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HOW MANY THEOREMS CAN BE DERIVED FROM A VECTOR
FUNCTION � ON UNIQUENESS THEOREMS FOR THE MINIMAL

SURFACE EQUATION

Jenn-Fang Hwang

Abstract. In this survey article we consider equations related to the minimal
surface equation div Tu = 0, where Tu = ∇u√

1+|∇u|2 , ∇u is the gradient of
u, and derive some structural inequalities related to the vector function Tu.
These structural inequalities give rise to striking uniqueness properties of the
solutions.

1. EXISTENCE AND UNIQUENESS THEOREMS FOR BOUNDED DOMAINS

Let Ω ⊂ Rn be a bounded domain, consider the functional

I(u) =

Z
Ω
F (x, u,∇u),(1)

where ∇u is the gradient of u. If u is an extremal function then the Euler-Lagrange
equation is X

i

∂

∂xi

∂F

∂uxi
=
∂F

∂u
,(2)

or
div hFux1 , · · · , Fuxn i =

∂F

∂u
.

More generally, consider the equation in divergence form

divA = B,
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where
A = hA1, · · · , Ani(x, u,∇u), B = B(x, u,∇u).

If F = |∇u|2 = u2x1 + · · ·+ u2xn , then (2) is the Laplace equation
div∇u = ∆u = 0;

if F =
p
1 + |∇u|2, then (1) is the area functional and (2) is the minimal surface

equation (MSE)

divTu = 0,(3)

where

Tu =
∇up

1 + |∇u|2 .(4)

For ∆u = f , mainly two kinds of boundary value problems have been considered:
the Dirichlet problem (

∆u = f in Ω

u = g on ∂Ω
;(5)

and the Neumann problem (
∆u = f in Ω

∇u � ~ν = h on ∂Ω
.(6)

where f is a function defined in Ω, g and h functions defined on ∂Ω, and ~ν is the
outward unit normal vector on ∂Ω.
Similarly, for div Tu = f there are also two kinds of boundary value problems:

the Dirichlet problem (
divTu = f in Ω

u = g on ∂Ω
;(7)

and the capillary problem (
divTu = f in Ω

Tu � ~ν = cos γ on ∂Ω
.(8)

where 0 ≤ γ ≤ π is a function defined on ∂Ω, in capillary theory it is the contact
angel between the liquid surface (the graph generated by a solution u) and the fixed
boundary, see pictures in [22].
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For the existence, it is well known that if the boundary ∂Ω is not too pathological
bad, then (5) always has a solution if f = 0 and g ∈ C0(∂Ω). Roughly speaking,
if F ∼= |∇u|β as |∇u|→∞, where β > 1 is a constant, then for smooth boundary
∂Ω, the Dirichlet problem(

divhFux1 , · · ·Fuxn i = 0 in Ω

u = g on ∂Ω
(9)

always has a solution. The assumption that β > 1 guarantees that (9) is a uniformly
elliptic equation. See [25], Theorem 15.11 on page 381 for detail.
But if F =

p
1 + |∇u|2, β = 1, then (7) is no longer uniformly elliptic.

Consider the Dirichlet problem(
divTu = 0 in Ω

u = g on ∂Ω
(10)

An interesting problem is: does there exist a sufficiently general existence theorem
for the Dirichlet problem (10)? Here sufficiently general means that for any g ∈
C0(∂Ω), there is a solution for (10).
It turns out that the geometric property of the domain Ω itself holds the key. In

1965, Finn (see [18] and [21]) proved that for the case n = 2, (10) is solvable for
any g ∈ C0(∂Ω) if and only if Ω is convex.
For the case n ≥ 3, (10) is solvable for any g ∈ C0(∂Ω) if and only if ∂Ω has

non-negative mean curvature (respect to the inner normal direction), see Theorem
16.8 on page 407 of [25]. Many contributed to the solvability of (10), among them
are Jenkins, Serrin, and Bakel�man, see [39], [58], [2], and [3].
The study for non-existence of solutions of (10) for non-convex domains was

initiated by Bernstein in 1912 [5]. Since then many mathematicians made contri-
butions to this study (for a detailed discussion of this question, see [51]), until Finn
proved that for Ω ⊂ R2, convex is the necessary and sufficient condition for (10)
to have a solution for any g ∈ C0(∂Ω).
To study the non-existence phenomenon, we first consider a uniqueness theorem.

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain, ∂Ω = Γ1∪Γ2, Γ1∩Γ2 = ∅,
Γ2 smooth. Suppose that u, v ∈ C2(Ω) ∩ C0(Ω̄) and Tu, Tv ∈ C0(Ω ∪ Γ2). If

divTu ≥ divTu in Ω

u ≤ v on ∂Γ1

Tu � ~ν ≤ Tu � ~ν on ∂Γ2

(11)

then u ≤ v in Ω unless Γ1 = ∅, in that case u ≡ v+ constant.
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Proof. Let Ω0 = {x ∈ Ω| u− v > 0} 6= ∅, thenZ
∂Ω0
(u− v)(Tu− Tv) � ~ν =

Z
Ω0
div[(u− v)(Tu− Tv)]

=

Z
Ω0
(∇u−∇v) � (Tu− Tv) + (u− v)(divTu− divTv).

(12)

On ∂Ω0 ∩ (Ω ∪ Γ1), u = v, on ∂Ω0 ∩ Γ2, (u− v)(Tu− Tv) � ~ν ≤ 0, soZ
∂Ω0
(u− v)(Tu− Tv) � ~ν ≤ 0.

