SQUARE-FREE Q_{k} COMPONENTS IN TTM

Lih-Chung Wang and Fei-Hwang Chang

Abstract

With tame transformation method (TTM), T. Moh invented a cryptosystem. The success of the system relies on the construction of the Q_{k} component. Some constructions of Q_{k} components are known but most of the Q_{k} components have square terms. There are some possible risks for square terms. In this paper, we give a systematic construction of square-free Q_{k} components to avoid the possible attacks.

1. Introduction

In 1997, T. Moh invented a cryptosystem using tame transformation method (TTM) [5]. This cryptosystem is much faster than other public key systems. The speed of the system even can match the speed of secret-key systems (DES etc.). However, the success of the system relies on the construction of the Q_{k} component. Some construction of Q_{k} components are known but most of the Q_{k} components have square terms. There are some potential risks for square terms. One potential risk is that many terms might vanish after differentiation. Thus the information of the tame automorphisms might release. Another possible risk is that a perfect-square Q_{k} component is 'linear' for the computational purpose. Such Q_{k} component might reduce the complexity of the whole system. The existence of Q_{8} components with non-square terms was first shown in Moh's paper [6]. Chou, Guan and Chen found examples for square-free Q_{8} components. (See [1], [3]) In this paper, we give a systematic construction of square-free Q_{k} components.

Let \mathbb{K} be a field. An automorphism $\phi_{i}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is a tame automorphism if ϕ_{i} is an invertible affine transformation or, after a permutation of indices if necessary,

Received May 3, 2002; revised August 21, 2002.
Communicated by J. Yu.
2000 Mathematics Subject Classification: Primary 11T71, 14G50 and 94A60.
Key words and phrases: Tame transformation, TTM, cryptosystem, Q_{k} component, minimal generating polynomial.
of the following form

$$
\phi_{i}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{j} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\phi_{i, 1} \\
\phi_{i, 2} \\
\vdots \\
\phi_{i, j} \\
\vdots \\
\phi_{i, n}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
x_{j}+f_{j}\left(x_{1}, x_{2}, \cdots, x_{j-1}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)
\end{array}\right)
$$

where f_{j} is a polynomial of $(j-1)$ variables.
From now on, let \mathbb{K} be a finite field of 2^{8} elements, $\rho: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}(m<n)$ be the embedding of the following form

$$
\rho\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

and $\tau: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$ be the projection such that $\tau \circ \rho=\mathrm{id}_{\mathbb{K}^{m}}$. Let $\pi=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ$ $\rho \circ \phi_{1}: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$, where ϕ_{i} 's are tame automorphisms. We assume that ϕ_{2} and ϕ_{3} are non-affine, ϕ_{1} and ϕ_{4} are affine. The polynomial map of π and the finite field \mathbb{K} will be announced as the public key. Let $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ be a plaintext. Then $\pi\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is the ciphertext. The legitimate receiver recover the plaintext by $\phi_{1}^{-1} \circ \tau \circ \phi_{2}^{-1} \circ \phi_{3}^{-1} \circ \phi_{4}^{-1}$. The private key is the set of ϕ_{i} 's.

To implement the above TTM principle efficiently, Moh needs the following conditions.

- π send the zero vector of \mathbb{K}^{m} to the zero vector of \mathbb{K}^{n}.
- The component $\phi_{2, j}$ of

$$
\phi_{2}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{j} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
x_{j}+f_{j}\left(x_{1}, x_{2}, \cdots, x_{j-1}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)
\end{array}\right)
$$

is of degree at most 2 . (Note that this condition is not really necessary. See Examples of Implementation.)

- ϕ_{3} is of the form

$$
\phi_{3}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{j} \\
x_{j+1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
x_{1}+f_{1}\left(x_{2}, x_{3}, \cdots, x_{n}\right) \\
\vdots \\
x_{j}+f_{j}\left(x_{3}, x_{4}, \cdots, x_{n}\right) \\
x_{j+1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

such that the degrees of f_{i} 's are big enough.

- The highest homogeneous parts of components of $\phi_{3} \circ \phi_{2} \circ \rho$ are linearly independent and of degree 2 .

For security reason, Moh requires the following condition.
Choose ϕ_{2} and j polynomials $l_{1}\left(x_{1}, x_{2}, \cdots, x_{m}\right), \ldots, l_{j}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ of degree 2 such that f_{1}, \ldots, f_{j} in ϕ_{3} are minimal generating polynomials of l_{1}, \ldots, l_{j} with respect to $\phi_{2} \circ \rho$. (For definition of minimal generating, see below.) If an f_{i} in ϕ_{3} is of degree k and satisfy the above security condition, we will call such f_{i} a Q_{k} component. Our main result is a systematic construction of Q_{k} components such that $\phi_{2} \circ \rho, \phi_{3}$ and $\phi_{3} \circ \phi_{2} \circ \rho$ are square-free.

2. Construction of Square-Free Q_{k} Components

Let $\varphi: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ is a polynomial map. This map

$$
\varphi\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{1}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \\
y_{2}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \\
\vdots \\
y_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
\end{array}\right)
$$

induces a ring homomorphism

$$
\begin{aligned}
& \varphi^{\sharp}: \mathbb{K}\left[y_{1}, y_{2}, \cdots, y_{n}\right] \longrightarrow \mathbb{K}\left[x_{1}, x_{2}, \cdots, x_{m}\right] \\
& Q\left(y_{1}, y_{2}, \cdots, y_{n}\right) \\
& \longmapsto Q\left(y_{1}\left(x_{1}, x_{2}, \cdots, x_{m}\right), \cdots, y_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)\right) .
\end{aligned}
$$

Given a polynomial $l\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in \mathbb{K}\left[x_{1}, x_{2}, \cdots, x_{m}\right], Q\langle l\rangle$ is called a generating polynomial of l (over $y_{1}, y_{2}, \cdots, y_{n}$) if $\varphi^{\sharp}(Q)=l$. If Q is of the minimal degree among all possible generating polynomial of l, then it is called a minimal generating polynomial of l, and its degree is called the generating degree of l, in symbol $\operatorname{gen} \operatorname{deg}(l)$. If l is not in the image of φ^{\sharp}, then we define $g e n \operatorname{deg}(l)=\infty$.

Given $l\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in \mathbb{K}\left[x_{1}, x_{2}, \cdots, x_{m}\right]$ and the generating degree $k>1$, we want to choose appropriate

$$
\left(\begin{array}{l}
y_{1}\left(x_{1}\right) \\
y_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
y_{m}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \\
\vdots \\
y_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
\end{array}\right)=\phi_{2} \circ \rho\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

such that we can construct a $Q_{k}\langle l\rangle$ which is a minimal generating polynomial of l over $y_{1}, y_{2}, \cdots, y_{n}$.

2.1. Basic Replacement Patterns

Let us start from that $k=2$ and $l=x_{\alpha} x_{\beta}$. Let $s_{1}, s_{2}, s_{3}, s_{4}, \alpha$ and β be six different integers, consider the following eight polynomial expressions.

$$
\begin{array}{ll}
y_{65}=x_{\alpha}+x_{s_{1}} x_{s_{3}} & y_{69}=x_{\alpha} x_{s_{3}} \\
y_{66}=x_{\beta}+x_{s_{2}} x_{s_{4}} & y_{70}=x_{\beta} x_{s_{4}} \\
y_{67}=x_{s_{1}}+x_{\alpha} x_{s_{4}} & y_{71}=x_{s_{1}} x_{s_{2}} \\
y_{68}=x_{s_{2}}+x_{\beta} x_{s_{3}} & y_{72}=x_{s_{3}} x_{s_{4}} .
\end{array}
$$

It is easy to check that $Q_{2}\left\langle x_{\alpha} x_{\beta}\right\rangle=y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71}+y_{71} y_{72}$ is the minimal generating polynomial of l over $y_{65}, y_{66}, \cdots, y_{72}$. Then choose the other $y_{i}\left(x_{1}, x_{2}, \cdots\right)$ such that Q_{2} is the minimal generating polynomial of l over $y_{1}, y_{2}, \cdots, y_{100}$. Note that y_{65} and y_{66} can be moved to y_{α} and y_{β} if s_{i} 's are less than α and β.

