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THE DAUGAVETIAN INDEX OF A BANACH SPACE

Miguel Martín

Abstract. Given an infinite-dimensional Banach space X, we introduce the
daugavetian index of X , daug (X), as the greatest constant m > 0 such that

kId+ Tk > 1 +mkTk
for all T ∈ K(X). We givetwo characterizations of this index and we estimate
it in some examples. We show that the daugavetian index of a c0-, l1- or
l∞-sum of Banach spaces is the infimum index of the summands. Finally,
we calculate the daugavetian index of some vector-valued function spaces:
daug

¡
C(K,X)

¢ ¡
resp. daug

¡
L1(µ,X)

¢
, daug

¡
L∞(µ,X)

¢¢
is the maximum

of daug (X) and daug (C(K)) resp. daug (L1(µ)), daug (L∞(µ)).

1. INTRODUCTION

Given a Banach space X, we write X∗ for the dual space and L(X) (resp.
K(X) for the Banach algebra of bounded (resp. compact) linear operators on X.
From now on, we deal with real Banach spaces. Since our results only depend on
the underlying real structure, they trivially extend to complex spaces.
Let X be a Banach space. If X is infinite-dimensional, the compact operators

on X are not inversible, so kId+ Tk > 1 for every T ∈ K(X). This allow us to
define the daugavetian index of X as

daug (X) = max
©
m > 0 : kId+ Tk > 1 +m kTk for all T ∈ K(X)ª.

It is clear that 0 6 daug (X) 6 1. The extreme value daug (X) = 1 means that X
has the so-called Daugavet property. A Banach space X has the Daugavet property
[7] if

kId+ Tk = 1 + kTk
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for all rank-one operator T ∈ L(X). In this case, all weakly compact operators on
X also satisfies the above equation (see [7, Theorem 2.3]). The Daugavet property
has been deeply studied in the last decade. The state of the art on this topic can be
found in [7, 17, 19].
In [13], the following weaker version of the Daugavet property is introduced.

A Banach space X has the pseudo-Daugavet property if there exists an strictly
increasing function ψ : [0,+∞) −→ [1,+∞) such that

kId+ Tk > ψ(kTk)
for all T ∈ K(X). In such a case, it is clear that ψ(0) = 1. In [2, 12-14] some
results on this property are given. See also [15] for some related questions.
It is clear that daug (X) > 0 implies that X has the pseudo-Daugavet property

for the function t 7−→ daug (X) t. We shall prove a somehow converse: if X has
the pseudo-Daugavet property for a function ψ which is differentiable at 0, then
daug (X) > ψ 0(0).
We can give another approach to the daugavetian index of a Banach space which

is related to numerical range of operators. Let us recall the relevant definitions.
Given an operator T ∈ L(X), the numerical range, V (T ), and the numerical
radius v(T ) of T are defined by

V (T )= {x∗(Tx) : x ∈ X, x∗ ∈ X∗, kxk = kx∗k = x∗(x) = 1},
v(T )= sup {|λ| : λ ∈ V (T )}.

The numerical index of X is the number

n(X) = inf{ v(T ) : T ∈ L(X), kTk = 1}
or, equivalently, the greatest constant m > 0 such that v(T ) > mkTk for all
T ∈ L(X). The interested reader can found more information in [3, 4, 9] and the
references therein.
If T ∈ L(X), we write ω(T ) = supV (T ), which is a sublinear functional on

L(X). It is a well-known result by F. Bauer [1] and G. Lumer [8] (see [3, §9])
that

ω(T ) = lim
α→0+

kId+ αTk− 1
α

.(1)

It follows that ω(T ) > 0 whenever T ∈ K(X). We shall prove that
daug (X) = inf {ω(T ) : T ∈ K(X), kTk = 1}.

This sort of parallelism between the two indices allows us to translate some ideas
from papers on numerical index to our proofs. This is the case of the results on
numerical index of sums and vector-valued function spaces given in [10].
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The outline of the paper is as follows.
We start section 2 by proving two characterizations of the daugavetian index.

One related to ω(·) and the other one related to the pseudo-Daugavet property.
Next, we present several examples of Banach spaces whose daugavetian index can
be estimated. Finally, we generalize the fact that spaces with the Daugavet property
do not have unconditional bases, estimating the daugavetian index in terms of the
unconditional basis constant.
In §3 we study the stability of the daugavetian index. First, we prove that the

daugavetian index of a c0-, l1-, or l∞-sum of Banach spaces is the infimum of the
numerical indices of the summands. As a consequence of this result we obtain that
every Banach can be equivalently renormed to have daugavetian index 0. Our main
result deals with spaces of vector-valued functions. We prove that the daugavetian
index of C(K,X) (resp. L1(µ,X), L∞(µ,X)) is the maximum of daug (X) and
daug (C(K)) (resp. daug (L1(µ)), daug (L∞(µ))).

