TAIWANESE JOURNAL OF MATHEMATICS Vol. 6, No. 2, pp. 187-204, June 2002

EXISTENCE OF STRONG SOLUTIONS TO SOME QUASILINEAR ELLIPTIC PROBLEMS ON BOUNDED SMOOTH DOMAINS

Tsang-Hai Kuo and Yeong-Ju Chen

Abstract. We consider the following quasilinear elliptic problems in a bounded smooth domain Z of \mathbb{R}^N , $N \ge 3$:

$$\begin{cases} Lu = \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u = f(x) & \text{in } Z, \\ u = 0 & \text{on } \partial Z, \end{cases}$$

where $f(x) \in L^p(Z)$ and all the coefficients a_{ij}, b_i, c are Carathédory functions. Suppose that $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R}), a_{ij}, \partial a_{ij}/\partial x_i, \partial a_{ij}/\partial r$, $b_i, c \in L^{\infty}(Z \times \mathbb{R}), c \leq 0$ for i, j = 1, ...N and the oscillations of $a_{ij} = a_{ij}(x, r)$ with respect to r are sufficiently small. A global estimate for a solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ is established and the existence of a strong solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ is proved for p > N.

Furthermore, we replace f(x) by $f(x, r, \xi)$ which is defined on $Z \times \mathbb{R} \times \mathbb{R}^N$ and is a *Carathédory* function. Assume that

$$|f(x, r, \xi)| \le C_0 + h(|r|)|\xi|^{\theta}, \qquad 0 \le \theta < 2,$$

where C_0 is a nonnegative constant, h(|r|) is a locally bounded function, and $-c \ge \alpha_0 > 0$ for some constant α_0 . We prove the existence of solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ for the equation $Lu = f(x, u, \nabla u)$.

Received March 3, 2000.

Communicated by S.-B. Hsu.

²⁰⁰⁰ Mathematics Subject Classification: Primary 35D05, 35J25; Secondary 46E35.

Key words and phrases: Quasilinear elliptic problem, strong solution.

Partially supported by the National Science Council of R.O.C. under Project NSC88-2115-M009-012 and NSC89-2115-M009-013.

1. INTRODUCTION

Let Ω be a bounded $C^{1,1}$ domain in \mathbb{R}^N , $N \ge 3$, and L be the following elliptic operator in the general form:

$$Lu = \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u, \qquad x \in \Omega$$

We study the existence of strong solutions to the following problems:

(1.1)
$$\begin{cases} Lu = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $f \in L^p(\Omega)$, and

$$\left\{ \begin{array}{ll} Lu = f(x, u, \nabla u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{array} \right.$$

where $f(x, r, \xi)$ has less than quadratic growth in ξ . All the coefficient functions a_{ij}, b_i, c and the function $f(x, r, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ are Carathédory functions, that is, the function $x \mapsto f(x, r, \xi)$ is measurable for all $(r, \xi) \in \mathbb{R} \times \mathbb{R}^N$ and the function $(r, \xi) \mapsto f(x, r, \xi)$ is continuous for a.e $x \in \Omega$.

The basic idea is to consider a mapping F defined on $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ by letting u = F(v) be the unique solution in $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ to the linear Dirichlet problem:

(1.2)
$$\begin{cases} L_v u = \sum_{i,j=1}^N a_{ij}(x,v) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^N b_i(x,v) \frac{\partial u}{\partial x_i} + c(x,v)u = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

The unique solvability of problem (1.2) is guaranteed by the linear existence result [1, p. 241] under appropriate coefficient conditions. We notice that F is well-defined for p > N/2. We shall then obtain solutions of problem (1.1) by finding fixed points of F.