For $k=2$ and $l=x_{\gamma}$, the construction is similar. Let $y_{73}=x_{\gamma}+x_{\alpha} x_{\beta}$.

$$
Q_{2}\left\langle x_{\gamma}\right\rangle=y_{73}+Q_{2}\left\langle x_{\alpha} x_{\beta}\right\rangle .
$$

2.2. Construction of Q_{k}

To create a $Q_{3}\left\langle x_{\alpha} x_{\beta}\right\rangle$, consider the above first pattern

$$
\begin{array}{ll}
y_{65}=x_{\alpha}+x_{s_{1}} x_{s_{3}} & y_{69}=x_{\alpha} x_{s_{3}} \\
y_{66}=x_{\beta}+x_{s_{2}} x_{s_{4}} & y_{70}=x_{\beta} x_{s_{4}} \\
y_{67}=x_{s_{1}}+x_{\alpha} x_{s_{4}} & y_{71}=x_{s_{1}} x_{s_{2}} \\
y_{68}=x_{s_{2}}+x_{\beta} x_{s_{3}} & y_{72}=x_{s_{3}} x_{s_{4}}
\end{array} .
$$

Then replace y_{72} with a $Q_{2}\left\langle x_{s_{3}} x_{s_{4}}\right\rangle$. Hence

$$
Q_{3}\left\langle x_{\alpha} x_{\beta}\right\rangle=y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71}+y_{71} Q_{2}\left\langle x_{s_{3}} x_{s_{4}}\right\rangle
$$

That is, consider

$$
\begin{aligned}
& y_{65}=x_{\alpha}+x_{s_{1}} x_{s_{3}} \quad y_{69}=x_{\alpha} x_{s_{3}} \\
& y_{66}=x_{\beta}+x_{s_{2}} x_{s_{4}} \quad y_{70}=x_{\beta} x_{s_{4}} \\
& y_{67}=x_{s_{1}}+x_{\alpha} x_{s_{4}} \quad y_{71}=x_{s_{1}} x_{s_{2}} \\
& y_{68}=x_{s_{2}}+x_{\beta} x_{s_{3}} \\
& \\
& y_{72}=x_{s_{3}}+x_{t_{1}} x_{t_{3}} \quad y_{76}=x_{s_{3}} x_{t_{3}} \\
& y_{73}=x_{s_{4}}+x_{t_{2}} x_{t_{4}} \quad y_{77}=x_{s_{4}} x_{t_{4}} \\
& y_{74}=x_{t_{1}}+x_{s_{3}} x_{t_{4}} \quad y_{78}=x_{t_{1}} x_{t_{2}} \\
& y_{75}=x_{t_{2}}+x_{s_{4}} x_{t_{3}} \quad y_{79}=x_{t_{3}} x_{t_{4}}
\end{aligned}
$$

where t_{i} 's are another 4 different integers. Then

$$
\begin{aligned}
Q_{3}\left\langle x_{\alpha} x_{\beta}\right\rangle & =y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71}+y_{71} Q_{2}\left\langle x_{s_{3}} x_{s_{4}}\right\rangle \\
& =y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71}+y_{71}\left(y_{72} y_{73}+y_{74} y_{75}+y_{76} y_{77}+y_{78}+y_{78} y_{79}\right)
\end{aligned}
$$

Similarly, we can construct

$$
Q_{3}\left\langle x_{\gamma}\right\rangle=y_{80}+Q_{3}\left\langle x_{\alpha} x_{\beta}\right\rangle
$$

where $y_{80}=x_{\gamma}+x_{\alpha} x_{\beta}$.
To create a $Q_{4}\left\langle x_{\alpha} x_{\beta}\right\rangle$, you can have two choices. One is by induction

$$
Q_{4}\left\langle x_{\alpha} x_{\beta}\right\rangle=y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71} Q_{3}\left\langle x_{s_{3}} x_{s_{4}}\right\rangle
$$

The other is

$$
Q_{4}\left\langle x_{\alpha} x_{\beta}\right\rangle=Q_{2}\left\langle x_{\alpha}\right\rangle Q_{2}\left\langle x_{\beta}\right\rangle
$$

By induction on k, you can get a bunch of choices to construct Q_{k}.

2.3. More Complicated Replacement Patterns

We should point out that there are more complicated replacement patterns. Here we give two patterns.
(1) For

$$
\begin{aligned}
& y_{65}=x_{\alpha}+x_{s_{5}}+x_{s_{2}} x_{s_{4}} \\
& y_{66}=x_{\beta}+x_{s_{1}} x_{s_{3}} \\
& y_{67}=x_{s_{1}}+x_{\beta} x_{s_{4}} \\
& y_{68}=x_{s_{2}}+x_{\alpha} x_{s_{3}}+x_{s_{3}} x_{s_{5}} \\
& y_{69}=x_{\alpha} x_{s_{4}} \\
& y_{70}=x_{\beta} x_{s_{3}} \\
& y_{71}=x_{\beta} x_{s_{5}} \\
& y_{72}=x_{s_{1}} x_{s_{2}} \\
& y_{73}=x_{s_{3}} x_{s_{4}}
\end{aligned}
$$

we have $Q_{2}\left\langle x_{\alpha} x_{\beta}\right\rangle=y_{71}+y_{72}+y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71} y_{73}+y_{72} y_{73}$.
(2) For

$$
\begin{array}{ll}
y_{65}=x_{\alpha}+x_{s_{1}} x_{s_{3}} & y_{71}=x_{s_{1}} x_{s_{5}} \\
y_{66}=x_{\beta}+x_{s_{2}} x_{s_{4}} & y_{72}=x_{\beta} x_{s_{7}} \\
y_{67}=x_{\beta} x_{s_{1}} & y_{73}=x_{s_{2}} x_{s_{6}} \\
y_{68}=x_{s_{3}}+x_{s_{5}} x_{s_{7}} & y_{74}=x_{\alpha} x_{s_{8}} \\
y_{69}=x_{\alpha} x_{s_{2}} & y_{75}=x_{s_{1}} x_{s_{2}} \\
y_{70}=x_{s_{4}}+x_{s_{6}} x_{s_{8}} & y_{76}=x_{s_{3}} x_{s_{4}}
\end{array}
$$

we have $Q_{2}\left\langle x_{\alpha} x_{\beta}\right\rangle=y_{65} y_{66}+y_{67} y_{68}+y_{69} y_{70}+y_{71} y_{72}+y_{73} y_{74}+y_{75} y_{76}$.

3. Demonstration of Q_{8}

Here we give three examples to demonstrate how different Q_{8} 's are and how easy to create Q_{8} 's systematically. For the convenience of readers, we let l to be a monomial of degree 2 . Note that it is easy to make l complicated.

