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COMPACTNESS AND NORM CONTINUITY OF THE
DIFFERENCE OF TWO COSINE FUNCTIONS

Miao Li, B.-Z. Guo and Serguei Piskarev

Abstract. We show that the compactness of the difference of two cosine
functions can be characterized by that of the difference of their resolvents.
We also make some comparisons between such results for C0-semigroups and
cosine functions.

1. INTRODUCTION

Many linear distributed parameter control systems can be put into the form

v0(t) = Av(t) +Bu(t), v(0) = v0, t ∈ R+,(1.1)

where A generates a C0-semigroup in the state Hilbert or Banach space E and B
is the control operator from control space to the state space. When one design a
feedback control u(t) = Fv(t) for some feedback operator from the state space to
the control space, the closed-loop system takes the form

v0(t) = (A+BF )v(t), v(0) = v0, t ∈ R+.(1.2)

In the context of stabilization theory, one wants to select a feedback operator F to
force the closed-loop system to possess stability properties that are not enjoyed by
the original system. One important class in physical applications is that of operators
F such that BF is compact in the state space. When BF is compact, it was first
proved in [16] that the difference of the semigroup e(A+BF )t generated by A+BF
and eAt generated by A is compact for any positive t. Hence
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ωess(A) = ωess(A+BF ),(1.3)

where ωess stands for the essential growth rate of the associated semigroup. Property
(1.3) holds true for any two C0-semigroups whenever their difference is compact for
some t > 0 (see Theorem 3.52 in [7]). This is the basis of �compact method� that
was used to study the stabilization of elastic systems (see [10]) and spectral property
of neutron transport equation (see [14]). Compact method was first formulated in
[13] for Hilbert spaces and later generalized to Banach spaces in [5], which says
that the compact perturbation can not make the system which is asymptotically but
not exponentially stable to be exponentially stable.
This gives rise to the general study of necessary and sufficient conditions for

compactness of the difference of two C0-semigroups. A recent result in [6] says
that eAt − eBt is compact for t > 0 if and only if R(λ, A) − R(λ, B) is compact
under the norm continuity assumption on eAt − eBt.
On the other hand, most of controlled hyperbolic systems are more convenient

to be written as the second order instead of the first order evolution equation in
abstract space (see [11], [4]):

v00(t) = Av(t) +Bu(t), v(0) = v0, v0(0) = v1, t ∈ R+,(1.4)

Same problem also occurs for system (1.4). Certainly, one can transfer system (1.4)
into the first order equation (1.1); however, the difficulty with this approach is that
the transformed first order equation does not necessarily produce a C0-semigroup
(see [12]) on E × E space. It turns out that it is sometimes more convenient to
treat second order system directly by introducing the cosine function, which plays
the same role to the second order system as does C0-semigroup to the first order
system (see [4]). By definition, a family of bounded linear operators {C(t), t ∈ R}
in a Banach space E is called a cosine function if

(a) C(0) = I;

(b) C(t+ s) + C(t− s) = 2C(t)C(s) for t, s ∈ R;
(c) the function C(·)x is continuous on R for any x ∈ E.

The infinitesimal generator of cosine function C(·) could be defined as Ax =
limt→0 2(C(t)− I)x/t2 for such x for which the limit exists.
In terms of a cosine function C(t) generated by A, the solution of the second

order equation

v00(t) = Av(t), v(0) = v0, v0(0) = v1, t ∈ R,(1.5)

can be written as
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µ
v(t)
v0(t)

¶
= exp(tA)

µ
v(0)
v0(0)

¶
=

µ
C(t)v0 + S(t)v1
AS(t)v0 + C(t)v1

¶
, t ∈ R,(1.6)

in the energy space E = E1 × E, where S(t) is the sine function associated with
cosine C(t) by the formula S(t) =

R t
0 C(s)ds and E

1 is the Kisynskii space defined
as (

E1 = {x ∈ E : C(·)x ∈ C1(R;E)},
kxkE1 = kxkE + sup0≤t≤1 kC 0(t)xkE ∀x ∈ E1

(1.7)

(see [12], [2]). If the Cauchy problem (1.5) is well-posed, then operator A generates
C0-group exp(·A) on E space.
In this paper, we are concerned with the general condition on the difference

of two cosine and sine functions. To distinguish different cosine functions, we
use C(t, A) and S(t, A) to denote the cosine and sine functions generated by A,
respectively.