The regularity theorem of Agmon-Douglis-Nirenberg [2] asserts that

(1.3)
$$||u||_{W^{2,p}} \le C(||u||_{L^p} + ||L_v u||_{L^p}),$$

where C is a constant dependent on the moduli of continuity of the coefficients $a_{ij}(x, v(x))$ on $\overline{\Omega}$, etc. If $a_{ij}(x, r) = a_{ij}(x)$, then the constant C in (1.3) is independent of v and by [1, p. 243], there exists a constant C independent of v such that

(1.4)
$$||u||_{W^{2,p}} \le C ||L_v u||_{L^p} = C ||f||_{L^p}.$$

According to the uniqueness of problem (1.2), F is a continuous mapping in the topology of $W^{1,p}(\Omega)$ (Lemma 2.2.1). From (1.4), $||u||_{W^{2,p}} \leq K$ for some constant K > 0. Let

$$\mathcal{K} = \{ v \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) | \quad \|v\|_{W^{2,p}(\Omega)} \le K \}.$$

By the Sobolev imbedding theorem, \mathcal{K} is a compact convex set in $W^{1,p}(\Omega)$. Applying the Schauder fixed point theorem, we then obtain a solution to problem (1.1).

In the general case $a_{ij} = a_{ij}(x, r)$, the essence of our consideration is to establish estimate (1.3) for which the constant C is independent of v. If $\Omega = B$ is a ball in \mathbb{R}^N , it has been shown in [3, Proposition 3.1.2] that

(1.5)
$$||u||_{W^{2,p}(B)} \le C(||u||_{L^p(B)} + ||L_v u||_{L^p(B)}),$$

where C is independent of v. In Section 2, we intend to transform the coordinates in a bounded smooth domain Z into a ball B. By imposing stronger conditions on $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$ so that the oscillations with respect to r are sufficiently small, we have the same estimate of (1.5) in Proposition 2.1.1. Together with the maximum principle of A. D. Aleksandrove [1, p. 220],

$$\sup_{Z} |u| \le C ||f||_{L^N(Z)},$$

where C is a nonnegative constant, we show that u is $W^{2,p}(Z)$ bounded. By the same argument as above, the existence of strong solutions to problem (1.1) is proved in Proposition 2.2.2.

Based on the preceding results, in Section **3**, we further study the existence of strong solutions to the following quasilinear elliptic problem:

(1.6)
$$\begin{cases} Lu = f(x, u, \nabla u) & \text{in } Z, \\ u = 0 & \text{on } \partial Z. \end{cases}$$

Suppose that

 $-c \ge \alpha_0 > 0$, for some constant α_0 ,

and $f(x, r, \xi)$ is a Carathédory function which satisfies

$$|f(x, r, \xi)| \le C_0 + h(|r|)|\xi|^{\theta},$$

where C_0 is a nonnegative constant, h is a locally bounded function and $0 \le \theta < 2$. Then problem (1.6) has a strong solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ provided that the oscillations of a_{ij} with respect to r are sufficiently small. The result will be shown in Theorem **3.1**. To prove the theorem, we consider the approximation of problem (1.6). Denote the corresponding solutions by (u_n) (derived in Lemma 3.2). We first obtain a L^{∞} bound of subsequence of (u_n) (Lemma 3.3), still relabeled as (u_n) , and then establish a $W^{2,p}$ bound of (u_n) (Lemma 3.4). Finally, we pass the limit to verify that the limit u of (u_n) is a $W^{2,p}(Z) \cap W_0^{1,p}(Z)$ solution of problem (1.6).

The following notations are used in this paper. We denote by Ω , $\partial\Omega$, B, Z, and ∇u the open set in \mathbb{R}^N , the boundary of Ω , the ball in \mathbb{R}^N , the bounded smooth domain in \mathbb{R}^N , and the gradient of u, respectively. We define $C^{k,\alpha}(\overline{\Omega})$ to be the space of functions in $C^k(\overline{\Omega})$ consisting of function whose kth order partial derivatives are uniformly Hölder continuous with exponent α in Ω , $0 < \alpha \leq 1$, and C_0^{∞} to be the space of functions in $C^{\infty}(\Omega)$ with compact support in Ω . Let $W^{m,p}(\Omega):=\{u \in L^P(\Omega) \mid \text{weak derivatives } D^{\alpha}u \in L^P(\Omega) \text{ for all } |\alpha| \leq m\}$ and $W_0^{m,p}$ be the closure of $C_0^{\infty}(\Omega)$ in $W^{m,p}(\Omega)$. We denote by $D^2u = [D_{ij}u]$ the Hessian matrix of second derivatives $D_{ij}u (=\partial^2 u/\partial x_i\partial x_j), i, j = 1, 2, ..., N$.

