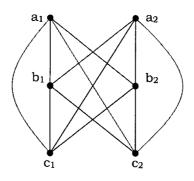
Let $m_1 = 3a + 2$, $m_2 = 3b + 2$ and $m_3 = 3c + 2$. Notice that

$$E(K_{3a+2,3b+2,3c+2}) = E(K_{3a,3b+2+3c+2}) \bigcup E(K_{2,3b+2,3c+2}),$$

$$E(K_{2,3b+2,3c+2}) = E(K_{3b,2+3c+2}) \bigcup E(K_{2,2,3c+2}),$$

$$E(K_{2,2,3c+2}) = E(K_{3c,2+2}) \bigcup E(K_{2,2,2}).$$

By Theorem 1, $K_{3a,3b+2+3c+2}$, $K_{3b,2+3c+2}$ and $K_{3c,4}$ are P_4 -decomposable. A P_4 -decomposition of $K_{2,2,2}$ is shown below.



 $a_1 \ b_2 \ a_2 \ b_1$; $b_1 \ c_2 \ b_2 \ c_1$; $a_2 \ c_2 \ a_1 \ c_1$; $a_1 \ b_1 \ c_1 \ a_2$ is a P_4 -decomposition of $K_{2,2,2}$.

Thus K_{m_1,m_2,m_3} is P_4 -decomposable when $m_i \equiv 2 \pmod{3}$ for i = 1, 2, 3.

Case 3. $m_i \equiv 0 \pmod{3}$ for at least two i.

Subcase 3.1. $m_1, m_2 \equiv 0 \pmod{3}$ and $m_3 \neq 1$.

Notice that $E(K_{m_1,m_2,m_3}) = E(K_{m_1,m_2+m_3}) \bigcup E(K_{m_2,m_3})$. K_{m_1,m_2+m_3} and K_{m_2,m_3} are complete bipartite graphs of size a multiple of 3 and hence they are P_4 -decomposable. Thus K_{m_1,m_2,m_3} is P_4 -decomposable.

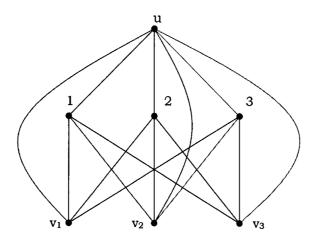
Subcase 3.2. $m_1, m_2 \equiv 0 \pmod{3}$ and $m_3 = 1$.

Let $m_1 = 3a$ and $m_2 = 3b$. Notice that

$$E(K_{1,3a,3b}) = E(K_{3(a-1),1+3b}) \bigcup E(K_{1,3,3b}),$$

$$E(K_{1,3,3b}) = E(K_{3(b-1),1+3}) \bigcup E(K_{1,3,3}).$$

By Theorem1, $K_{3(a-1),1+3b}$ and $K_{3(b-1),1+3}$ are P_4 -decomposable. A P_4 -decomposition of $K_{1,3,3}$ is shown below.



 $K_{1,3,3}$ can be decomposed into 3 paths P_4 : v_1 , u, v_2 , 1; 1, u, 2, v_2 ; v_2 , 3, u, v_3 ; and the remaining edges form $K_{3,2}$ which is P_4 -decomposable.

Thus K_{m_1,m_2,m_3} is P_4 -decomposable.

Observation 14. Let $G=K_{3n_1+r_1,3n_2+r_2,\ldots,3n_k+r_k}$, where r_1,r_2,\ldots,r_k are positive integers and n_1,n_2,\ldots,n_k are non-negative integers. Then $E(G)=E(K_{3n_1,3(n_2+\ldots+n_k)+(r_2+\ldots+r_k)})\bigcup E(K_{r_1,3n_2+r_2,\ldots,3n_k+r_k})$. A similar argument as in Case 2 of Theorem 13 shows that G is P_4 -decomposable if K_{r_1,r_2,\ldots,r_k} is P_4 -decomposable. This observation is repeatedly used in the proof of the next theorem.

Theorem 15. Let G be the graph $K_{m_1,m_2,...,m_r}$ with $r \geq 4$. Then G is P_4 -decomposable if and only if $q(G) \equiv 0 \pmod{3}$.

Proof. It is enough to prove the sufficiency of the condition. We prove the result by induction on q=q(G). When q=6, $G=K_4$ is P_4 -decomposable. When q=9, $G=K_{2,1,1,1}$ is also P_4 -decomposable.

Case 1. At least one $m_i \equiv 0 \pmod{3}$.