Example 1

$$
\begin{array}{lll}
y_{27}=x_{27}+x_{11} x_{12} & y_{40}=x_{40}+x_{37} x_{38} & y_{53}=x_{19}+x_{22} x_{31} \\
y_{28}=x_{28}+x_{13} x_{14} & y_{41}=x_{11}+x_{14} x_{27} & y_{54}=x_{21}+x_{20} x_{32} \\
y_{29}=x_{29}+x_{15} x_{16} & y_{42}=x_{13}+x_{12} x_{28} & y_{55}=x_{19} x_{21} \\
y_{30}=x_{30}+x_{17} x_{18} & y_{43}=x_{11} x_{13} & y_{56}=x_{20} x_{22} \\
y_{31}=x_{31}+x_{19} x_{20} & y_{44}=x_{12} x_{14} & y_{57}=x_{20} x_{31} \\
y_{32}=x_{32}+x_{21} x_{22} & y_{45}=x_{12} x_{27} & y_{58}=x_{22} x_{32} \\
y_{33}=x_{33}+x_{23} x_{24} & y_{46}=x_{14} x_{28} & y_{59}=x_{23}+x_{26} x_{33} \\
y_{34}=x_{34}+x_{25} x_{26} & y_{47}=x_{15}+x_{18} x_{29} & y_{60}=x_{25}+x_{24} x_{34} \\
y_{35}=x_{35}+x_{27} x_{28} & y_{48}=x_{17}+x_{16} x_{30} & y_{61}=x_{23} x_{25} \\
y_{36}=x_{36}+x_{29} x_{30} & y_{49}=x_{15} x_{17} & y_{62}=x_{24} x_{26} \\
y_{37}=x_{37}+x_{31} x_{32} & y_{50}=x_{16} x_{18} & y_{63}=x_{24} x_{33} \\
y_{38}=x_{38}+x_{33} x_{34} & y_{51}=x_{16} x_{29} & y_{64}=x_{26} x_{34} \\
y_{39}=x_{39}+x_{35} x_{36} & y_{52}=x_{18} x_{30} &
\end{array}
$$

With the above y_{i} 's, we can construct the following two Q_{8} components.

$$
\begin{aligned}
Q_{8}\left\langle x_{39} x_{40}\right\rangle= & {\left[y_{39}+\left(y_{35}+y_{43}+y_{27} y_{28}+y_{41} y_{42}+y_{43} y_{44}+y_{45} y_{46}\right)\right.} \\
& \left.\left(y_{36}+y_{49}+y_{29} y_{30}+y_{47} y_{48}+y_{49} y_{50}+y_{51} y_{52}\right)\right] \\
& {\left[y_{40}+\left(y_{37}+y_{55}+y_{31} y_{32}+y_{53} y_{54}+y_{55} y_{56}+y_{57} y_{58}\right)\right.} \\
& \left.\left(y_{38}+y_{61}+y_{33} y_{34}+y_{59} y_{60}+y_{61} y_{62}+y_{63} y_{64}\right)\right] .
\end{aligned}
$$

Example 2

$y_{41}=x_{41}+x_{40} x_{1}$	$y_{61}=x_{61}+x_{58} x_{60}$	$y_{81}=x_{25} x_{51}$
$y_{42}=x_{42}+x_{37} x_{39}$	$y_{62}=x_{62}+x_{58} x_{59}$	$y_{82}=x_{29} x_{48}$
$y_{43}=x_{43}+x_{41}+x_{38} x_{40}$	$y_{63}=x_{63}+x_{56} x_{59}$	$y_{83}=x_{33} x_{45}$
$y_{44}=x_{44}+x_{20} x_{41}$	$y_{64}=x_{64}+x_{57} x_{60}$	$y_{84}=x_{37} x_{42}$
$y_{45}=x_{45}+x_{33} x_{35}$	$y_{65}=x_{24}+x_{21} x_{53}+x_{21} x_{55}$	$y_{85}=x_{53} x_{54}$
$y_{46}=x_{46}+x_{44}+x_{34} x_{36}$	$y_{66}=x_{28}+x_{25} x_{50}+x_{25} x_{52}$	$y_{86}=x_{50} x_{51}$
$y_{47}=x_{47}+x_{19} x_{41}$	$y_{67}=x_{32}+x_{29} x_{47}+x_{29} x_{49}$	$y_{87}=x_{47} x_{48}$
$y_{48}=x_{48}+x_{29} x_{31}$	$y_{68}=x_{36}+x_{33} x_{44}+x_{33} x_{46}$	$y_{88}=x_{44} x_{45}$
$y_{49}=x_{49}+x_{47}+x_{30} x_{32}$	$y_{69}=x_{40}+x_{37} x_{41}+x_{37} x_{43}$	$y_{89}=x_{41} x_{42}$
$y_{50}=x_{50}+x_{18} x_{41}$	$y_{70}=x_{23}+x_{22} x_{54}$	$y_{90}=x_{23} x_{24}$
$y_{51}=x_{51}+x_{25} x_{27}$	$y_{71}=x_{27}+x_{26} x_{51}$	$y_{91}=x_{27} x_{28}$
$y_{52}=x_{52}+x_{50}+x_{26} x_{28}$	$y_{72}=x_{31}+x_{30} x_{48}$	$y_{92}=x_{31} x_{32}$
$y_{53}=x_{53}+x_{17} x_{41}$	$y_{73}=x_{35}+x_{34} x_{45}$	$y_{93}=x_{35} x_{36}$
$y_{54}=x_{54}+x_{21} x_{23}$	$y_{74}=x_{39}+x_{38} x_{42}$	$y_{94}=x_{39} x_{40}$
$y_{55}=x_{55}+x_{53}+x_{22} x_{24}$	$y_{75}=x_{22} x_{55}$	$y_{95}=x_{21} x_{22}$
$y_{56}=x_{56}+x_{42} x_{43}$	$y_{76}=x_{26} x_{52}$	$y_{96}=x_{25} x_{26}$
$y_{57}=x_{57}+x_{45} x_{46}$	$y_{77}=x_{30} x_{49}$	$y_{97}=x_{29} x_{30}$
$y_{58}=x_{58}+x_{48} x_{49}$	$y_{78}=x_{34} x_{46}$	$y_{98}=x_{33} x_{34}$
$y_{59}=x_{59}+x_{51} x_{52}$	$y_{79}=x_{38} x_{43}$	$y_{100}=x_{16} x_{41}$
$y_{60}=x_{60}+x_{54} x_{55}$	$y_{80}=x_{21} x_{54}$	

With the above y_{i} 's, we can construct the following two Q_{8} components.

$$
\begin{aligned}
& Q_{8}\left\langle x_{62} x_{64}\right\rangle= {\left[y_{64}+\left(y_{60}+y_{85}+y_{90}+y_{54} y_{55}+y_{65} y_{70}+y_{75} y_{80}+y_{85} y_{95}+y_{90} y_{95}\right)\right.} \\
&\left.\left(y_{57}+y_{88}+y_{93}+y_{45} y_{46}+y_{68} y_{73}+y_{78} y_{83}+y_{88} y_{98}+y_{93} y_{98}\right)\right] \\
& {\left[y_{62}+\left(y_{59}+y_{86}+y_{91}+y_{51} y_{52}+y_{66} y_{71}+y_{76} y_{81}+y_{86} y_{96}+y_{91} y_{96}\right)\right.} \\
&\left.\left(y_{58}+y_{87}+y_{92}+y_{48} y_{49}+y_{67} y_{72}+y_{77} y_{82}+y_{87} y_{97}+y_{92} y_{97}\right)\right] . \\
& Q_{8}\left\langle x_{61} x_{63}\right\rangle=\left[y_{63}+\left(y_{59}+y_{86}+y_{91}+y_{51} y_{52}+y_{66} y_{71}+y_{76} y_{81}+y_{86} y_{96}+y_{91} y_{96}\right)\right. \\
&\left.\left(y_{56}+y_{89}+y_{94}+y_{42} y_{43}+y_{69} y_{74}+y_{79} y_{84}+y_{89} y_{99}+y_{94} y_{99}\right)\right] \\
& {\left[y_{61}+\left(y_{60}+y_{85}+y_{90}+y_{54} y_{55}+y_{65} y_{70}+y_{75} y_{80}+y_{85} y_{95}+y_{90} y_{95}\right)\right.} \\
&\left.\left(y_{58}+y_{87}+y_{92}+y_{48} y_{49}+y_{67} y_{72}+y_{77} y_{82}+y_{87} y_{97}+y_{92} y_{97}\right)\right] .
\end{aligned}
$$