2. THE EXISTENCE OF STRONG SOLUTIONS IN BOUNDED SMOOTH DOMAINS

Let Z be a bounded domain in \mathbb{R}^N which is $C^{1,1}$ diffeomorphic to a ball B in \mathbb{R}^N , ψ be a $C^{1,1}$ diffeomorphism from \overline{Z} onto a ball \overline{B} in \mathbb{R}^N and L be a second-order elliptic operator of the following form:

(2.0)
$$Lu = \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u \qquad x \in \mathbb{Z}.$$

In this section, we consider the Dirichlet problem for Lu = f(x) with $f \in L^p(Z)$. A global $W^{2,p}$ estimate for $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ is also established and is used to prove the existence of a strong solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$.

2.1. Global Estimate

An operator L in (2.0) is said to be uniformly elliptic in Ω if there exists a constant $\lambda > 0$ such that

(2.1.1)
$$\sum_{i,j=1}^{N} a_{ij}(x,r)\xi_i\xi_j \ge \lambda |\xi|^2 \quad \text{for } (r,\xi) \in \mathbb{R} \times \mathbb{R}^N \text{ and } a.e. \ x \in \Omega.$$

For a fixed point $x \in \mathbb{R}^N$, we denote by osc $a_{ij}(x, r)$ the oscillation of a_{ij} with respect to r in \mathbb{R} , that is, osc $a_{ij}(x, r) = \sup\{|a_{ij}(x, r_1) - a_{ij}(x, r_2)| |r_1, r_2 \in \mathbb{R}\}$, and let

$$\operatorname{osc} a(x,r) = \max_{1 \le i,j \le N} \operatorname{osc} a_{ij}(x,r).$$

For $v \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$, let

$$L_{v}u = \sum_{i,j=1}^{N} a_{ij}(x,v) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + \sum_{i=1}^{N} b_{i}(x,v) \frac{\partial u}{\partial x_{i}} + c(x,v)u.$$

Recall the Marcinkiewicz Interpolation and Calderon-Zygmund theorems. The L^p estimate for a solution $u \in W_0^{2,p}(\Omega)$ of Poisson's equation in a domain Ω [1, p. 235] is given by

(2.1.2)
$$||D^2u||_{L^p(\Omega)} \le K ||\Delta u||_{L^p(\Omega)},$$

where K = K(N, P) is a nonnegative constant. Notice that if Ω is a unit ball B, the global estimate of the $W^{2,p}(B)$ norm on u is given by [3, Proposition 3.1.2]

$$(2.1.3) ||u||_{W^{2,p}(B)} \le C(||u||_{L^{p}(B)} + ||L_{v}u||_{L^{p}(B)}),$$

where C is a constant (independent of v) dependent on $N, P, \lambda, \Lambda, \partial B$, B and the moduli of continuity of the coefficients $a_{ij}(x, r)$ with respect to x on \overline{B} , $|a_{ij}|, |b_i|, |c| \leq \Lambda$ and osc $a(x, r) < \lambda/4K \ \forall x \in B$, osc $a(x, r) < \lambda/8N^2K \ \forall x \in$ ∂B , K is a constant by (2.1.2). We start to establish a similar $W^{2,p}(Z)$ estimate as (2.1.3) for a bounded smooth domain Z of \mathbb{R}^N . A global $W^{2,p}(Z)$ estimate can be derived by using the diffeomorphism to transform the coordinates to B and then applying the $W^{2,p}(B)$ estimate. Therefore, we have the following proposition.

Proposition 2.1.1. Let Z be a bounded smooth domain in \mathbb{R}^N and the coefficients of L satisfies

$$(2.1.4) a_{ij} \in C^{0,1}(\bar{Z} \times \mathbb{R}), \ b_i, c \in L^{\infty}(Z \times \mathbb{R}), \ |a_{ij}|, \ |b_i|, \ |c| \le \Lambda,$$

where Λ is a positive constant, i, j = 1, ..., N. Assume that there exists a $C^{1,1}$ diffeomorphism ψ from \overline{Z} onto unit ball \overline{B} in \mathbb{R}^N , $\psi(\partial Z) = \partial B$,

$$G = \begin{bmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_N}{\partial x_1} & \cdots & \frac{\partial \psi_N}{\partial x_N} \end{bmatrix},$$