2. COMPACTNESS AND NORM CONTINUITY

Let C(t, A) and C(t,B) be the cosine functions on a Banach space E generated
by A and B, respectively, and satisfying kC(t, A)k, kC(t, B)k ≤ Mew|t|, t ∈ R,
for some constants M , w ≥ 0. Let us denote also by ∆A,B(t) = C(t, A)−C(t, B)
for all t ∈ R and by B(E) the space of all bounded linear operators on a Banach
space E.

Theorem 2.1. Let ∆A,B(t) be norm continuous for t > 0. Then for all λ > w2,
the operator R(λ, A)−R(λ, B) is compact iff ∆A,B(t) is compact for t ≥ 0.

Proof. The sufficiency follows from the integral representation

λ
³
R(λ2, A)−R(λ2, B)

´
=

Z ∞

0
e−λt(C(t, A)− C(t, B)) dt

and norm continuity (see also [15]).
The proof of the necessity falls naturally into 3 steps. First we show that

lim
λ→∞

kλR(λ, A)C(t,A)− λR(λ, B)C(t, B)−∆A,B(t)k = 0 for t > 0.(2.1)
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To this end consider the identity

λ2R(λ2, A)C(t, A)− λ2R(λ2, B)C(t, B)−∆A,B(t)

= λ

Z ∞

0
e−λs[C(t,A)C(s,A)−C(t, B)C(s,B)]ds−∆A,B(t)

= λ

Z ∞

0
e−λs

h1
2
C(t+ s,A) +

1

2
C(t− s,A)− 1

2
C(t+ s,B)

−1
2
C(t− s,B)−∆A,B(t)

i
ds

= λ

Z ∞

0
e−λs

³1
2
∆A,B(t+ s) +

1

2
∆A,B(t− s)−∆A,B(t)

´
ds.

Now let λ > w. Then for every δ > 0 we have

kλ2R(λ2, A)C(t,A)− λ2R(λ2, B)C(t,B)−∆A,B(t)k

≤
Z δ

0
λe−λsk1

2
∆A,B(t+ s) +

1

2
∆A,B(t− s)−∆A,B(t)kds

+

Z ∞

δ
λe−λsk1

2
∆A,B(t+ s) +

1

2
∆A,B(t− s)−∆A,B(t)kds

≤ sup
0≤s≤δ

k1
2
∆A,B(t+ s) +

1

2
∆A,B(t− s)−∆A,B(t)k

+M
5λ

λ− w e
w(t+δ)e−λδ.

Since ∆A,B(t) is norm continuous in t, the first term on the right is smaller than
any ² if δ is small enough. Now take λ so large that the second term is smaller
than ² too. Since ² is arbitrary our statment (2.1) holds.
Second we show that

lim
λ→∞

kλ2R(λ, A)2C(t, A)− λ2R(λ, B)2C(t, B)−∆A,B(t)k = 0.(2.2)

By (2.1), we only need to show

lim
λ→∞

k[λ2R(λ, A)2C(t,A)− λ2R(λ, B)2C(t,B)]
−[λR(λ, A)C(t, A)− λR(λ, B)C(t, B)]k = 0.