Example 3

$$
\begin{array}{lll}
y_{41}=x_{41}+x_{17} x_{18} & y_{61}=x_{55}+x_{39} x_{40} & y_{81}=x_{23} x_{44} \\
y_{42}=x_{42}+x_{19} x_{20} & y_{62}=x_{53}+x_{37} x_{38} & y_{82}=x_{19} x_{42} \\
y_{43}=x_{43}+x_{21} x_{22} & y_{63}=x_{54} x_{58} & y_{83}=x_{37} x_{53} \\
y_{44}=x_{44}+x_{23} x_{24} & y_{64}=x_{56} x_{57} & y_{84}=x_{33} x_{51} \\
y_{45}=x_{45}+x_{25} x_{26} & y_{65}=x_{40}+x_{37} x_{55} & y_{85}=x_{29} x_{49}
\end{array}
$$

$$
\begin{array}{lll}
y_{46}=x_{46}+x_{27} x_{28} & y_{66}=x_{36}+x_{33} x_{52} & y_{86}=x_{25} x_{45} \\
y_{47}=x_{47}+x_{41} x_{42} & y_{67}=x_{32}+x_{29} x_{50} & y_{87}=x_{21} x_{43} \\
y_{48}=x_{48}+x_{43} x_{44} & y_{68}=x_{28}+x_{25} x_{46} & y_{88}=x_{17} x_{41} \\
y_{49}=x_{49}+x_{29} x_{30} & y_{69}=x_{24}+x_{21} x_{44} & y_{89}=x_{38} x_{40} \\
y_{50}=x_{50}+x_{31} x_{32} & y_{70}=x_{20}+x_{17} y_{42} & y_{90}=x_{34} x_{36} \\
y_{51}=x_{51}+x_{33} x_{34} & y_{71}=x_{38}+x_{39} x_{53} & y_{91}=x_{30} x_{32} \\
y_{52}=x_{52}+x_{35} x_{36} & y_{72}=x_{34}+x_{35} x_{51} & y_{92}=x_{26} x_{28} \\
y_{53}=x_{53}+x_{49} x_{50} & y_{73}=x_{30}+x_{31} x_{49} & y_{93}=x_{22} x_{24} \\
y_{54}=x_{54}+x_{45} x_{46} \quad y_{74}=x_{26}+x_{27} x_{45} & y_{94}=x_{18} x_{20} \\
y_{55}=x_{55}+x_{51} x_{52} & y_{75}=x_{22}+x_{23} x_{43} & y_{95}=x_{37} x_{39} \\
y_{56}=x_{56}+x_{47} x_{48} & y_{76}=x_{18}+x_{19} x_{41} & y_{96}=x_{33} x_{35} \\
y_{57}=x_{57}+x_{53} x_{54} & y_{77}=x_{39} x_{55} & y_{97}=x_{29} x_{31} \\
y_{58}=x_{58}+x_{55} x_{56} & y_{78}=x_{35} x_{52} & y_{98}=x_{25} x_{27} \\
y_{59}=x_{59}+x_{53} x_{55} & y_{79}=x_{31} x_{50} & y_{99}=x_{21} x_{23} \\
y_{60}=x_{60}+x_{54} x_{56} & y_{80}=x_{27} x_{46} & y_{100}=x_{17} x_{19}
\end{array}
$$

With the above y_{i} 's, we can construct the following two Q_{8} components.

$$
\begin{aligned}
Q_{8}\left\langle x_{58} x_{57}\right\rangle= & {\left[y_{56}+\left(y_{48}+y_{93}+y_{43} y_{44}+y_{69} y_{75}+y_{81} y_{87}+y_{93} y_{99}\right)\right.} \\
& \left.\left(y_{47}+y_{94}+y_{41} y_{42}+y_{70} y_{76}+y_{82} y_{88}+y_{94} y_{100}\right)\right] \\
& {\left[\left(y_{54}+y_{92}+y_{45} y_{46}+y_{68} y_{74}+y_{80} y_{86}+y_{92} y_{98}\right)\right.} \\
& \left.\left(y_{89}+y_{61} y_{62}+y_{65} y_{71}+y_{77} y_{83}+y_{89} y_{95}\right)\right] \\
& +y_{64}\left(y_{55}+y_{90}+y_{51} y_{52}+y_{66} y_{72}+y_{78} y_{84}+y_{90} y_{96}\right) \\
& +y_{63}\left(y_{53}+y_{91}+y_{49} y_{50}+y_{67} y_{73}+y_{79} y_{85}+y_{91} y_{97}\right)+y_{57} y_{58} . \\
Q_{8}\left\langle x_{59} x_{60}\right\rangle= & \left\{y_{60}+\left[y_{56}+\left(y_{48}+y_{93}+y_{43} y_{44}+y_{69} y_{75}+y_{81} y_{87}+y_{93} y_{99}\right)\right.\right. \\
& \left.\left(y_{47}+y_{94}+y_{41} y_{42}+y_{70} y_{76}+y_{82} y_{88}+y_{94} y_{100}\right)\right] \\
& \left.\left(y_{54}+y_{92}+y_{45} y_{46}+y_{68} y_{74}+y_{80} y_{86}+y_{92} y_{98}\right)\right\} \\
& \left(y_{59}+y_{89}+y_{61} y_{62}+y_{65} y_{71}+y_{77} y_{83}+y_{89} y_{95}\right) .
\end{aligned}
$$

4. Further Discussion on Implementation

The following implementation example 1 gives more complicated Moh's implementation, which ϕ_{3} has eight Q_{k}-components. The following implementation example 2 demonstrates another possibility that we can make some entries of ϕ_{2} become of degree 8 and the public key is still of degree 2 . In fact, it is not hard to create ϕ_{2} and ϕ_{3} of high degrees such that the public key is still of degree 2 . Note that these two implementations have been routinely checked to avoid the attack of XL method [7].