(2.1.5)
$$\operatorname{osc} a(x,r) \leq \frac{\lambda}{4(\frac{\beta}{\alpha})K} \quad \forall x \in \mathbb{Z},$$

(2.1.6)
$$\operatorname{osc} a(x,r) \leq \frac{\lambda}{8N^2(\frac{\beta}{\alpha})K} \quad \forall x \in \partial Z,$$

where

(2.17)
$$\xi(GG^T)\xi^T \ge \alpha |\xi|^2 \quad for \ some \ constant \ \alpha > 0 \ ([4, P.539]),$$

$$\beta = \max_{x \in \overline{Z}, 1 \le i, j \le N} \sum_{r,s}^{N} \left| \frac{\partial \psi_i(x)}{\partial x_r} \frac{\partial \psi_j(x)}{\partial x_s} \right| > 0, \text{ and } K \text{ is a constant by (2.1.2)}.$$

Then if $u \in W^{2,p}(Z) \cap W^{1,p}_0(Z)$ and $L_v u \in L^p(Z)$, with 1 , we have the estimate

$$(2.1.8) ||u||_{W^{2,p}(Z)} \le C(||L_v u||_{L^p(Z)} + ||u||_{L^p(Z)}),$$

where C is constant (independent of v) dependent on $N, P, \lambda, \Lambda, \partial Z, Z, \psi$ and the moduli of continuity of the coefficients $a_{ij}(x, r)$ with respect to x on \overline{Z} .

Proof. $\psi = (\psi_1, ..., \psi_N)$ is $C^{1,1}$ diffeomorphism from \overline{Z} onto \overline{B} . Let $y = \psi(x)$ for $x \in Z$, $\tilde{u}(y) = u(x)$, $\tilde{v}(y) = v(x)$ and $\tilde{L}_{\tilde{v}}\tilde{u}(y) = L_v u(x)$, where

$$\begin{split} \tilde{L}_{\tilde{v}}\tilde{u}(y) &= \sum_{i,j=1}^{N} \tilde{a}_{ij}(y,\tilde{v}(y)) \frac{\partial^2 \tilde{u}}{\partial y_i \partial y_j} + \sum_{i=1}^{N} \tilde{b}_i(y,\tilde{v}(y)) \frac{\partial \tilde{u}}{\partial y_i} + c(y,\tilde{v}(y))\tilde{u} \quad \text{in } B, \\ \\ \tilde{a}_{ij}(y,\tilde{v}(y)) &= \sum_{r,s=1}^{N} \frac{\partial \psi_i}{\partial x_r} \frac{\partial \psi_j}{\partial x_s} a_{rs}(x,u(x)), \end{split}$$

$$\tilde{b_i}(y,\tilde{v}(y)) = \sum_{r,s=1}^N \frac{\partial^2 \psi_i}{\partial x_r \partial x_s} a_{rs} + \sum_{r=1}^N \frac{\partial \psi_i}{\partial x_r} b_r(x,u(x)), \text{ and } \tilde{c}(y,\tilde{v}(y)) = c(x,u(x)).$$

It is readily seen that $\tilde{a}_{ij} \in C^{0,1}(\bar{B} \times \mathbb{R})$, \tilde{b}_i , $\tilde{c} \in L^{\infty}(B \times \mathbb{R})$. For all $\xi = (\xi_1, ..., \xi_N) \in \mathbb{R}^N$, we have

$$\begin{aligned} \mathbf{1^{0}} \quad \sum \tilde{a}\xi_{i}\xi_{j} &= \xi \tilde{a}\xi^{T} \\ &= (\xi G)a(\xi G)^{T} \\ &\geq \lambda |\xi G|^{2} \\ &= \lambda (\xi G)(\xi G)^{T} \\ &= \lambda \xi G G^{T}\xi^{T} \\ &\geq \lambda \alpha |\xi|^{2} = \tilde{\lambda} |\xi|^{2} \quad by \ (2.1.7), \ where \ \tilde{\lambda} &= \alpha \lambda, \end{aligned}$$