In Ω0, (u− v)(divTu − divTv) ≥ 0. By (16), (∇u−∇v) � (Tu − Tv) ≥ 0, and
(∇u−∇v) � (Tu− Tv) = 0 if and only if ∇u = ∇v. Therefore, (12) shows thatZ

∂Ω0
(u− v)(Tu− Tv) � ~ν ≥ 0,

hence

(∇u−∇v) � (Tu− Tv) ≡ (u− v)(divTu− divTv) ≡ 0, and ∇u ≡ ∇v

in Ω0. We obtain that either Ω0 = ∅ and u ≤ v or Ω0 = Ω and u− v ≡ constant.

For the general divergence equation divA = B, for simplicity, let us write
Au = A(x, u,∇u) and Av = A(x, v,∇v), we can generalize Theorem 1.1 if
either

(∇u−∇v) � (Au−Av) ≥ 0,

equality holds if and only if ∇u = ∇v;
(u− v)(divAu− divAv) ≥ 0

(13)

or

(∇u−∇v) � (Au−Av) ≥ 0;

(u− v)(divAu− divAv) ≥ 0,

equality holds if and only if u = v.

(14)

For

A = A(x1, · · · , xn, z, p1, · · · , pn), B = B(x1, · · · , xn, z, p1, · · · , pn),

on page 429 of [58], Serrin pointed out that if the (n+ 1)× (n+ 1) matrix∙
DpjA

i(x, z, p) DpjB(x, z, p)
DzA

i(x, z, p) DzB(x, z, p)

¸
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is non-negatively definite, then

(∇u−∇v) � (Au−Av) + (u− v)(B(x, u,∇u)−B(x, v,∇v)) ≥ 0.
There are similar conditions that can guarantee the uniqueness, see for example

[62].
Minimal surface equation has the basic structural inequality:

(∇u−∇v) � (Tu− Tv) ≥ 0,

equality holds if and only if ∇u = ∇v.
(15)

This inequality is equivalently related to ellipticity. The structural inequality (15)
comes from another structural inequality (see page 542 of [51]):

(∇u−∇v) � (Tu− Tv) ≥ |∇u−∇v|2
max

³
(1 + |∇u|2) 32 , (1 + |∇v|2) 32

´ .(16)

Now we can give an example of non-existence. We first define Br = {x2 + y2 <
r2} ⊂ R2 for r > 0.

Theorem 1.2. (Theorem 1 of [21]). Let Ω = B2 − B1 ⊂ R2, if u ∈ C2(Ω)
and Tu ∈ C0(Ω̄) (

divTu = 0 in Ω

u ≥ cosh−1 2 on ∂B2,

then u ≥ 0 on ∂B1.

Proof. Take v = cosh−1 r as a comparison function, note that the graph of v is a
part of a cantenoid. We have divTv = 0, v = cosh−1 2 on ∂B2, v = cosh−1 1 = 0
on ∂B1, and Tv � ~ν = −1 on ∂B1.
Since |Tu| ≤ 1, we have Tu � ~ν ≥ −1. Thus Tu � ~ν ≥ Tv � ~ν on ∂B1. By

Theorem 1.1, u ≥ v in Ω, therefore u ≥ v ≥ 0 on ∂B1.

In Theorem 1.2, we only need to know the behavior of u on ∂B2 (≥ cosh−1 2),
then somehow the behavior of u on ∂B1 is strictly restricted (≥ 0). Hence the
following Dirichlet problem is unsolvable:

divTu = 0 in B2 −B1,
u ≥ cosh−1 2 on ∂B2,

u < 0 on ∂B1.

Because of the non-existence of solutions of some Dirichlet problems for the
minimal surface equation, the study of existence in general is very complicated.
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But if we take a deeper look at the Theorem 1.2, it is really a uniqueness theorem,
we only need know the behavior of u on one component of the boundary, then we
know the behavior of u on another component of the boundary. In other words,
the minimal surface equation has a very strong uniqueness property, therefore, some
Dirichlet problem may has no solution at all.
For uniformly elliptic equation, since any Dirichlet problem has a solution, it is

impossible to find such a strong uniqueness property.
So we may conclude that although uniformly elliptic equations have better ex-

istence property, the minimal surface equation has better uniqueness property. In
the following sections, we will see some uniqueness examples that have no counter-
parts for Laplace equation. This is one of the attractiveness of the minimal surface
equation.

2. REMOVABLE SINGULARITY THEOREM

The first mathematician noticed that the minimal surface equation has much
better uniqueness property than the Laplace equation is Bernstein. In 1915 Bernstein
[6] proved that if u is defined over the whole R2 and satisfies the MSE (3), then
u must be an affine function. On the other hand, Re zn, n > 1, Re ez , are easy
examples of global solutions to the Laplace equation.
It has long been an open problem whether or not Bernstein�s theorem generalizes

to higher dimensions, that is, if u : Rn → R satisfies the MSE, must u be an affine
functions?
In 1962, applying methods of geometric measure theory, Fleming [24] gave a

new proof for the original 2-dimensional Bernstein theorem. Following Fleming�s
idea, Bernstein theorem was proved in the case of n = 3 by de Giorgi [14], for
n = 4 by Almgren [1], and for n = 5, 6, 7 by Simons [59]. Then Bombieri-de
Giorgi-Giusti [8] supplied a non-linear global solution for n = 8.
The next influence of strong uniqueness is the removable singularity theorem of

Bers, [7].