(2.3)
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Since for λ > ω,

λ4R(λ2, A)2C(t, A)

= λ2R(λ2, A)λ

Z ∞

0
e−λs

³1
2
C(t+ s,A) +

1

2
C(t− s,A)

´
ds

= λ

Z ∞

0
e−λrC(r,A)

h
λ

Z ∞

0
e−λs

³1
2
C(t+ s,A) +

1

2
C(t− s,A)

´
ds
i
dr

= λ

Z ∞

0
e−λr

h
λ

Z ∞

0
e−λs

³1
4
C(t+ s+ r,A) +

1

4
C(t+ s− r,A)

+
1

4
C(t− s+ r,A) + 1

4
C(t− s− r,A)

´
ds
i
dr,

so we haveh
λ4R(λ2, A)2C(t, A)− λ4R(λ2, B)2C(t, B)

i
−
h
λ2R(λ2, A)C(t, A)− λ2R(λ2, B)C(t, B)

i
= λ

Z ∞

0
e−λr

h
λ

Z ∞

0
e−λs

³1
4
∆A,B(t+ s+ r) +

1

4
∆A,B(t+ s− r)

+
1

4
∆A,B(t− s+ r) + 1

4
∆A,B(t− s− r)− 1

2
∆A,B(t+ s)

−1
2
∆A,B(t− s)

´
ds
i
dr.

A similar argument as in the first step show that (2.3) holds.
To make up the third step let us note that for σ > w, x ∈ D(A), one can write

([3], p. 42)

C(t, A)x = lim
r→∞

1

2πi

Z σ+ir

σ−ir
λeλtR(λ2, A)xdλ.(2.4)

To finish the proof we are going to show that λ2R(λ, A)2C(t, A)−λ2R(λ, B)2
C(t, B) is compact for λ large enough. To do this fix x ∈ E and σ > w. Using
(2.4) one gets

λ2R(λ, A)2C(t,A)x− λ2R(λ, B)2C(t,B)x

=
λ2

2π
lim
n→∞

Z n

−n
(σ + ir)et(σ+ir)

h
R((σ + ir)2, A)R(λ, A)2

−R((σ + ir)2, B)R(λ, B)2
i
xdr.
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Let
Snx :=

Z n

−n
(σ + ir)et(σ+ir)

h
R((σ + ir)2, A)R(λ, A)2

−R((σ + ir)2, B)R(λ, B)2
i
xdr,

then for n > m, by integration by parts we have

(Sn − Sm)x=
µZ n

m
+

Z −m

−n

¶
(σ + ir)et(σ+ir)

·
h
R((σ + ir)2, A)R(λ, A)2 −R((σ + ir)2, B)R(λ, B)2

i
xdr

=
et(σ+ir)

it
(σ + ir)

h
R((σ + ir)2, A)R(λ, A)2

−R((σ + ir)2, B)R(λ, B)2
i
x
³¯̄̄n
m
+
¯̄̄−m
−n

´
+
³Z n

m
+

Z −m

−n

´et(σ+ir)
t

n
2(σ + ir)2

h
R((σ + ir)2, A)2R(λ, A)2

−R((σ + ir)2, B)2R(λ, B)2
i

−
h
R((σ + ir)2, A)R(λ, A)2 −R((σ + ir)2, B)R(λ, B)2

io
xdr.

Since

R((σ + ir)2, A)R(λ, A) =
1

(σ + ir)2 − λ [R(λ, A)−R((σ + ir)
2, A)]

and
k(σ + ir)R((σ + ir)2, A)k ≤ M

σ − w,

we have for |r|→∞

(σ + ir)2R((σ + ir)2, A)2R(λ, A)2

=
³ σ + ir

(σ + ir)2 − λ
´2h
R((σ + ir)2, A)−R(λ, A)

i2
= O(|r|−2)

and

R((σ + ir)2, A)R(λ, A)2

=
−1

(σ + ir)2 − λ ·
h
R((σ + ir)2, A)−R(λ, A)

i
R(λ, A) = O(|r|−2).
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Since the same holds for A replaced by B, one obtains

kSn − Smk→ 0, n,m→∞.
On the other hand, for any λ, µ > w2,σ, we get that

R(µ,A)R(λ, A)2 −R(µ,B)R(λ, B)2

=
h
R(µ,A)−R(µ,B)

i
R(λ, A)2 +R(µ,B)

h
R(λ, A)2 −R(λ, B)2

i
=
h
R(µ,A)−R(µ,B)

i
R(λ, A)2 +R(µ,B)

h
R(λ, A)(R(λ, A)−R(λ, B))

+(R(λ, A)−R(λ, B))R(λ, B)
i

is compact. So the uniform limit of operators Sn is equals to

lim
N→∞

Z N

−N
(σ+ir)et(σ+ir)

³
R((σ+ir)2, A)R(λ, A)2−R((σ+ir)2, B)R(λ, B)2

´
dr

and it is compact. Therefore from (2.2) it follows that ∆A,B(t) is compact.