2. CHARACTERIZATION AND EXAMPLES

Our first aim is to prove the result cited in the introduction which relates the
daugavetian index and the numerical range of operators. We will use it later to get
some stability properties of the daugavetian index.

Proposition 1. Let X be an infinite-dimensional Banach space. Then

daug (X) = inf{ω(T ) : T ∈ K(X), kTk = 1}

or, equivalently, daug (X) is the greatest constant m > 0 such that ω(T ) > mkTk
for all T ∈ K(X).

Proof. Let m be the greatest nonnegative constant such that ω(T ) > mkTk for
all T ∈ K(X). For T ∈ K(X) and x ∈ SX , x∗ ∈ SX∗ with x∗(x) = 1, we have

kId+ Tk > x∗(x+ Tx) = 1 + x∗(Tx).

Taking the supremum over all x ∈ SX , x∗ ∈ SX∗ with x∗(x) = 1, we get

kId+ Tk > 1 + ω(T ) > 1 +mkTk.

This implies that daug (X) > m. To get the reverse inequality, we fix T ∈ K(X)
and observe that

kId+ αTk > 1 + α daug (X)kTk (α > 0).

By (1), we get ω(T ) > daug (X)kTk. Therefore, daug (X) 6 m.
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We can use the above result to get another characterization of daug (X). As we
have mention in the introduction, the daugavetian index is related to the pseudo-
Daugavet property. Indeed, daug (X) > 0 clearly implies that X has the pseudo-
Daugavet property for the function t 7→ daug (X) t. The following proposition gives
us a somehow converse of this result.

Proposition 2. Let X be an infinite-dimensional Banach space having the
pseudo-Daugavet property for a function ψ : [0,+∞)→ [1,+∞). If ψ is differen-
tiable at 0, then daug (X) > ψ 0(0). As a consequence,

daug (X) = max{ψ 0(0) : ψ ∈ F},
where F is the set of all increasing and differentiable at 0 functions ψ : [0,+∞)→
[1,+∞) such that kId+ Tk > ψ(kTk) for all T ∈ K(X).

Proof. Since ψ is differentiable at 0, for every ρ ∈ (0, 1) there exists tρ > 0
such that

ψ(t) > 1 + ρψ 0(0)t (0 < t < tρ).

For T ∈ K(X) with kTk = 1 and 0 < α < tρ, we have
kId+ αTk > ψ(α) > 1 + ρψ 0(0)α.

It follows from (1) that

ω(T ) = lim
α→0

kId+ αTk− 1
α

> ρψ 0(0).

Then, ω(T ) > ψ 0(0) for every T ∈ K(X) with kTk = 1. Hence, Proposition 1
gives us daug (X) > ψ 0(0).
For the second part of the proposition, we first observe that F is non-empty

because it contains the function ψ(t) = 1 for all t ∈ [0,+∞). Now, let m =
max{ψ 0(0) : ψ ∈ F}. By the above argument, we have m 6 daug (X). The
reverse inequality follows from the fact that the function ψ(t) = 1+ daug (X) t for
all t ∈ [0,+∞) belongs to F .

We present now some examples of Banach spaces whose daugavetian index can
be estimated.

Example 3. As we commented in the introduction, Banach spaces with the
Daugavet property have daugavetian index 1. This is the case of the vector-valued
function spaces C(K,X) and L1(µ,X) when the compact K is perfect and the
measure µ is atomless (see [7]) for any Banach space X. If µ is also σ-finite, then
L∞(µ,X) also has the Daugavet property (see [11]). More examples of spaces
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with the Daugavet property, and hence with daugavetian index 1, are atomless C∗-
algebras [12], the disk algebra A(D) and the algebra of bounded analytic functions
H∞ [18].

Example 4. One clearly has daug (X) = 0 whenever X is an infinite-
dimensional Banach space with a bicontractive projection with finite-rank, that is,
a finite-rank projection P such that kPk = kId− Pk = 1. This is the case of the
spaces c0, c, lp with 1 6 p 6 ∞, C(K) for non-perfect K, and L1(µ), L∞(µ)
when µ has atoms.

We now intend to quantify the fact given in [6, Corollary 2.3] that spaces with
the Daugavet property do not admit an unconditional basis. Let us recall some
notation. Let X be a Banach space with unconditional basis {(en, e∗n)}. For every
finite subset A of N, we define a finite-rank operator PA ∈ L(X) by

PA(x) =
X
n∈A

e∗n(x)en (x ∈ X).