Theorem 2.1. Let u ∈ C0(B̄R−{0})∩C2(BR−{0}), divTu = 0 in BR−{0},
then u has no isolated singularity at the point {0}.

Bers was the first to prove Theorem 2.1 for 2-dimensional minimal surface
equation. It was also obtained independently by Finn. A result of more general type
became Finn�s dissertation in 1951 and was published in [17]. See the Zentralblatt
Math-Review Zbl # 896 35001 on Nirenberg�s article �Lipman Bers and partial
differential equations� in [16].
The original proof of Bers is in complex analysis. Finn in [17] gave a proof

of partial differential equation method. Using ideas of Concus and Finn in [12]
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and Hwang in [37], we can simplify Finn�s proof in [17]. We first establish a
comparison theorem.

Theorem 2.2. Let Ω ⊂ R2 be a bounded domain, p ∈ Ω, u, v ∈ C0(Ω −
{p}) ∩ C2(Ω− {p}), and(

divTu = divTv in Ω− {p},
u = v on ∂Ω,

then u ≡ v in Ω− {p}.

Proof. To avoid that u, v tend to infinity at {p}, let us consider Ω² = Ω−B²(p),
where B²(p) is the ball of small radius ² > 0 and centered at p. By Green�s formulaZ

∂Ω²

tan−1(u− v)(Tu− Tv) � ~ν

=

Z
Ω²

∇ tan−1(u− v) � (Tu− Tv) + tan−1(u− v)(divTu− divTv)

=

Z
Ω²

∇u−∇v
1 + (u− v)2 � (Tu− Tv) ≥ 0.

On ∂Ω² = ∂Ω ∪ ∂B²(p), tan−1(u− v) = 0 on ∂Ω, and¯̄̄̄
¯
Z
∂B²(p)

tan−1(u− v)(Tu− Tv) � ~ν
¯̄̄̄
¯ ≤ 2π²π2 max∂B²(p)

|Tu− Tv|→ 0

as ²→ 0, because of |Tu− Tv| ≤ 2. Letting ²→ 0, we obtain thatZ
Ω−{p}

∇u−∇v
1 + (u− v)2 � (Tu− Tv) = 0.

By (15), ∇u ≡ ∇v in Ω− {p}. Since u = v on ∂Ω, we have u ≡ v in Ω− {p}.

Now it is easy to prove Theorem 2.1. Since BR is convex, the Dirichlet problem(
divTv = 0 in BR,

v = u on ∂BR

has a unique solution v. By Theorem 2.2, u ≡ v in BR− {0}, but v ∈ C2(BR), so
is u.
Theorem 2.1 can be easily generalized to the case of singular set A ⊂ Ω̄ ⊂ Rn

such that Ā has vanishing n− 1 Hausdorff measure.



520 Jenn-Fang Hwang

The first extension for the removability theorem to higher dimensions appeared
in Finn�s 1961 paper [19]. In 1965, De Giorgi and Stampacchia [15] did not notice
the result of [19]. They proved that the singular set has vanishing n− 1 Hausdorff
measure which was not proved in [19]. But as stated in Theorem 2.2, one can
easily generalize Finn�s method to prove the vanishing n − 1 Hausdorff measure
phenomenon.
Also in 1965, Nitsche [53] proved the De Giorgi-Stampacchia theorem in the

case of n = 2 independently.
Note that we only used the structural inequalities (15),

|Tu| ≤ 1(17)

and the help of bounded function tan−1(u−v), these are the three key points of the
proof of the removable singularity theorem. Note that Bernstein in [6] had used the
boundedness of the functions tan−1 ux and tan−1 uy to prove his well-known entire
minimal surface theorem. Here Hwang [37] used the boundedness of tan−1(u− v)
to simplify the proofs in Finn [17] and Concus and Finn [12].
C. C. Chen studies removable singularity theorems for general equations in his

Ph.D thesis, [9]. The bounded function tan−1 also significantly simplifies the proof,
the author suggested the idea to Chen, see page 18 of [9].
Using the structural inequalities (15) and (17), Finn-Hwang [23] and Kurta [43]

independently proved the uniqueness of capillary equation in a gravitational field.

Theorem 2.3. Let Ω ⊂ Rn be an unbounded smooth domain, k be a positive
constant and 0 ≤ γ ≤ π. Let ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, Γ2 smooth. If

divTu = ku in Ω,

u = g ∈ C0(Γ1)
Tu � ~ν = cos γ on Γ2

has a solution, then it is unique.

Proof. We only give proof for the case n = 2, n ≥ 3 is similar. Let v be
another solution. Define Ωr = Ω ∩Br, Γr = ∂Ωr ∩ ∂Br,

g(r) : =

Z
Γr

(u− v)(Tu− Tv) � ~ν

=

Z
∂Ωr

(u− v)(Tu− Tv) � ~ν

=

Z
Ωr

(∇u−∇v) � (Tu− Tv) + (u− v)(divTu− divTv)

=

Z
Ωr

(∇u−∇v) � (Tu− Tv) + k(u− v)2.
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Then

g0(r) =

Z
Γr

(∇u−∇v) � (Tu− Tv) + k(u− v)2

≥ k

Z
Γr

(u− v)2 ≥ k

2πr
(

Z
Γr

|u− v|)2

≥ k

8πr
(

Z
Γr

|u− v||Tu− Tv|)2

≥ k

8πr
g2(r).