We can characterize the norm continuity in Hilbert space analogous to Theorem
2.5 in [6] and the proof is just a simple modification.

Proposition 2.1. Let A and B generate cosine functions C(t, A) and C(t, B),
respectively, on a Hilbert space H, and kC(t, A)k, kC(t, B)k ≤ Meωt for some
constants M ≥ 1, ω ∈ R. Then C(t,A)−C(t, B) is norm continuous for t > 0 if
and only if for every σ > ω,

lim
|r|→∞

k(σ + ir)[R((σ + ir)2, A)−R((σ + ir)2, B)]k = 0

and

lim
n→∞

Z ∞

n
k(σ ± ir)[R((σ ± ir)2, A)−R((σ ± ir)2, B)]xk2dr = 0,

lim
n→∞

Z ∞

n
k(σ ± ir)[R((σ ± ir)2, A∗)−R((σ ± ir)2, B∗)]yk2dr = 0

uniformly for x ∈ H, y ∈ H∗ with kxk, kyk ≤ 1.

The case for sine functions is easier to treat.

Theorem 2.2. Let S(t, A) and S(t, B) be the corresponding sine functions of
C(t, A) and C(t, B), respectively. Then S(t, A)− S(t, B) is compact for t > 0 if
and only if R(λ, A)−R(λ, B) is compact for λ > w2.
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Proof. Since sine functions are norm continuous, the identity

R(λ2, A)−R(λ2, B) =
Z ∞

0
e−λt

³
S(t, A)− S(t,B)

´
dt

is valid in the uniform topology, and so the compactness of the resolvents follows
from that of S(t, A)− S(t, B).
Conversely, since S(t, A)−S(t,B) is norm continuous, similarly as in the proof

of Theorem 2.1, we can show that the compactness of R(λ, A)−R(λ, B) implies
that of S(t,A)− S(t, B).
Now we show a similar result for cosine as in [6], Proposition 2.7.

Proposition 2.2. Suppose that ∆A,B(t) is compact for t > 0 and norm contin-
uous at t = 0. Then

lim
h→0

k∆A,B(t+ h)− 2∆A,B(t) +∆A,B(t− h)k = 0 for any t ≥ 0.(2.5)

Proof. We have

∆A,B(t+ h) +∆A,B(t− h)− 2∆A,B(t)
=
³
C(t+ h,A) + C(t− h,A)

´
−
³
C(t+ h,B) +C(t− h,B)

´
− 2∆A,B(t)

= 2C(t, A)C(h,A)− 2C(t,B)C(h,B)− 2∆A,B(t)
= 2

³
C(t,A)C(h,A)− C(h,A)C(t,B)

´
+2
³
C(h,A)C(t, B)− C(t, B)C(h,B)

´
− 2∆A,B(t)

= 2C(h,A)∆A,B(t) + 2∆A,B(h)C(t, B)− 2∆A,B(t)
= 2[C(h,A)− I]∆A,B(t) + 2∆A,B(h)C(t,B)
→ 0 as h→ 0.

Remark 2.1. In the proof of Theorem 2.1 we used actually (2.5), but not the
norm continuity of ∆A,B(·).
Theorem 2.3. Let ∆A,B(t) be norm continuous in t at 0. Then ∆A,B(t) is

compact for t > 0 if and only if R(λ, A) − R(λ, B) is compact for λ > w2 and
(2.5) holds.