The unconditional basis constant is the number

K = sup{kPAk : A ⊂ N finite } < +∞.

We say that X admits a K-unconditional basis if X has an unconditional basis
whose unconditional basis constant is less or equal than K.
A Banach space admitting an 1-unconditional basis has a lot of bicontractive

projection with finite-rank. Hence, by Example 4, it has daugavetian index 0. This
fact can be quantify in terms of the basis constant.

Proposition 5. Let X be an infinite-dimensional Banach space admitting a
K-unconditional basis. Then

daug (X) 6 K − 1
K

.

Proof. We will follow ideas from the proof of [6, Corollary 2.3]. Given ε > 0,
we get a finite set A0 ⊂ N such that kPA0k > K − ε. Since PA0 has finite-rank,
we have

kId− PA0k > 1 + daug (X) (K − ε).
On the other hand, since the basis is unconditional, we have

kId− PA0k 6 sup
©kPAk : A ⊂ N \A0 finite ª 6 K.

Letting ε ↓ 0, we get 1 + daug (X)K 6 K.
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Finally, let us show some examples of Banach spaces whose daugavetian index
is greater than 0 and less than 1.

Example 6. Let X a subspace of L(l2) containing K(l2). Then

1/(8
√
2) 6 daug (X) < 1.

For X = L(l2), we actually have

1/(8
√
2) 6 daug

¡
L(l2)

¢
6 2/

√
5.

Indeed, it is proved in [13] that kId+Φk > 1+ kΦk/(8√2) for every Φ ∈ K(X),
hence daug (X) > 1/(8

√
2). It is known that, under our assumption, X∗ has

strongly exposed points (see [16, Corollary 1.4]). Then, X does not have the
Daugavet property by [7, Lemma 2.1] and hence, daug (X) < 1. The refinement
for L(l2) is also proved in [13].

3. STABILITY PROPERTIES

The aim of this section is to compute the daugavetian index of sums and some
vector-valued function spaces.
We start by working with sums of spaces. Let us recall some definitions. Given

an arbitrary family {Xλ}λ∈Λ of Banach spaces, we denote by [⊕λ∈ΛXλ]c0 (resp.
[⊕λ∈ΛXλ]l1 , [⊕λ∈ΛXλ]l∞) the c0-sum (resp. l1-sum, l∞-sum) of the family. The
sum of two spaces X and Y is denoted by the simpler notation X ⊕∞ Y , X ⊕1 Y .
For infinite countable sums of copies of a spaceX we write c0(X), l1(X) or l∞(X).

Proposition 7. Let {Xλ}λ∈Λ be a family of infinite-dimensional Banach spaces
and let Z be the c0-, l1- or l∞-sum of the family. Then

daug (Z) = inf {daug (Xλ) : λ ∈ Λ}.
To prove this proposition, we can adapt the proof of [10, Proposition 1], using

the parallelism between the daugavetian index and the numerical index given in
Proposition 1. It is enough to change the numerical radius by the supremum of the
numerical range, ω(·), and to observe that, when starting with compact operators,
all the operator involved are also compact.

Remark 8. Let {Xλ}λ∈Λ be an arbitrary family of Banach spaces and let Z be
the c0-, or l1-, or l∞-sum of the family. If one of the summands is finite-dimensional,
then Z has a bicontractive projection with finite-rank. Hence, daug (Z) = 0. Defin-
ing daug (X) = 0 for every finite-dimensional space, Proposition 7 is also true for
arbitrary families of Banach spaces.
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As a corollary of the above remark we get the following isomorphic result.

Corollary 9. Let X be an infinite-dimensional Banach space. Then there exists
a Banach space Y isomorphic to X with daug (Y ) = 0.

Proof. Let us write X = R ⊕ Z for a suitable subspace Z. Then, X is
isomorphic to Y = R⊕∞ Z and the above remark gives daug (Y ) = 0.

Another consequence of Proposition 7 is that

daug
¡
c0(X)

¢
= daug

¡
l1(X)

¢
= daug

¡
l∞(X)

¢
= daug (X)

for every Banach space X. One may wonder whether this result is also true for
arbitrary vector-valued function spaces, but it is easy to see that this is not the
case. Indeed, daug (l2) = 0 in spite of the fact that C([0, 1], l2), L1([0, 1], l2)
and L∞([0, 1], l2) have daugavetian index 1 (see Example 3). Let us recall some
notation. Given a compact Hausdorff space K and a Banach space X, we write
C(K,X) for the Banach space of all continuous functions fromK intoX, endowed
with the supremum norm. If (Ω,Σ, µ) is a positive measure space, L1(µ,X) is the
Banach space of all Bochner-integrable functions f : Ω→ X with the usual norm. If
µ is σ-finite, then L∞(µ,X) stands for the space of all essentially bounded Bochner-
measurable functions f from Ω intoX, endowed with the essential supremum norm.
We refer to [5] for background.
The following result extends those given in [10, Remarks 6 and 9] and [11,

Theorem 5] for the Daugavet property.