Either g ≡ 0, therefore u ≡ v, or there is an r0 such that g(r) ≥ g(r0) > 0 for
r ≥ r0. Then for r > r0

g0

g2
≥ k

8πr
,

integrate the above we obtain

1

g(r0)
− 1

g(r)
=

Z r

r0

g0

g2
≥
Z r

r0

k

8πr
=
k

8π
log

r

r0
→∞

as r→∞, a contradiction.

For general divergence equation divA(x, u,∇u) = ku, assuming the following
two structural inequalities,

(Au−Av) � (∇u−∇v) ≥ 0 equality holds if and only if ∇u = ∇v,(18)

|Au| ≤ constant.(19)

Then we will have the similar theorems, and it is not hard to generalize the above.

3. BUDDHA�S HOLY PALM: COMPARE WITH INFINITE BOUNDARY VALUE

Consider the Scherk�s surface, it is a graph generated by

F (x, y) = log
cos y

cosx
, (x, y) ∈ (−π

2
,
π

2
)× (−π

2
,
π

2
).

Then F approaches ±∞ on the boundary. This is a special example of solutions of
MSE have infinite boundary values. Finn [20] in 1963 proved that

Theorem 3.1. Let Ω ⊂ R2 be a bounded convex domain and ∂Ω contains a
straight line segment Γ, then the Dirichlet problem
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divTu = 0 in Ω,

u = +∞ on Γ

u ∈ C0(∂Ω− Γ).
always has a solution.

For the generalization of this theorem, see [38].
In [52] of 1965, Nitsche pointed out the phenomenon of infinite boundary value

can be used as a good comparison function to prove some uniqueness theorems.
Recall that in the Chinese classical novel �Journey to the West�, Buddha uses
only one single hand to bury the Monkey under the Five Finger Mountain for over
500 years. Here just like Buddha�s holy palm the infinite boundary value controls
everything near Γ. For example, let

Ωα = {y > |x| cot α
2
} ⊂ R2

be a sector domain. Nitsche showed that

Theorem 3.2. Let 0 < α < π and u ∈ C2(Ωα) ∩ C0(Ωα) satisfies(
divTu = 0 in Ωα,

u = 0 on ∂Ωα.

Then u ≡ 0.

Proof. For any a > 0, define Ωα,a = Ωα ∩ {y < a}. Let Γ = ∂Ωα,a ∩ {y = a}
and vα be a solution of the Dirichlet problem

divTu = 0 in Ωα,a

u = +∞ on Γ

u = 0 on ∂Ωα,a − Γ.

Since va ≥ u on ∂Ωα,a, by Theorem 1.1, u ≤ va in Ωα,a.
But lima→∞ va = 0, so u ≤ 0. Similarly, u ≥ 0, hence u ≡ 0.

Note that the use of solutions that are infinite or have infinite normal deriva-
tives on the boundary goes back to Bernstein [4], Heinz [28], and Finn [21]. See
paragraphs after Theorem 5.1.
Nitsche�s 1965 article [52] is a survey article, in which lima→∞ va = 0 is stated

but without a proof.
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Langevin, Levitt, and Rosenberg [45] proved that for 0 < α < 2π, α 6= π,
Theorem 3.2 is also true.
C. C. Lee gave a basic proof of Theorem 3.2 in [46].
Note that when α = π, u = ay is a solution, for any a ∈ R.
The following theorem is an easy corollary:

Theorem 3.3. Let Ω ⊂ Ωα, 0 < α < π, if(
divTu = 0 in Ω,

u ≤ 0 on ∂Ω,

then u ≤ 0 in Ω.

Nitsche conjectured that

Conjecture 3.1. (Nitsche�s Conjecture, [52], page 256) Let Ω ⊂ Ωα, 0 < α <
π, if (

divTu = 0 in Ω

u = f ∈ C0(∂Ω)
has a solution, then it is unique.

Since the zero boundary value implies uniqueness, is it true that continuous
boundary values also imply uniqueness? Such a question comes from the non-
linearity of MSE and has no significance in the linear case.
The same problem of higher dimensional was raised by Massari-Miranda [47].
Nitsche�s conjecture is true if the boundary value f is bounded. This can be

proved by the combination of Theorem 3.3 and the following Theorem 3.4, proved
independently by Miklyukov [49] and Hwang [31].

Theorem 3.4. Let Ω ⊂ R2 be an unbounded domain, Ωr = Ω ∩ Br, Γr =
∂Ωr ∩ ∂Br, r > 0. Let |Γr| be the length of Γr. If

divTu = divTv in Ω,

u = v on ∂Ω,

maxΩr |u− v| = O
ÃsZ R

R0

dr

|Γr|

!

as R→∞, where R0 is a positive constant. Then u ≡ v in Ω.
In 1991 Collin and Krust found a better result independently [11]
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Theorem 3.5. Let Ω and Γr be as in Theorem 3.4, if
(i)divTu = divTv in Ω,

(ii)u = v on ∂Ω,

(iii)maxΩr |u− v| = o
µZ R

R0

dr

|Γr|
¶

as R→∞

then u ≡ v in Ω.
For general unbounded domain in R2, since |Γr| ≤ 2πr, condition (iii) of

Theorem 3.5 becomes

max
Ωr

|u− v| = o(log r) as r →∞.

For the strip since |Γr| ≤ constant, (iii) becomes

max
ΩR

|u− v| = o(R) as R→∞.

The proofs of Theorem 3.4 and 3.5 are based on the structural inequalities (15) and
the following (20) which is independently due to Miklyukov [49], page 265, Hwang
[31], page 342, and Collin and Krust [11], page 452.