Let $m_1 \equiv 0 \pmod 3$. Then $E(G) = E(K_{m_1,m_2+m_3+...+m_r}) \bigcup E(K_{m_2,m_3,...,m_r})$. Let G_1 be the graph $K_{m_1,m_2+m_3+...+m_r}$ and G_2 be the graph $K_{m_2,m_3,...,m_r}$. G_1 is P_4 -decomposable by Theorem 1. If r>4, G_2 is P_4 -decomposable by the induction hypothesis. If r=4, except in the case $m_2=m_3=m_4=1$, it follows by Theorem 13 that G_2 is P_4 -decomposable. So, let us assume r=4, $m_2=m_3=m_4=1$. It is easily verified that $K_{3,1,1,1}$ is P_4 -decomposable. If n>1, $E(K_{3n,1,1,1})=E(K_{3,1,1,1})\bigcup E(K_{3(n-1),3})$ and it can be proved by induction on n that $K_{3n,1,1,1}$ is P_4 -decomposable for all $n\geq 4$. Thus G_2 and hence G is P_4 -decomposable in this case.

Case 2. At least three of the m_i 's $\equiv 2 \pmod{3}$.

Let $m_1 \equiv m_2 \equiv m_3 = 2 \pmod{3}$. Hence $m_1 + m_2 + m_3 \equiv 0 \pmod{3}$ and $E(G) = E(K_{m_1,m_2,m_3}) \bigcup E(K_{m_1+m_2+m_3,m_4,m_5,\ldots,m_r})$. By Theorem 13, the first graph on the right side is P_4 -decomposable. Again, as in Case 1, if either $r \geq 5$, or if $r = 4, m_4 > 1$, the second graph on the right side is P_4 -decomposable. Hence we may assume r = 4 and $m_4 = 1$. $K_{2,2,2,1}$ is easily verified to be P_4 -decomposable. Hence, by Observation 14, G is P_4 -decomposable.

Case 3. Exactly two m_i 's = 2 (mod 3).

In this case, it can be verified that $q(G) \not\equiv 0 \pmod{3}$.

Case 4. Exactly one $m_i \equiv 2 \pmod{3}$.

In this case $r \equiv 1 \pmod{3}$. $K_{2,1,1,\ldots,1} \cong K_{r+1} - e$ is P_4 -decomposable when $r+1 \equiv 2 \pmod{3}$, by Theorem 10. Hence by Observation 14, G is P_4 -decomposable.

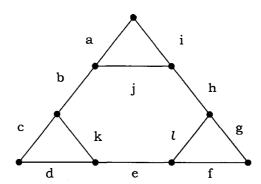
Case 5. No $m_i \equiv 2 \pmod{3}$. That is, all m_i 's $\equiv 1 \pmod{3}$.

In this case $r \equiv 0$ or 1 (mod 3). $K_{1,1,1,\dots,1}$ is P_4 -decomposable, by Theorem 9. Hence by Observation 14, G is P_4 -decomposable.

These complete the proof of the theorem.

Conjecture (Chartrand et al. [3]). If G is a 2-connected graph of order $p \ge 4$ and size $q \equiv 0 \pmod{3}$, then G is P_4 -decomposable.

The following example shows that this conjecture is not true.



It is easy to see that every P_4 must contain at least one of the edges b, e and h. Since the graph is of size 12, it cannot be decomposed into 4 edge-disjoint paths P_4 .

Conjecture. Every 3-connected graph of size $q \equiv 0 \pmod{3}$, is P_4 -decomposable.

ACKNOWLEDGEMENTS

The author is grateful to Professor M. I. Jinnah, Department of Mathematics, University of Kerala, for his comments and suggestions in every stage of this paper. The author is also pleased to acknowledge several valuable suggestions and many helpful comments made by the referee, in the preparation of the final manuscript. The author is supported by UGC vide their grant No. KLKE 027

REFERENCES

- 1. G. J. Chang, Algorithmic aspects of linear *k*-arboricity, *Taiwanese J. Math.* **3** (1999), 73-81.
- 2. G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Second edition, Wordsworth & Brookes/Cole Monetary (1986).
- 3. G. Chartrand, F. Saba, and C. M. Mynhardt, Prime graphs, prime-connected graphs and prime divisors of graphs, *Utilitas Math.* **46** (1994), 179-191.
- 4. F. Harary, R. W. Robinson, and N. C. Wormald, Isomorphic factorization I: complete graphs, *Trans. Amer. Math. Soc.* **242** (1978), 243-260.
- 5. H.-G. Yeh and G. J. Chang, The path-partition problem in bipartite distance-hereditary graphs, *Taiwanese J. Math.* **2** (1998), 353-360.

C. Sunil Kumar

Department of Mathematics, University of Kerala Kariavattom, Trivandrum, South India

E-mail: sunic@rediffmail.com