Now we can deal with unbounded perturbations. For B ∈ B(E) define the
function F (t) = (λ2 −A) R t0 S(s,A)B ds and also
SV (F (·), t) := sup

n°°° nX
j=1

[F (tj)− F (tj−1)]xj
°°°; xj ∈ X, kxjk ≤ 1o <∞,
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where the supremum is taken over all subdivisions of [0, t].

Theorem 2.4. [9] Let C(t, A) be the cosine function and SV (F (t), t)→ 0 as
t→ 0 for some λ > ω. Then operator A(I +B) generates the cosine function and

kC(t, A)−C(t, A(I +B))k ≤ c SV (F (t), t) as t→ 0.

Theorem 2.5. [9] Let C(t, A) be the cosine function and

δB(t) := sup
nZ t

0
kBS(t,A)Axkds : x ∈ D(A), kxk ≤ 1

o
→ 0 as t→ 0.

Then (I +B)A generates a cosine function and

kC(t,A)− C(t, (I +B)A)k ≤ c δB(t) as t→ 0.

Most of all known perturbation�s Theorems could be obtained [9] as a consequence
of Theorem 2.4 and Theorem 2.5 including M. Watanabe unbounded perturbation
P ∈ B(E1, E), which is exactly the case of kC(t,A) − C(t, A + P )k = O(t) as
t→ 0.

Proposition 2.3. Suppose that the assumptions of Theorem 2.4 (resp. Theorem
2.5) are satisfies. Then ∆A,A(I+B)(t) (resp. ∆A,(I+B)A(t)) is compact for t > 0
if and only if ∆A,A(I+B)(t) (resp. ∆A,(I+B)A(t)) satisfies (2.5) and R(λ, A) −
R(λ, A(I+B)) (resp. R(λ, A)−R(λ, (I+B)A)) is compact for λ large enough.

3. COMPARISON OF THE FIRST AND THE SECOND ORDER EQUATIONS

First we consider bounded perturbations. It is well known that when A generates
a C0-semigroup etA, then A + B, B ∈ B(E), also generates a C0-semigroup
et(A+B). It was shown in [17] that et(A+B) − etA is norm continuous for t > 0
if it is compact for t > 0. As for the cosine case, the compact hypotheses can be
removed.

Theorem 3.1 Let A be the generator of the cosine function C(t, A), B ∈ B(E).
Then ∆A+B,A(t) is norm continuous in t ∈ R.

Proof. Note that for all t ≥ 0 and x ∈ E, we have

∆A+B,A(t)x = C(t, A+B)x− C(t,A)x = −
Z t

0
S(t− s,A+B)BC(s,A)xds,
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so

∆A+B,A(t)−∆A+B,A(s) =−
Z s

0
[S(t− r,A+B)− S(s− r,A+B)]BC(r,A)dr

−
Z t

s
S(t− r,A+B)BC(r,A)dr

and the first term on the right converges to 0 in norm as t→ s since S(t, A+B) is
norm continuous. The convergence of the second term to 0 is due to the boundedness
of all operators under the integral.

Combining Theorems 2.1 and 3.1, we have

Theorem 3.2. Let B ∈ B(E) and A generate a cosine function. Then
∆A+B,A(t) is compact for t > 0 if and only if R(λ, A+B)−R(λ, A) is compact
for λ large enough.

We give a sufficient condition under which the compactness of the difference
of two C0-semigroups implies that the perturbating operator is a compact one.

Proposition 3.1. Suppose that the C0-semigroups etA and etB commute and
D(B) ⊆ D(A). Assume also that etB is a C0-group. If Θ(t) := etA − etB is
compact for all t > 0, then A = B +K, where the operator K is compact.

Proof. One can write e−tBΘ(t) = e−tBetA − I, t ∈ R+. By assumption the
operator e−tBetA − I is compact for any t > 0 and, moreover, e−tBetA is a C0-
semigroup with generator A − B. From [1] it follows that operator A − B is
compact.