(Tu− Tv) � (∇u−∇v) ≥
p
1 + |∇u|2 +p1 + |∇v|2

2
|Tu− Tv|2

≥ |Tu− Tv|2.
(20)

In 1990, Collin [10] gave a counter-example to show that condition (iii) of Theorem
3.5 is best possible.

Theorem 3.6. Let Ω = (0, 1) × R, then there are u, v ∈ C2(Ω) ∩ C0(Ω),
u 6≡ v, but divTu = divTv in Ω, and u = v on ∂Ω. Furthermore, u, v = O(|y|)
as |y|→∞.

Since a modification of Theorem 3.6 can show that for the case Ω = (0, 1) ×
(0,∞) it is still true, Nitsche�s conjecture in general is not true.
Collin and Krust [11] also proved the following theorem:

Theorem 3.7. Let Ω = (0, 1)×R, if
divTu = 0 in Ω,

u(0, y) = ay + b

u(1, y) = cy + d
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where a, b, c, and d are constants, then u is a helicoid or a plane. (Note: The
helicoid is the only ruled minimal surface, see for example, [55].)
By Collin�s counter-example, Theorem 3.5 is not applicable in the proof of

Theorem 3.7, since u = O(|y|). No wonder Collin and Krust used a geometric
method, the study of Gauss map, to prove Theorem 3.7. Using the slightly more
accurate structural inequality (20), Hwang [35] gave a proof of Theorem 3.7 by the
PDE method.

Theorem 3.8. Let Ω ⊂ R2, u, v ∈ C2(Ω) ∩ C0(Ω) and
divTu = divTv in Ω,

u = v on ∂Ω,

maxΩR |u− v| = o
ÃR R

R0

minΓr
p
1 + |∇u|2dr
|Γr|

!
as R→∞

where R0 is a positive constant. Then u ≡ v in Ω.

Applying Theorem 3.8 we can prove Theorem 3.7.
This is a very interesting part of the non-linear problem, that uniqueness of

zero solution does not guarantee that general solution is unique. But, even some
counter-examples show that some kind of methods will not work, somehow it works
anyway. The surprise is everywhere.
We would like to pose an open problem:

Problem 3.1. Let Ω = (0, 1)× (0,∞) and
divTu = divTv = 0 in Ω,

u = v on ∂Ω,

limy→∞
R
Γy
(Tu− Tv) � ~ν1 = 0

where ~ν1 = (0, 1) and Γy = (0, 1)× {y}. Is u ≡ v in Ω?

Modify Collin�s counter-example (Theorem 3.6) and we can construct two solu-
tions u 6≡ v, satisfying divTu = divTv = 0 in Ω = (0, 1)× (0,∞), u = v on ∂Ω.
But u, v do not satisfy limy→∞

R
Γy
(Tu−Tv) �~ν1 = 0. Can we get uniqueness by

adding this condition?

4. FROM Rn TO MANIFOLD

Let (M, h, i) be a complete (non-compact), m-dimensional, m ≥ 2, Riemannian
manifold and, for a fixed reference point o ∈ M , set r(x) = dist(M,h,i)(o, x). Let
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BR and ∂BR denote, respectively, the geodesic ball and sphere of radius R, centered
at o.
We associate to a smooth function u : M → R, its graph Gu : M → M × R,

defined by
Gu : x→ (x, u(x)).

We note that with ( , ) the product metric on M ×R,
Gu : (M,G∗u( , ))→ (M × R, ( , ))

becomes an isometric embedding. Let ∇, div, | | denote the gradient, the divergence
operators and the norm with respect to h, i. Then Gu has mean curvature 1

ma(x)
for some function a ∈ C∞(M) if and only if

div

Ã
∇up

1 + |∇u|2

!
(x) = a(x), x ∈M.

Since graphs in Rn+1 and (M, h, i) × R has similar formula for mean curvature,
Rigoli, Savatori, and Vignati in [57] and Pigola, Rigoli, and Setti in [56] pointed
out that the structural inequality (20) can be applied to manifolds as well and get
some uniqueness theorems.
First, apply the same method as in Theorem 3.8, we can prove

Theorem 4.1. (Theorem 1.7 of [56]). Let Ω ⊂M be an unbounded domain
and let u, v ∈ C2(Ω) ∩ C0(Ω) satisfy
divTu ≥ divTv in Ω

u ≤ v on ∂Ω

maxBr∩Ω(u− v) = o
ÃZ R

R0

min∂BR∩Ω
³√

1+|∇u|2+
√
1+|∇v|2

´
|∂Br∩Ω| dr

!
as R→∞

where R0 is a positive constant. If ∂Ω 6= ∅, we have u ≤ v on Ω. If Ω = M and
u− v is not a constant, then u ≤ v.
Recall that the proofs for Theorem 3.8 and Theorem 4.1 are based on the struc-

tural inequality

(Tu− Tv) � (∇u−∇v) ≥
p
1 + |∇u|2 +p1 + |∇v|2

2
|Tu− Tv|2

≥ |Tu− Tv|2.
(20)

Now for the type equations divAu ≥ divAv, if Au satisfies the following structural
inequalities

(Au−Av) � (∇u−∇v) ≥ constant|Au−Av|2,(21)
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and

(Au−Av) � (∇u−∇v) = 0 if and only if ∇u = ∇v,(22)

then we can get the same result. See Theorem 4 in [35].
Furthermore, for the type equations divAu ≥ 0, if Au satisfies (22) and

Au �∇u ≥ constant|Au|p,(23)

where p > 1 is a constant, then with a little modification of the proof of Theorem
4.1, one can get similar results. Such is the idea in [57].