Implementation Example 1

In this example, let $n=100$ and $m=49$. Define

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{35}=x_{35}+x_{19} x_{33} \quad y_{68}=x_{42} x_{44} \\
& y_{2}=x_{2} \quad y_{36}=x_{36}+x_{20} x_{34} \quad y_{69}=x_{43} x_{45} \\
& y_{3}=x_{3}+x_{1} x_{2} \quad y_{37}=x_{37}+x_{21} x_{35} \quad y_{70}=x_{40} x_{42} \\
& y_{4}=x_{4}+x_{2} x_{3} \quad y_{38}=x_{38}+x_{22} x_{36} \quad y_{71}=x_{41} x_{43} \\
& y_{5}=x_{5}+x_{1} x_{3} \quad y_{39}=x_{39}+x_{23} x_{37} \quad y_{72}=x_{38} x_{40} \\
& y_{6}=x_{6}+x_{3} x_{5} \quad y_{40}=x_{40}+x_{24} x_{38} \quad y_{73}=x_{39} x_{41} \\
& y_{7}=x_{7}+x_{2} x_{5} \quad y_{41}=x_{41}+x_{25} x_{39} \quad y_{74}=x_{36} x_{38} \\
& y_{8}=x_{8}+x_{1} x_{5} \quad y_{42}=x_{42}+x_{26} x_{40} \quad y_{75}=x_{37} x_{39} \\
& y_{9}=x_{9}+x_{5} x_{8} \quad y_{43}=x_{43}+x_{27} x_{41} \quad y_{76}=x_{34} x_{36} \\
& y_{10}=x_{10}+x_{3} x_{8} \quad y_{44}=x_{44}+x_{28} x_{42} \quad y_{77}=x_{35} x_{37} \\
& y_{11}=x_{11}+x_{9} x_{10} \quad y_{45}=x_{45}+x_{29} x_{43} \quad y_{78}=x_{32} x_{34} \\
& y_{12}=x_{12}+x_{8} x_{10} \quad y_{46}=x_{46}+x_{30} x_{44} \quad y_{79}=x_{33} x_{35} \\
& y_{13}=x_{13}+x_{9} x_{11} \quad y_{47}=x_{47}+x_{31} x_{45} \quad y_{80}=x_{14} x_{32} \\
& y_{14}=x_{14}+x_{5} x_{13} \quad y_{48}=x_{48}+x_{12} x_{13} \quad y_{81}=x_{15} x_{33} \\
& y_{15}=x_{15}+x_{9} x_{14} \quad y_{49}=x_{49}+x_{46} x_{47} \quad y_{82}=x_{10}+x_{9} x_{12} \\
& y_{16}=x_{16}+x_{10} x_{15} \quad y_{50}=x_{30}+x_{45} x_{46} \quad y_{83}=x_{11}+x_{8} x_{13} \\
& y_{17}=x_{17}+x_{11} x_{16} \quad y_{51}=x_{31}+x_{44} x_{47} \quad y_{84}=x_{30} x_{31} \\
& y_{18}=x_{18}+x_{12} x_{17} \quad y_{52}=x_{28}+x_{43} x_{44} \quad y_{85}=x_{28} x_{29} \\
& y_{19}=x_{19}+x_{13} x_{18} \quad y_{53}=x_{29}+x_{42} x_{45} \quad y_{86}=x_{26} x_{27} \\
& y_{20}=x_{20}+x_{14} x_{19} \quad y_{54}=x_{26}+x_{41} x_{42} \quad y_{87}=x_{24} x_{25} \\
& y_{21}=x_{21}+x_{15} x_{20} \quad y_{55}=x_{27}+x_{40} x_{43} \quad y_{88}=x_{22} x_{23} \\
& y_{22}=x_{22}+x_{16} x_{21} \quad y_{56}=x_{24}+x_{39} x_{40} \quad y_{89}=x_{20} x_{21} \\
& y_{23}=x_{23}+x_{17} x_{22} \quad y_{57}=x_{25}+x_{38} x_{41} \quad y_{90}=x_{18} x_{19} \\
& y_{24}=x_{24}+x_{18} x_{23} \quad y_{58}=x_{22}+x_{37} x_{38} \quad y_{91}=x_{16} x_{17} \\
& y_{25}=x_{25}+x_{19} x_{24} \quad y_{59}=x_{23}+x_{36} x_{39} \quad y_{92}=x_{14} x_{15} \\
& y_{26}=x_{26}+x_{20} x_{25} \quad y_{60}=x_{20}+x_{35} x_{36} \quad y_{93}=x_{8} x_{12} \\
& y_{27}=x_{27}+x_{21} x_{26} \quad y_{61}=x_{21}+x_{34} x_{37} \quad y_{94}=x_{9} x_{13} \\
& y_{28}=x_{28}+x_{22} x_{27} \quad y_{62}=x_{18}+x_{33} x_{34} \quad y_{95}=x_{10} x_{11} \\
& y_{29}=x_{29}+x_{23} x_{28} \quad y_{63}=x_{19}+x_{32} x_{35} \quad y_{96}=x_{8} x_{9} \\
& y_{30}=x_{30}+x_{24} x_{29} \quad y_{64}=x_{16}+x_{15} x_{32} \quad y_{97}=x_{49} x_{5} \\
& y_{31}=x_{31}+x_{25} x_{30} \quad y_{65}=x_{17}+x_{14} x_{33} \quad y_{98}=x_{48} x_{5} \\
& y_{32}=x_{32}+x_{26} x_{31} \quad y_{66}=x_{44} x_{46} \quad y_{99}=x_{47} x_{5} \\
& y_{33}=x_{33}+x_{27} x_{32} \quad y_{67}=x_{45} x_{47} \quad y_{100}=x_{46} x_{5} \\
& y_{34}=x_{34}+x_{28} x_{33}
\end{aligned}
$$

Except the following 8 entries, $z_{i}=y_{i}$.

```
\(z_{1}=y_{1}+\left(y_{49}+\left(y_{46} y_{47}+y_{50} y_{51}+y_{66} y_{67}+y_{84}+y_{84}\left(y_{44} y_{45}+y_{52} y_{53}+y_{68} y_{69}+\right.\right.\right.\)
        \(y_{85}+y_{85}\left(y_{42} y_{43}+y_{54} y_{55}+y_{70} y_{71}+y_{86}+y_{86}\left(y_{40} y_{41}+y_{56} y_{57}+y_{72} y_{73}+\right.\right.\)
        \(y_{87}+y_{87}\left(y_{38} y_{39}+y_{58} y_{59}+y_{74} y_{75}+y_{88}+y_{88}\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+\right.\right.\)
        \(y_{89}+y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+\right.\right.\)
        \(\left.\left.\left.\left.\left.\left.\left.\left.y_{91}+y_{91} y_{92}\right)\right)\right)\right)\right)\right)\right)\right)\left(y_{48}+y_{12} y_{13}+y_{82} y_{83}+y_{93} y_{94}+y_{95}+y_{95} y_{96}\right)\)
    \(=x_{1}+x_{48} x_{49}\)
\(z_{2}=y_{2}+\left(y_{44} y_{45}+y_{52} y_{53}+y_{68} y_{69}+y_{85}+y_{85}\left(y_{42} y_{43}+y_{54} y_{55}+y_{70} y_{71}+y_{86}+\right.\right.\)
        \(y_{86}\left(y_{40} y_{41}+y_{56} y_{57}+y_{72} y_{73}+y_{87}+y_{87}\left(y_{38} y_{39}+y_{58} y_{59}+y_{74} y_{75}+y_{88}+\right.\right.\)
        \(y_{88}\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+y_{89}+y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+\right.\right.\)
        \(\left.\left.\left.\left.\left.y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+y_{91} y_{92}\right)\right)\right)\right)\right)\right)\)
    \(=x_{2}+x_{44} x_{45}\)
\(z_{3}=y_{3}+\left(y_{38} y_{39}+y_{58} y_{59}+y_{74} y_{75}+y_{88}+y_{88}\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+y_{89}+\right.\right.\)
        \(y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+\right.\right.\)
        \(\left.\left.y_{91} y_{92}\right)\right)\) ))
    \(=x_{3}+x_{1} x_{2}+x_{38} x_{39}\)
\(z_{4}=y_{4}+\left(y_{42} y_{43}+y_{54} y_{55}+y_{70} y_{71}+y_{86}+y_{86}\left(y_{40} y_{41}+y_{56} y_{57}+y_{72} y_{73}+y_{87}+\right.\right.\)
        \(y_{87}\left(y_{38} y_{39}+y_{58} y_{59}+y_{74} y_{75}+y_{88}+y_{88}\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+y_{89}+\right.\right.\)
        \(y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+\right.\right.\)
        \(\left.\left.y_{91} y_{92}\right)\right)\) )) )
    \(=x_{4}+x_{1} x_{3}+x_{42} x_{43}\)
\(z_{6}=y_{6}+\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+y_{89}+y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+\right.\right.\)
        \(\left.\left.y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+y_{91} y_{92}\right)\right)\right)\)
    \(=x_{6}+x_{2} x_{4}+x_{36} x_{37}\)
\(z_{7}=y_{7}+\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+y_{91} y_{92}\right)\)
    \(=x_{7}+x_{2} x_{5}+x_{32} x_{33}\)
\(z_{8}=y_{8}+\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+\right.\right.\)
        \(\left.y_{91} y_{92}\right)\) )
    \(=x_{8}+x_{2} x_{6}+x_{34} x_{35}\)
\(z_{9}=y_{9}+\left(y_{40} y_{41}+y_{56} y_{57}+y_{72} y_{73}+y_{87}+y_{87}\left(y_{38} y_{39}+y_{58} y_{59}+y_{74} y_{75}+y_{88}+\right.\right.\)
        \(y_{88}\left(y_{36} y_{37}+y_{60} y_{61}+y_{76} y_{77}+y_{89}+y_{89}\left(y_{34} y_{35}+y_{62} y_{63}+y_{78} y_{79}+y_{90}+\right.\right.\)
        \(\left.\left.\left.\left.y_{90}\left(y_{32} y_{33}+y_{64} y_{65}+y_{80} y_{81}+y_{91}+y_{91} y_{92}\right)\right)\right)\right)\right)\)
    \(=x_{9}+x_{2} x_{7}+x_{40} x_{41}\)
```


Implementation Example 2

In this example, let $n=100$ and $m=60$.