For cosines with bounded generators, we also have

Proposition 3.2. Let operator B ∈ B(E). Then ∆A,B(t) is compact for t > 0
iff A−B is compact.
Proof. Compactness of ∆A,B(t) for any t > 0 implies (see [15]) that R(µ,A)−

R(µ,B) is compact for some µ. In such a case the operator I − (µ−B)R(µ,A) is
compact. This means that (µ−B)R(µ,A) is Fredholm operator with index 0, i.e.
it has closed range R((µ−B)R(µ,A)) = E. Since µ−B is one to one on E we
get that R(R(µ,A)) = E. By Closed Graph Theorem µ−A is bounded. Since the
operator A is bounded we have k 2

t2

R t
0 S(s,A) ds−Ik→ 0 as t→ 0. Hence operatorR t

0 S(s,A) ds is invertible. If ∆A,B(t) is compact, then B
R t
0 (S(s,B)−S(s,A)) ds

is also compact. Now from

∆A,B(t) = (A−B)
Z t

0
S(s,A) ds−B

Z t

0
(S(s,B)− S(s,A)) ds
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it follows that the difference A−B is a compact operator.
Conversely, if A−B is a compact operator, then A is bounded and

R(λ, A)−R(λ, B) = R(λ, A)(B −A)R(λ, B)

is compact, so the compactness of ∆A,B(t) follows from Theorem 2.1.

In the following example both A and B generate C0-semigroup and cosine
function. The operator etA − etB is compact for all t > 0, but C(t, A) − C(t, B)
is not compact.

Example 3.1. Let E = l1 and {en} be the standard basis for it, i.e. en =
(0, ..., 0, 1, 0, ..., 0, ...), where 1 is in the nth coordinate. Let

Ax :=
∞X
n=1

−n(x, en)en, Bx :=
∞X
n=1

−(n+ n2)(x, en)en,

where x = (x1, x2, ..., xn, ...), (x, en) = xn, kxkl1 =
P∞
i=1 |xi|. Then the C0-

semigroups generated by them are

etAx =
∞X
n=1

e−nt(x, en)en, etBx =
∞X
n=1

e−(n+n
2)t(x, en)en.

And the cosine functions are given by the formula

C(t, A)x =
∞X
n=1

cos(nt) (x, en)en, C(t, B)x =
∞X
n=1

cos(n+ n2)t (x, en)en.

Since e−nt−e−(n+n2)t → 0 as n→∞, the operator etA−etB can be approximated
in norm by a sequence of operators with ranges of finite dimension SN (t)x =PN
n=1

¡
e−nt−e−(n+n2)t¢(x, en)en. So the operator etA−etB is compact for t ≥ 0.

However, C(t, A) − C(t, B) is not compact. Indeed, take t = π/2 and choose
l1 ⊃ {yk} := {(δ2k+1n )}, where δji is the Kronecker delta. Now for n = 2k + 1
one gets nt = kπ + π/2 and (n+ n2)t = 2k2π + 3kπ + π. So we have cos(nt)−
cos((n+n2)t) = ±1, when k can be divided exactly by 2 we choose +; otherwise
choose −. Thus

(C(π/2, A)− C(π/2, B))yk =
³
[cos(nt)− cos(n+ n2)t]δ2k+1n

´
=
³
± δ2k+1n

´
,

which means k[C(π/2, A)−C(π/2, B)](yk−ym)kl1 = 2 for k 6= m. So we cannot
choose convergent subsequence from the sequence {[C(π/2, A) − C(π/2, B)]yk}.
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Also we can see that C(t, A) − C(t, B) is not norm continuous in t. In fact, for
each t > 0, let us define sk = t+ 1

k+k2
. Then sk → t as k →∞ and°°°[C(t, A)−C(t,B)]− [C(sk, A)− C(sk, B)]°°°

B(l1)

=
°°°{[cos(nt)− cos(nsk)]− [cos(n+ n2)t− cos(n+ n2)sk]}∞n=1°°°

l∞

≥ 2
¯̄̄
sin
³k
2
(sk +t)

´
sin
³k
2
(sk−t)

´
− sin

³k+k2
2

(sk+t)
´
sin
³k+k2

2
(sk−t)

´¯̄̄
= 2

¯̄̄
sin
³k
2
(sk + t)

´
sin
³1
2
(1 + k)

´
− sin((k + k2)t+ 1/2)) sin 1

2

¯̄̄
.