Remark 4.1. In Theorem 3 of [57], the authors consider the type of equations
div(|∇u|−1Φ(|∇u|)∇u) ≥ 0, and assume that 0 ≤ Φ(t) ≤ Ctδ for some constants
C, δ > 0. Let Au = |∇u|−1Φ(|∇u|)∇u, then

Au �∇u = Φ(|∇u|)|∇u|.

Since t ≥ constantΦ(t)1/δ, we have

Au �∇u ≥ constant(Φ(|∇u|))1+1/δ = constant|Au|1+1/δ.

Hence p = 1 + 1/δ in (23).
The following Lq-comparison result was obtained in [56].

Theorem 4.2. Let Ω ⊂ M be an unbounded domain and let u, v ∈ C2(Ω) ∩
C0(Ω) satisfy (

divTu ≥ divTv in Ω

u ≤ v on ∂Ω.

Assume that for some q > 1,Z
Br∩Ω

|u− v|q = O(r2 log r) as r →∞.

If ∂Ω 6= ∅, then u = v in Ω, otherwise u = v+ constant in M .
Theorem 4.2 can be proved by applying (20). Hence it can also be applied to

the case that ∆u ≥ 0 in Ω. In particular, we can obtain Yau�s well-known Lq
theorem:

Theorem 4.3. ([64]). Let M be a complete Riemannian manifold. Suppose
that u is a positive subharmonic function such that u ∈ Lp(M) with p > 1. Then
u must be a constant.
The following theorem is a result of [56].
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Theorem 4.4. Let Ω ⊂ M be an unbounded domain with boundary ∂Ω. Let
p : (0,+∞) → (0,+∞) be a continuous function such that for some R > 0 and
for each R ≥ R, either one of the following conditions is satisfied:

(i)

exp(D(

Z R

0

p
p(s) ds)2)

|∂BR ∩ Ω| 6∈ L1(0,+∞)

for some constant D > 0;

(ii)

ÃZ 3R
2

R

p
p(s) ds

!2
R log |∂B2R ∩Ω| ≥ h(R) 6∈ L1(R,+∞),

where h : (R,+∞)→ (0,+∞) is continuous and monotonically non-increasing.
Let u, v ∈ C0(Ω) ∩C2(Ω) satisfies(

divTu− divTv ≥ p(r(x)) in Ω

u ≤ v on ∂Ω.

if supΩ(u− v) < +∞, then u ≤ v in Ω.
The proof of Theorem 4.4 is the application of (20) and a variation of some ideas

from Grigor�yan [26] and [27]. Originally, Grigor�yan proved the non-existence of
the non-trivial bounded solutions of the Schrödinger equation ∆u − b(x)u = 0,
b(x) ≥ 0, b(x) 6≡ 0. For the proof of Theorem 4.4, Pigola, Rigoli, and Setti ap-
plied some variations of Grigor�yan�s argument. Furthermore, there still are similar
theorems without the assumption supΩ(u− v) < +∞ in Theorem 4.4, see [13].

5. FROM THE 21 POINT PRINCIPLE TO THE HALF-BOUND PRINCIPLE

In fact, there are two kinds of infinite control for a bounded domain Ω, the first
one is u takes +∞ on a line segment Γ ⊂ ∂Ω, the second is for a subset γ ⊂ ∂Ω,
Tu � ~ν = 1 on γ. In any case, if divTv ≥ divTu in Ω and v ≤ u on ∂Ω− Γ, or
on ∂Ω − γ, we have v ≤ u in Ω. Finn�s non-existence theorem (Theorem 1.2) is
based on the second principle.
One can ask that, is there a bounded domain Ω, Tu � ~ν = 1 on ∂Ω? If exists,

what is the property of the solution u?
It turns out that there are no such domains and solutions for the MSE, but for

any constant H > 0, it is possible to have such domains and solutions. For example,(
divTu = 2 in B1,

Tu � ~ν = 1 on ∂B1 = S
1
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has a solution u(x, y) = −
p
1− x2 − y2, which graph is the lower hemisphere.

In fact, such a solution must be unique up to a constant, we have

Theorem 5.1. (Finn [21]). Let Ω ⊂ R2 be a bounded domain, H > 0. If the
capillary problem (

divTu = H in Ω,

Tu � ~ν = 1 on ∂Ω

has a solution u, then for any v : Ω → R such that divTv = H , it must be that
v ≡ u+ C, where C is a constant.

Note that we do not need boundary value hypothesis on v.

Proof. Z
∂Ω
(Tu− Tv) � ~ν =

Z
Ω
(divTu− divTv) = 0.

Since (Tu− Tv) � ~ν = 1− Tv � ~ν ≥ 0 on ∂Ω, then we know that Tv � ~ν = 1 on
∂Ω. Then by Theorem 1.1, v ≡ u+ C.

If we check the proof a little more carefully, we will see that since u has infinite
normal derivatives on the boundary, hence Tu � ~ν = 1 on the whole ∂Ω. It is so
full just like achieving 21 points in poker game, any more will be blow up. Hence
in Ω divTu = H can have only one solution (up to a constant). Bernstein [4] and
Heinz [28] used the same idea to derive similar results.
Based on this 21 points principle, Finn raised a problem in [21],

Problem 5.1. ([Finn]). Let Ω = (−1, 1)×R and divTu = 1 in Ω. Is the graph
generated by u a regular cylinder?