$y_{1}=x_{1}$	$z_{1}=7 y_{1}+y_{21} y_{28}$	$=x_{1}+x_{21} x_{28}$
$y_{2}=x_{2}$	$z_{2}=y_{2}+y_{22} y_{27}$	$=x_{2}+x_{22} x_{27}$
$y_{3}=x_{3}+x_{1} x_{2}$	$z_{3}=y_{3}$	$=x_{3}+x_{1} x_{2}$
$y_{4}=x_{4}+x_{2} x_{3}$	$z_{4}=y_{4}$	$=x_{4}+x_{2} x_{3}$
$y_{5}=x_{5}+x_{3} x_{4}$	$z_{5}=y_{5}$	$=x_{5}+x_{3} x_{4}$
$y_{6}=x_{6}+x_{4} x_{5}$	$z_{6}=y_{6}$	$=x_{6}+x_{4} x_{5}$
$y_{7}=x_{7}+x_{5} x_{6}$	$z_{7}=y_{7}$	$=x_{7}+x_{5} x_{6}$
$y_{8}=x_{8}+x_{6} x_{7}$	$z_{8}=y_{8}$	$=x_{8}+x_{6} x_{7}$
$y_{9}=x_{9}+x_{7} x_{8}$	$z_{9}=y_{9}$	$=x_{9}+x_{7} x_{8}$
$y_{10}=x_{10}+x_{8} x_{9}$	$z_{10}=y_{10}$	$=x_{10}+x_{8} x_{9}$
$y_{11}=x_{11}+x_{9} x_{10}$	$z_{11}=y_{11}$	$=x_{11}+x_{9} x_{10}$
$y_{12}=x_{12}+x_{8} x_{10}$	$z_{12}=y_{12}$	$=x_{12}+x_{8} x_{10}$
$y_{13}=x_{13}+x_{7} x_{10}$	$z_{13}=y_{13}$	$=x_{13}+x_{7} x_{10}$
$y_{14}=x_{14}+x_{6} x_{10}$	$z_{14}=y_{14}$	$=x_{14}+x_{6} x_{10}$
$y_{15}=x_{15}+x_{5} x_{10}$	$z_{15}=y_{15}+y_{24} y_{47}+y_{25} y_{71}$	$=x_{15}+x_{5} x_{10}+x_{24} x_{47}$
$y_{16}=x_{16}+x_{4} x_{10}$	$z_{16}=y_{16}+y_{26} y_{60}+y_{21} y_{74}$	$=x_{16}+x_{4} x_{10}+x_{26} x_{60}$
$y_{17}=x_{17}+x_{3} x_{10}$	$z_{17}=y_{17}+y_{25} y_{58}+y_{21} y_{77}$	$=x_{17}+x_{3} x_{10}+x_{25} x_{58}$
$y_{18}=x_{18}+x_{16} x_{17}$	$z_{18}=y_{18}+y_{27} y_{56}+y_{22} y_{86}$	$=x_{18}+x_{16} x_{17}+x_{27} x_{56}$
$y_{19}=x_{19}+x_{17} x_{18}$	$z_{19}=y_{19}+y_{23} y_{38}+y_{22} y_{61}$	$=x_{19}+x_{17} x_{18}+x_{23} x_{38}$
$y_{20}=x_{20}+x_{18} x_{19}$	$z_{20}=y_{20}+y_{25} y_{40}+y_{21} y_{62}$	$=x_{20}+x_{18} x_{19}+x_{25} x_{40}$
$y_{21}=x_{21}$	$z_{21}=y_{21}+y_{26} y_{98}+y_{22} y_{65}$	$=x_{21}+x_{22} x_{23}+x_{26} x_{49}$
$y_{22}=x_{22}$	$z_{22}=y_{22}+y_{26} y_{42}+y_{23} y_{76}$	$=x_{22}+x_{26} x_{42}$
$y_{23}=x_{23}$	$z_{23}=y_{23}+y_{28} y_{45}+y_{24} y_{72}$	$=x_{23}+x_{28} x_{45}$
$y_{24}=x_{24}$	$z_{24}=y_{24}+y_{25} y_{55}+y_{27} y_{81}$	$=x_{24}+x_{25} x_{55}$
$y_{25}=x_{25}$	$z_{25}=y_{25}+y_{27} y_{48}+y_{26} y_{83}$	$=x_{25}+x_{27} x_{48}$
$y_{26}=x_{26}$	$z_{26}=y_{26}+y_{27} y_{35}+y_{28} y_{63}$	$=x_{26}+x_{27} x_{35}$
$y_{27}=x_{27}$	$\begin{aligned} z_{27}= & y_{27}+y_{51} y_{53}+y_{87} y_{89}+ \\ & y_{94}+y_{78} y_{91}+y_{94} y_{96} \end{aligned}$	$=x_{27}+x_{51} x_{53}$
$y_{28}=x_{28}$	$\begin{aligned} z_{28}= & y_{28}+y_{57} y_{59}+y_{85} y_{88}+ \\ & y_{100}+y_{80} y_{82}+y_{100} \\ & \left(y_{94}+y_{51} y_{53}+y_{87}\right. \\ & \left.y_{89}+y_{78} y_{91}+y_{94} y_{96}\right) \end{aligned}$	$=x_{28}+x_{57} x_{59}$
$y_{29}=x_{29}+x_{16} x_{18}$	$z_{29}=y_{29}$	$=x_{29}+x_{16} x_{18}$
$y_{30}=x_{30}+x_{17} x_{19}$	$z_{30}=y_{30}$	$=x_{30}+x_{17} x_{19}$
$\begin{aligned} y_{31}= & x_{31}+x_{23} \\ & x_{24} x_{25} x_{26} \\ & x_{27} x_{28} x_{29} \end{aligned}$	$\begin{aligned} z_{31}= & y_{31}+y_{32} y_{33}+y_{34} y_{36}+ \\ & y_{37} y_{39}+y_{61} y_{62}+y_{63} \\ & y_{64}+y_{67} y_{70}+y_{73} y_{76} \end{aligned}$	$\begin{aligned} = & x_{31}+x_{32} x_{33}+x_{34} x_{36}+ \\ & x_{37} x_{39}+x_{24} x_{28} \end{aligned}$