Theorem 10. Let X be an infinite-dimensional Banach space. Then :

(i) If K is a compact Hausdorff space, then

daug
¡
C(K,X)

¢
= max

©
daug

¡
C(K)

¢
, daug (X)

ª
.

(ii) If µ is a positive measure, then

daug
¡
L1(µ,X)

¢
= max

©
daug

¡
L1(µ)

¢
, daug (X)

ª
.

(iii) If µ is a σ-finite measure, then

daug
¡
L∞(µ,X)

¢
= max

©
daug

¡
L∞(µ)

¢
, daug (X)

ª
.

Proof. (i). We start by proving that daug
¡
C(K,X)

¢
> daug (X). To this end,

we fix T ∈ K(C(K,X)) and prove that
kId+ Tk > 1 + daug (X) kTk.
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For every ε > 0, we may find f0 ∈ C(K,X) with kf0k = 1 and t0 ∈ K such that°°[Tf0](t0)°° > kTk− ε.(2)

We find a continuous function ϕ : K → [0, 1] such that ϕ(t0) = 1 and ϕ(t) = 0 if
kf0(t)−f0(t0)k > ε, write f0(t0) = λx1+(1−λ)x2 with 0 6 λ 6 1, x1, x2 ∈ SX ,
and consider the functions

fj = (1− ϕ)f0 + ϕxj ∈ C(K,X) (j = 1, 2)

and g = λf1 + (1 − λ)f2. Since g(t) − f0(t) = ϕ(t)
¡
f0(t0) − f0(t)

¢
, we have

kg − f0k < ε and therefore, by (2), we have

k[Tf1](t0)k > kTk− 2ε or k[Tf2](t0)k > kTk− 2ε.(3)

We make the right choice of x0 = x1 or x0 = x2 to get x0 ∈ SX such that°°£T¡(1− ϕ)f0 + ϕx0¢¤ (t0)°° > kTk− 2ε.(4)

Next we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1− ϕ)f0 + ϕx ∈ C(K,X) (x ∈ X),

and consider the operator S ∈ L(X) given by

Sx = [T (Φ(x))](t0) (x ∈ X).

We observe that S ∈ K(X) and, by (4), that

kSk > kSx0k > kTk− 2ε.

Then, find x ∈ SX such that

kx+ Sxk > 1 + daug (X)¡kTk − 2ε¢,
define g ∈ SC(K,X) by g = Φ(x) for this x, note that

kId+ Tk > °°£(Id+ T )(g)¤(t0)°° = kx+ Sxk > 1 + daug (X)¡kTk − 2ε¢,
and let ε ↓ 0. It should be pointed out that the above argument is based on the one
given in [10, Theorem 5].
Now, if K is perfect, Example 3 gives us that

daug (C(K,X)) = daug (C(K)) = 1.
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Otherwise,K has an isolated point so, on one hand Example 4 gives daug (C(K)) =
0 and, on the other hand, we can write C(K,X) = X⊕∞Z for some Banach space
Z. It follows that daug (C(K,X)) 6 daug (X) by Proposition 7.
(ii). If µ is atomless, by Example 3 we have

daug
¡
L1(µ,X)

¢
= daug

¡
L1(µ)

¢
= 1.

Otherwise, we may write L1(µ,X) in the form L1(ν, X)⊕1 [⊕i∈IX]l1 for a non-
empty set I and an atomless measure ν. Now, daug

¡
L1(ν, X)

¢
= 1 so, by Propo-

sition 7, we have

daug
¡
L1(µ,X)

¢
= daug ([⊕i∈IX]l1) = daug (X).

Now, Example 4 shows that daug
¡
L1(µ)

¢
= 0 and the result follows. The proof

of (iii) is completely analogous.

If X is a finite-dimensional space, Theorem 10 is still true if we consider
daug (X) = 0. Actually, in this case, daug

¡
C(K,X)

¢
(resp. daug

¡
L1(µ,X)

¢
,

daug
¡
L∞(µ,X)

¢
) is equal to 0 or 1 depending on whether or not K has isolated

points (resp. µ has atoms).
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