Note that for such u over a regular cylinder, Tu � ~ν = 1 on ∂Ω.
A.N.Wang [63] and Collin [10] independently gave counter-examples to show

that the answer to this problem is negative.
L. F. Tam in [60] and [61] considered the related problem

Theorem 5.2. Let Ω = (−1, 1)×R, H > 0 and 0 ≤ γ < π
2 be two constants,

and u satisfies (
divTu = H in Ω,

Tu � ~ν = cos γ on ∂Ω.

Then

u = − 1p
1− β2

sµ
1

2 cos γ

¶2
− x2 + βp

1− β2 y + constant,
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where |β| < 1 is a constant.

The original proof of of Theorem 5.2 is based on the geometric measure theory.
Hwang proved a more general theorem in [34],

Theorem 5.3. Let Ω = (−1, 1) × R, Γy = (−1, 1) × {y} and ~ν1 = (0, 1). If
u and v satisfy 

divTu = divTv in Ω,

(Tu− Tv) � ~ν = 0 on ∂Ω,

there is a y0 such thatZ
Γy0

Tu � ~ν1 =
Z
Γy0

Tv � ~ν1,

and for any 0 < ² < 1, |∇u| is uniformly bounded in [−1 + ², 1 − ²] × R, then
v ≡ u+ C, where C is a constant.

Theorem 5.3 implies Theorem 5.2.
The proof of Theorem 5.3 is based on the structural inequalities (15), (17), and

(Tu− Tv) � (∇u−∇v) ≥ |∇u−∇v|2p
1 + (|∇u|+ |∇u−∇v|)2

Ã
1− |∇u|p

1 + |∇u|2

!
.(24)

The estimate in (24) essentially only involves |∇u|. It has nothing to do with |∇v|,
thus if |∇u| is bounded, then

(Tu− Tv) � (∇u−∇v) ≥ C(|∇u|) |∇u−∇v|2p
1 + |∇u−∇v|2 .

This kind of asymmetry also is reflected in (20).

Problem 5.2. Is the hypothesis that for any 0 < ² < 1, |∇u| is uniformly
bounded in [−1 + ², 1− ²]×R in Theorem 5.3 necessary?

6. TWO DIRECTIONS OF GENERALIZATIONS OF PHRAGMÈN-LINDELÖF
THEOREM FOR FIRM AND SOFT DOMAINS

Nitsche�s theorem, Theorem 3.2, has various extensions. Besides the gener-
alization of Langevin-Levitt-Rosenberg in [45], there are two other directions to
generalize, i.e., for the firm and soft domains.
In 1988, Hwang [32] used the infinite boundary values as comparison function

to estimate the interior growth property of solutions of MSE. Let Ω ⊂ {−f(y) <
x < f(y) : y > 0}, where f ∈ C1([0,∞)) is nondecreasing and f(0) ≥ 0. If
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divTu = 0 in Ω, u ≤ g(y) on ∂Ω with g nondecreasing, then the growth property
of u only depends on the values of f and g. This kinds of domain are properly
contained in the halfplane hence we can use the infinite boundary value to control
the growth property, so this kind of estimates are called P-L (Phragmèn-Lindelöf)
theorems for solid domains. Hwang then generalized his result in [33] and [36].

Theorem 6.1. Let Ω ⊂ {|x| < f(y); y > 0} ⊂ R2 be an unbounded domain
and (

divTu = 0 in Ω,

u ≤ 0 on ∂Ω.

If

(1) f = aym, a > 0, m > 1, then u ≤ f(y)hm
µ

x

f(y)

¶
;

(2) f = ay, a > 0, then u ≤ 0;
(3) f = aecy, a > 0, c > 0, then u ≤ √a2e2cy − x2.

Here hm satisfiesµ
1− 1

m

¶
(hm − th0m)(1 + (h0m)2) + h

00
m(h

2
m + t

2) = 0

and hm(±1) = 0, hm(t) > 0 for t ∈ (−1, 1).
If the f increases faster than ey, then the formula will be more complicated, see

Hwang, [33]. Insert

F (x, y) = f(y)hm

µ
x

f(y)

¶
we can get divTF ≤ 0. In [36] Hwang gave an example to show that the estimate
in Theorem 6.1 is optimal.
Instead using infinite boundary value as comparison function, we can also use

the geometric boundary condition Tu � ν = +1 to consider comparison.
We give the proof of (3) of Theorem 6.1. Without loss of generality, assume that

a = c = 1. Let Ω0 = {(x, y) ∈ Ω : u− F > 0}, where F = √e2y − x2. It is easy
to check that divF ≤ 0 in Ω. Let Ωy0 = Ω0 ∩ {y < y0}, Γy0 = ∂Ωy0 ∩ {y = y0},
then Z

Γy

tan−1(u− F )(Tu− TF ) � ~ν =
Z
∂Ωy

tan−1(u− F )(Tu− TF ) � ~ν

=

Z
Ωy

(∇u−∇v)
1 + (u− F )2 � (Tu− TF ) + (u− F )(divTu− divTF ) ≥ 0.
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Direct calculation gives (Tu− TF ) � ~ν ≤ 2/e2y on Γy, henceZ
Γy

tan−1(u− F )(Tu− TF ) � ~ν → 0

as y →∞.
The method works because of Tu � ~ν → 1 on Γy as y → ∞. This is also an

application of Buddha�s holy palm of second type.
There are two generalizations of Theorem 6.1, one is for higher dimension:

Theorem 6.2. (Hsieh-Hwang-Liang [30]). Let Ω ⊂ {|x| < f(y); y > 0} ×
Rn−2 ⊂ Rn be an unbounded domain,(

divTu = 0 in Ω,

u ≤ 0 on ∂Ω.