$$
\begin{aligned}
& y_{32}=x_{32}+x_{23} \\
& x_{24} x_{25} x_{26} \\
& y_{33}=x_{33}+x_{27} \text {. } \\
& x_{28} x_{29} x_{30} \\
& y_{34}=x_{34}+x_{23} \text {. } \\
& x_{25} x_{33} \\
& y_{35}=x_{35}+x_{28} x_{32} \\
& y_{36}=x_{36}+x_{24} x_{26} \\
& y_{37}=x_{37}+x_{27} \text {. } \\
& x_{29} x_{32} \\
& y_{38}=x_{38}+x_{22} x_{33} \\
& y_{39}=x_{39}+x_{28} x_{30} \\
& y_{40}=x_{40}+x_{21} x_{36} \\
& y_{41}=x_{41}+x_{23} x_{24} \\
& y_{42}=x_{42}+x_{23} x_{37} \\
& y_{43}=x_{43}+x_{25} x_{26} \\
& y_{44}=x_{44}+x_{27} x_{28} \\
& y_{45}=x_{45}+x_{24} x_{44} \\
& y_{46}=x_{46}+x_{29} x_{30} \\
& y_{47}=x_{47}+x_{25} x_{41} \\
& y_{48}=x_{48}+x_{26} x_{32} \\
& y_{49}=x_{49}+x_{25} x_{47} \\
& y_{50}=x_{50}+x_{33} x_{48} \\
& y_{51}=x_{51}+x_{35} x_{38} \quad z_{51}=y_{5} \\
& y_{52}=x_{52}+x_{27} x_{50} \quad z_{52}=y_{5} \\
& y_{53}=x_{53}+x_{40} x_{42} \quad z_{53}=y_{53} \\
& y_{54}=x_{54}+x_{32} x_{51} \quad z_{54}=y_{54} \\
& y_{55}=x_{55}+x_{27} x_{48} \\
& z_{55}=y_{55} \\
& y_{56}=x_{56}+x_{22} x_{51} \\
& z_{56}=y_{56} \\
& y_{57}=x_{57}+x_{46} x_{51} \quad z_{57}=y_{57} \\
& y_{58}=x_{58}+x_{21} x_{33} \quad z_{58}=y_{58} \\
& y_{59}=x_{59}+x_{47} x_{53} \quad z_{59}=y_{59} \\
& y_{60}=x_{60}+x_{21} x_{43} \quad z_{60}=y_{60} \\
& y_{61}=x_{23} x_{33} \quad z_{61}=y_{61} \\
& y_{62}=x_{25} x_{36} \quad z_{62}=y_{62} \\
& y_{63}=x_{27} x_{32} \quad z_{63}=y_{63} \\
& z_{64}=y_{64} \\
& z_{65}=y_{65} \\
& =x_{38}+x_{22} x_{33} \\
& z_{38}=y_{38} \\
& z_{39}=y_{39} \\
& z_{40}=y_{40} \\
& z_{41}=y_{41} \\
& z_{42}=y_{42} \\
& z_{43}=y_{43} \\
& z_{44}=y_{44} \\
& z_{45}=y_{45} \\
& z_{46}=y_{46} \\
& z_{47}=y_{47} \\
& z_{48}=y_{48} \\
& z_{49}=y_{49} \\
& +x_{28} x_{30} \\
& =x_{40}+x_{21} x_{36} \\
& =x_{41}+x_{23} x_{24} \\
& =x_{42}+x_{23} x_{37} \\
& =x_{43}+x_{25} x_{26} \\
& =x_{44}+x_{27} x_{28} \\
& =x_{45}+x_{24} x_{44} \\
& =x_{46}+x_{29} x_{30} \\
& =x_{47}+x_{25} x_{41} \\
& =x_{48}+x_{26} x_{32} \\
& =x_{49}+x_{25} x_{47} \\
& =x_{50}+x_{33} x_{48} \\
& =x_{51}+x_{35} x_{38} \\
& =x_{52}+x_{27} x_{50} \\
& =x_{53}+x_{40} x_{42} \\
& =x_{54}+x_{32} x_{51} \\
& =x_{55}+x_{27} x_{48} \\
& =x_{56}+x_{22} x_{51} \\
& =x_{57}+x_{46} x_{51} \\
& =x_{58}+x_{21} x_{33} \\
& =x_{59}+x_{47} x_{53} \\
& =x_{60}+x_{21} x_{43} \\
& =x_{23} x_{33} \\
& =x_{25} x_{36} \\
& =x_{27} x_{32} \\
& =x_{29} x_{39} \\
& =x_{23}+x_{26} x_{41} \\
& =x_{27}+x_{30} x_{44} \\
& =x_{28}+x_{26} x_{34} \\
& =x_{25}+x_{24} x_{43}
\end{aligned}
$$

$$
\begin{aligned}
& y_{69}=x_{29}+x_{28} x_{46} \quad z_{69}=y_{69} \\
& \begin{array}{l}
=x_{29}+x_{28} x_{46} \\
=x_{24}+x_{30} x_{37} \\
=x_{24} x_{41} \\
=x_{28} x_{44} \\
=x_{30} x_{34} \\
=x_{26} x_{43} \\
=x_{30} x_{46} \\
=x_{26} x_{37} \\
=x_{25} x_{33} \\
=x_{38} x_{51} \\
=x_{47}+x_{33} x_{49} \\
=x_{51} x_{57} \\
=x_{25} x_{48} \\
=x_{53} x_{59} \\
=x_{27} x_{32} \\
=x_{50}+x_{32} x_{52} \\
=x_{47}+x_{51} x_{59} \\
=x_{27} x_{51} \\
=x_{35}+x_{42} x_{51} \\
=x_{46}+x_{53} x_{57} \\
=x_{40}+x_{38} x_{53} \\
=x_{32} x_{50} \\
=x_{42} x_{53} \\
=x_{51}+x_{27} x_{54} \\
=x_{29}+x_{52} x_{54} \\
=x_{35} x_{40} \\
=x_{33} x_{47} \\
=x_{38} x_{42} \\
=x_{48}+x_{25} x_{50} \\
=x_{49}+x_{22} x_{41} \\
=x_{23}+x_{49} x_{50} \\
=x_{46} x_{47} \\
\end{array} \\
& y_{70}=x_{24}+x_{30} x_{37} \quad z_{70}=y_{70} \\
& \begin{array}{l}
=x_{29}+x_{28} x_{46} \\
=x_{24}+x_{30} x_{37} \\
=x_{24} x_{41} \\
=x_{28} x_{44} \\
=x_{30} x_{34} \\
=x_{26} x_{43} \\
=x_{30} x_{46} \\
=x_{26} x_{37} \\
=x_{25} x_{33} \\
=x_{38} x_{51} \\
=x_{47}+x_{33} x_{49} \\
=x_{51} x_{57} \\
=x_{25} x_{48} \\
=x_{53} x_{59} \\
=x_{27} x_{32} \\
=x_{50}+x_{32} x_{52} \\
=x_{47}+x_{51} x_{59} \\
=x_{27} x_{51} \\
=x_{35}+x_{42} x_{51} \\
=x_{46}+x_{53} x_{57} \\
=x_{40}+x_{38} x_{53} \\
=x_{32} x_{50} \\
=x_{42} x_{53} \\
=x_{51}+x_{27} x_{54} \\
=x_{29}+x_{52} x_{54} \\
=x_{35} x_{40} \\
=x_{33} x_{47} \\
=x_{38} x_{42} \\
=x_{48}+x_{25} x_{50} \\
=x_{49}+x_{22} x_{41} \\
=x_{23}+x_{49} x_{50} \\
=x_{46} x_{47} \\
\end{array} \\
& y_{71}=x_{24} x_{41} \quad z_{71}=y_{71} \\
& y_{72}=x_{28} x_{44} \quad z_{72}=y_{72} \\
& y_{73}=x_{30} x_{34} \quad z_{73}=y_{73} \\
& y_{74}=x_{26} x_{43} \quad z_{74}=y_{74} \\
& y_{75}=x_{30} x_{46} \quad z_{75}=y_{75} \\
& y_{76}=x_{26} x_{37} \quad z_{76}=y_{76} \\
& y_{77}=x_{25} x_{33} \quad z_{77}=y_{77} \\
& y_{78}=x_{38} x_{51} \quad z_{78}=y_{78} \\
& y_{79}=x_{47}+x_{33} x_{49} \quad z_{79}=y_{79} \\
& y_{80}=x_{51} x_{57} \quad z_{80}=y_{80} \\
& y_{81}=x_{25} x_{48} \quad z_{81}=y_{81} \\
& y_{82}=x_{53} x_{59} \quad z_{82}=y_{82} \\
& y_{83}=x_{27} x_{32} \quad z_{83}=y_{83} \\
& y_{84}=x_{50}+x_{32} x_{52} \quad z_{84}=y_{84} \\
& y_{85}=x_{47}+x_{51} x_{59} \quad z_{85}=y_{85} \\
& y_{86}=x_{27} x_{51} \quad z_{86}=y_{86} \\
& y_{87}=x_{35}+x_{42} x_{51} \quad z_{87}=y_{87} \\
& y_{88}=x_{46}+x_{53} x_{57} \quad z_{88}=y_{88} \\
& y_{89}=x_{40}+x_{38} x_{50} \quad z_{89}=y_{89} \\
& y_{90}=x_{32} x_{54} \quad z_{90}=y_{90} \\
& y_{91}=x_{42} x_{53} \quad z_{91}=y_{91} \\
& y_{92}=x_{51}+x_{27} x_{54} \quad z_{92}=y_{92} \\
& y_{93}=x_{29}+x_{52} x_{54} \quad z_{93}=y_{93} \\
& y_{94}=x_{35} x_{40} \quad z_{94}=y_{94} \\
& y_{95}=x_{33} x_{47} \quad z_{95}=y_{95} \\
& y_{96}=x_{38} x_{42} \quad z_{96}=y_{96} \\
& y_{97}=x_{48}+x_{25} x_{50} \quad z_{97}=y_{97} \\
& y_{98}=x_{49}+x_{22} x_{41} \quad z_{98}=y_{98} \\
& y_{99}=x_{23}+x_{49} x_{50} \quad z_{99}=y_{99} \\
& y_{100}=x_{46} x_{47} \quad z_{100}=y_{100}
\end{aligned}
$$