It is clear that sin 1
2(1+k) → 0 as k →∞. But sin((k+k2)t+1/2)) does not converge

to 0 as k → ∞ for every t > 0! To prove this suppose contrary to our claim that
sin((k + k2)t+ 1/2))→ 0 as k →∞. Then sin((k + 1 + (k + 1)2)t+ 1/2)→ 0
k →∞. Now, since
sin((k + 1 + (k + 1)2)t+ 1/2) = sin(((k + k2)t+ 1/2) + 2(k + 1)t)

= sin((k + k2)t+ 1/2)) cos(2(k + 1)t) + cos((k + k2)t+ 1/2)) sin(2(k + 1)t),

we obtain that sin(2(k + 1)t) → 0 as k → ∞ because cos((k + k2)t + 1/2) can
not converge to 0 according to the relation sin2 x + cos2 x = 1. Hence sin(2(k +
1+1)t)→ 0 as k →∞. Thus from sin(2(k+1+1)t) = sin(2(k+1)t) cos(2t) +
cos(2(k+1)t) sin(2t) we obtain sin(2t)→ 0 as k →∞. So we have that t = nπ/2
for some n ∈ N. But for such t one finds that sin((k+ k2)t+1/2)) = ± sin(1/2),
which contradicts our assumption of convergence to 0. This means that C(t, A)−
C(t, B) is not norm continuous.

The converse does not happen, we have

Proposition 3.3. Suppose that A and B generate cosine functions C(t, A) and
C(t, B). If C(t, A) − C(t, B) is compact for t > 0, then etA − etB is compact.
Moreover, if C(t, A)−C(t,B) is norm continuous for t > 0, then C(t, A)−C(t,B)
is compact for t > 0 iff etA − etB is compact.

Proof. Since C(t, A)−C(t, B) is compact, it follows from [15] that S(t, A)−
S(t, B) =

R t
0 (C(s,A) − C(s,B))ds is also compact, which implies R(λ, A) −

R(λ, B) is compact by Theorem 2.2. Moreover, since both etA and etB are ana-
lytic, etA − etB is norm continuous, and compactness of etA − etB follows from
Theorem 2.3 of [6]. If, in addition, C(t, A)−C(t, B) is norm continuous, then the
compactness of etA − etB implies that R(λ, A) − R(λ, B) is compact. Now the
compactness of C(t, A)−C(t, B) follows from Theorem 2.1.
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The following extends Proposition 2.7 in [6].

Proposition 3.4. Suppose that D(A) ⊆ D(B), where A generates an analytic
semigroup etA and B is the generator of C0-semigroup etB . If Θ(t) := etA − etB
is compact for t > 0, then Θ(t) is norm continuous for t ≥ 0.

Proof. Since etA is an analytic semigroup, it maps E into D(A), and thus
(λ−A)etA is a bounded operator, and we can write

Θ(h)etA = Θ(h)R(λ, A)(λ−A)etA.

Moreover,

Θ(h)R(λ, A)=

Z h

0

d

ds
(e(h−s)BesA)R(λ, A) ds

= −
Z h

0
e(h−s)B(B −A)R(λ, A)esA ds

→ 0 as h→ 0

since (B −A)R(λ, A) is bounded. Therefore, kΘ(h)etAk→ 0 as h→ 0. One can
write

Θ(t+ h)−Θ(t) = (ehB − I)Θ(t) +Θ(h)etA.
SinceΘ(t) is compact and etB is strongly continuous, we have k(ehB−I)Θ(t)k→ 0
as h→ 0. Thus kΘ(t+ h)−Θ(t)k→ 0 as h→ 0 for every t ≥ 0.
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