Then

(1) f = aym, m > 0, a > 0, then

u ≤ f(y)hm
µ

x

f(y)

¶
;

(2) f = ay, a > 0, then u ≤ 0;
(3) f = aecy, a > 0, c > 0, then u ≤ √a2e2cy − x2.

Here hm is the same as in Theorem 6.1.

When f grows faster than ey, we have the same results as stated after Theorem
6.1. Note that the statement and result of Theorem 6.2 is the same as in Theorem
6.1, but since Ωy0 := Ω ∩ {y < y0} is no longer compact, the proof is more
complicated.
Another generalization is for symmetric domain:

Theorem 6.3. (Hsieh [29]) Let f(y) = ym, m > 1 be a constant or f(y) = ey.
Let

Ω ⊂ {(x1, · · · , xd+1, y); |x| =
q
x21 + · · ·+ x2d+1 < f(y); y > 0} ⊂ Rd+2

and (
divTu = 0 in Ω,

u ≤ 0 on ∂Ω.

Then
u(x1, · · · , xd+1, y) ≤ 1

t0
f(y)h

µ |x|
f(y)

t0

¶
,
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where h satisfies

(h− th0)(1 + (h0)2) + µh00(h2 + t2) + λ
t
h0(h− th0) = 0,

h(0) = 1, h0(0) = 1,

λ =
dm

m− 1 , µ =
m

m− 1 ,
for f(y) = ym; λ = d, µ = 1, for f(y) = ey. Finally, t0 > 0 is the first root of
h(t).

We can also generalize Theorem 6.3 to the domains

Ω ⊂ {(x1, · · · , xd+1, y, z1, · · · , zn); |x|

=
q
x21 + · · ·+ x2d+1 < f(y); y > 0} × Rn ⊂ Rn+d+2,

just like in Theorem [6.2].
The above P-L theorems are about domains properly contained in a halfspace

{y > 0}, we call them firm domain. There is another kind of P-L theorems in
which the domains are called soft domains which need not be properly contained in
a halfspace.
Let Ω ⊂ R2, we define the generalized angle of Ω as follows,

β(Ω) = lim inf
r→∞

1

log r

Z
Ω∩(Br−B1)

1

r2
.(25)

It is easy to calculate that β(Ωα) = α.

Definition 6.1. We call a simply connected, unbounded domain Ω ⊂ R2 a
m-domain, m > 0, if and only if ∂Ω has m connected components.

In 1981, Miklyukov [50] proved that

Theorem 6.4. Suppose that Ω ⊂ R2 is a m-domain, m ≥ 1 and(
divTu = 0 in Ω,

u = 0 on ∂Ω.

If β(Ω) < 2, then u ≡ 0 in Ω.

Problem 6.1. Suppose that Ω ⊂ R2, β(Ω) < π and(
divTu = 0 in Ω,

u = 0 on ∂Ω.
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Is it true that u ≡ 0 in Ω?
Combining the uniqueness theorems in this survey, we would like to make a

conjecture:

Conjecture 6.1. Let Ω ⊂ R2 be a simply connected, unbounded domain, ∂Ω
be a smooth, proper, non-compact, complete curve. Suppose that(

divTu = 0 in Ω,

u = 0 on ∂Ω.

and lim|x|→∞ ~ν(x) does not exist, x ∈ ∂Ω, ~ν(x) is the unit outward normal vector
of ∂Ω. Then u ≡ 0 in Ω.

7. POSTSCRIPT

The study of minimal surfaces involves many mathematical research areas.

PDE divTu = 0

⇑
Complex Analysis Geometry

⇐= Minimal Surfaces =⇒
∆MX = ~0 H = 0

⇓
Geometric Measure Theory

Higher Dimensional Bernstein Theorem
Capillary Surface Theory

It is well-known that the structural inequality method is a powerful tool in
the investigation of existence problem, see [25]. During the 50�s to 70�s of the
last century, Robert Finn applied the structural inequality method to the study of
uniequeness. He obtained non-existence theorems and removable singularity theo-
rems by applying (15) and (17). Later development shows that this is a very nice
method.
Roughly speaking, the way of applying structural inequalities to the uniqueness

study falls in the following three categories:

(1) Find new structural inequalities to discover and prove new theorems.
(2) Find new structural inequalities to give new proofs of known theorems.
(3) Generalize the known structural inequalities to apply them to more general

cases.
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These are challenging problems.
But there is no such thing as a universal approach to any certain problem, Finn

himself shifted to the geometric measure theory method in the studying of capillary
surfaces, see [22].
Even for uniqueness problem, the structural inequality method sometimes does

not work well.In 1995 W. H. Huang [34] proved the following:
Let Ω ⊂ R2 be an unbounded domain, let H(x) ≥ H0 > 0 and f = o(log r),

H0 a constant. If the Dirichlet problem(
divTu = H(x) in Ω,

u = f on ∂Ω

has a solution, then it must be unique.
The statement of this result seems similar to Theorem 3.5, in fact the proof used

Theorem 3.5, but the key of the proof is a method of Meeks, see [48].
Z.Jin, K. Lancaster, and J. Stanley established some uniqueness theorems by

applying the strongly singularity elliptic idea of Serrin in [58], see [40], [41], [42],
and [44].
Every method has its own advantages and drawbacks.
Are there more structural inequalities for divTu so we can get more uniqueness

theorems? The answer is yes but so far there are no better results to report. We
should stop here.
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