5. About the Decomposition of $\phi_{3} \circ \phi_{2}$

We want to point out an obvious fact that the decomposition of $\phi_{3} \circ \phi_{2}$ is not unique. In the following example, we show that the composition of ϕ_{2} and ϕ_{3} has another decomposition (up to permutations) ϕ_{2}^{\prime} and ϕ_{3}^{\prime}, which are both of degree 2 . Note that the original ϕ_{3} has a Q_{4} component. Hence, we shall keep in mind that a Q_{n} component with big n sometimes still gives a weak key since the composition of ϕ_{2} and ϕ_{3} may have another decomposition. There are some tricks to create
Q_{n} components such that the situation happened in the following example can be avoided. We hope to return to this matter elsewhere. However, decompositions of polynomial maps into tame transformations for higher dimension are still completely unknown.

$$
\begin{array}{rll}
y_{1}=x_{1} & z_{1}=y_{1}+Q_{4}\left\langle x_{8} x_{9}\right\rangle & =x_{1}+x_{8} x_{9} \\
y_{2}=x_{2}+x_{1}^{2} & z_{2}=y_{2} & \\
y_{3}=x_{3}+x_{1} x_{2} & z_{3}=y_{3} & \\
y_{4}=x_{1}^{2} \\
y_{4}+x_{2} x_{3} & z_{4}=y_{4}+x_{1} x_{2} \\
y_{5}=x_{5}+x_{4}^{2} & z_{5}=y_{5} & \\
y_{6}=x_{6}+x_{4} x_{5} & z_{6}=y_{6} & \\
y_{7}=x_{2} x_{3} \\
y_{8}=x_{5}+x_{5} x_{6} & z_{7}=y_{7} & \\
y_{9}=x_{1} x_{4} & z_{8}=y_{8} & \\
y_{10}=x_{4} x_{7} & z_{9}=x_{4} & \\
y_{1}+x_{3} x_{5} & z_{10}=y_{10} & \\
y_{11}=x_{4}+x_{2} x_{6} & z_{11}=y_{11} x_{6} \\
y_{12}=x_{1} x_{5} & z_{12}=y_{12} & \\
y_{13}=x_{2} x_{4} & z_{13}=y_{13} & \\
y_{14}=x_{2} x_{5} & z_{14}=y_{14} & =x_{4} x_{4}+x_{3} x_{5} \\
y_{15}=x_{3} x_{6} & z_{15}=y_{15} & \\
y_{16}=x_{3} x_{4} & z_{16}=y_{16} & \\
y_{17}=x_{6} x_{7} & z_{17}=y_{17} & \\
y_{18}=x_{2}+x_{4} x_{6} & z_{18}=x_{18} x_{6} \\
y_{19}=x_{5}+x_{3} x_{7} & z_{19}=y_{19} & \\
=x_{2} x_{5} \\
& & =x_{3} x_{6} \\
y_{4}
\end{array}
$$

where $Q_{4}\left\langle x_{8} x_{9}\right\rangle=\left(y_{14}+y_{3} y_{6}+y_{10} y_{11}+y_{12} y_{13}+y_{14} y_{15}\right)\left(y_{15}+y_{4} y_{7}+y_{14} y_{15}+\right.$ $\left.y_{16} y_{17}+y_{18} y_{19}\right)$

$$
\begin{array}{lll}
y_{1}=x_{8} & z_{1}=y_{1}+Q_{2}\left\langle x_{1} x_{4}\right\rangle & =x_{8}+x_{1} x_{4} \\
y_{2}=x_{9} & z_{2}=y_{1}+Q_{2}\left\langle x_{4} x_{7}\right\rangle & =x_{9}+x_{4} x_{7} \\
y_{3}=x_{1}+x_{8} x_{9} & z_{3}=y_{3} & \\
y_{4}=x_{2}+x_{1}^{2} & z_{4}=y_{4}+x_{8} x_{9} \\
y_{5}=x_{3}+x_{1} x_{2} & z_{5}=y_{5} & \\
y_{6}=x_{4}+x_{2} x_{3} & z_{6}=y_{6} & =x_{1}^{2} \\
y_{7}=x_{5}+x_{4}^{2} & z_{7}=y_{7} & \\
y_{8}=x_{6}+x_{4} x_{5} & z_{8}=y_{8} & \\
y_{9}=x_{7}+x_{5} x_{6} & z_{9}=y_{9} & =x_{2} x_{3}+x_{4}^{2} \\
y_{10}=x_{1}+x_{3} x_{5} & z_{10}=y_{10} & \\
y_{11}=x_{4}+x_{2} x_{6} & z_{11}=y_{11} & \\
y_{12}=x_{1} x_{5} & z_{12}=y_{12} & \\
y_{13}=x_{2} x_{5}+x_{5} x_{6} & z_{13}=y_{13} & \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
y_{14}=x_{2} x_{5} & z_{14}=y_{14} & =x_{2} x_{5} \\
y_{15}=x_{3} x_{6} & z_{15}=y_{15} & =x_{3} x_{6} \\
y_{16}=x_{3} x_{4} & z_{16}=y_{16} & =x_{3} x_{4} \\
y_{17}=x_{6} x_{7} & z_{17}=y_{17} & =x_{6} x_{7} \\
y_{18}=x_{2}+x_{4} x_{6} & z_{18}=y_{18} & =x_{2}+x_{4} x_{6} \\
y_{19}=x_{5}+x_{3} x_{7} & z_{19}=y_{19} & =x_{5}+x_{3} x_{7}
\end{array}
$$

where $Q_{2}\left\langle x_{1} x_{4}\right\rangle=\left(y_{14}+y_{3} y_{6}+y_{10} y_{11}+y_{12} y_{13}+y_{14} y_{15}\right)$ and $Q_{2}\left\langle x_{4} x_{7}\right\rangle=$ $\left(y_{15}+y_{4} y_{7}+y_{14} y_{15}+y_{16} y_{17}+y_{18} y_{19}\right)$

Acknowledgement

We would like to express our deep gratitude to Professor Moh for kindly explaining his work to us. We need to thank Professor J. Chen for showing us an example of automorphisms which have two decompositions up to permutations. We are also grateful to Professor C. Chou for useful discussions on this subject.

References

1. J. Chen, Square-free Component Q_{8} in TTM Cryptosystem, preprint.
2. C. Chou, D. Guan and J. Chen, A Systematic Construction of a $Q_{2^{k}}$-module in TTM, preprint.
3. C. Chou and D. Guan, Square-free Q_{4}, Q_{6} and Q_{8} modules in TTM, preprint.
4. L. Goubin and N. T. Courtois, Cryptanalysis of the TTM Cryptosystem, Accepted by Asiacrypt 2000, Dec. 2000.
5. T. Moh, A Public System With Signature And Master Key Functions, Communications in Algebra, 27(5) (1999), 2207-2222.
6. T. Moh, On the Goubin-Courtois Attack on TTM, Cryptology ePrint Archive (2001/072).
7. T. Moh, On The Method of XL and Its Inefficiency Against TTM, Cryptology ePrint Archive (2001/047).

Lih-Chung Wang and Fei-Hwang Chang
Department of Applied Mathematics
National Donghwa University
Shoufeng, Hualien 974
Taiwan, R.O.C.
E-mail: lcwang@mail.ndhu.edu.tw