$$\begin{aligned} \mathbf{2^{0}} \quad y \in B: \quad & \text{osc } \tilde{a}(y,r) = \max_{1 \leq i,j \leq N} \text{ osc } \tilde{a}_{ij}(y,r) \\ & \leq \max_{1 \leq i,j \leq N} \sum_{r,s} \left| \frac{\partial \psi_{i}(x)}{\partial x_{r}} \frac{\partial \psi_{j}(x)}{\partial x_{s}} \right| \text{ osc } a_{rs}(x,r) \\ & \leq \beta \frac{\lambda}{4(\frac{\beta}{\alpha})K} = \frac{\alpha\lambda}{4K} = \frac{\tilde{\lambda}}{4K} \quad \text{by (2.1.5),} \\ & y \in \partial B: \quad & \text{osc } \tilde{a}(y,r) \leq \frac{\tilde{\lambda}}{8N^{2}K} \quad & \text{by (2.1.6),} \end{aligned}$$

Solutions to Quasilinear Elliptic Problems

$$\begin{aligned} \mathbf{3^{0}} \quad |\tilde{a}_{ij}| &\leq \beta \Lambda \quad \forall i, j, \ |\tilde{c}| \leq \Lambda, \\ |\tilde{b}_{i}| &= \big| \sum_{r,s=1}^{N} \frac{\partial^{2} \psi_{i}}{\partial x_{r} \partial x_{s}} a_{rs} + \sum_{r=1}^{N} \frac{\partial \psi_{i}}{\partial x_{r}} b_{r}(x, u(x)) \big| \\ &\leq \beta_{1} \Lambda \quad \forall i, \end{aligned}$$

where

(2.19)
$$\max_{x \in \overline{Z}, 1 \le i \le N} \Big| \sum_{r,s}^{N} \frac{\partial^2 \psi_i}{\partial x_r \partial x_s} \Big| + \Big| \sum_{r,s}^{N} \frac{\partial \psi_i}{\partial x_r} \Big| = \beta_1 \text{ for a constant } \beta_1 > 0.$$

Hence we get $|\tilde{a}_{ij}|, |\tilde{b}_i|, |\tilde{c}| \leq \tilde{\Lambda} = \max\{1, \beta_1, \beta\}\Lambda$, osc $\tilde{a}(y, r) \leq \frac{\tilde{\lambda}}{4K} \forall y \in B$ and osc $\tilde{a}(y, r) \leq \frac{\tilde{\lambda}}{8N^2K} \forall y \in \partial B$. Since the coefficient of \tilde{L} satisfies the assumption of [3, Prop. 3.1.2], we have the global estimate of $W^{2,p}$ on \tilde{u} by (2.1.3),

$$\|\tilde{u}\|_{W^{2,p}(B)} \le C(\|\tilde{u}\|_{L^{p}(B)} + \|\tilde{L}_{\tilde{v}}\tilde{u}\|_{L^{p}(B)}),$$

where $C = C(N, p, \tilde{\lambda}, \tilde{\Lambda}, \psi)$ and C is independent of v. Since G is a nonsingular bounded operator for all $x \in \overline{Z}$, we have

$$\begin{split} \int_{B} |\tilde{u}(y)|^{p} dy &= \int_{Z} |u(x)|^{p} |J\psi(x)| dx \\ &\leq \max_{x \in \bar{Z}} |\det G| \int_{Z} |u(x)|^{p} dx, \end{split}$$

where $J\psi(x) = \det G$, where implies that $\|\tilde{u}\|_{L^p(B)} \leq \sigma \|u\|_{L^p(Z)}$, where $\sigma = (\max_{x \in \overline{Z}} |\det G|)^{1/p} > 0$. Similarly, we obtain

$$\begin{split} \|L_{\tilde{v}}\tilde{u}\|_{L^{P}(B)} &\leq \sigma \|L_{v}u\|_{L^{P}(Z)},\\ \int_{Z} |u(x)|^{p} dx &= \int_{B} |\tilde{u}(y)|^{p} |J\psi^{-1}(y)| dy\\ &\leq \max_{y \in \bar{B}} |J\psi^{-1}(y)| \int_{B} |\tilde{u}(u)|^{p} dy \end{split}$$

implies that $||u||_{L^{p}(Z)} \leq \rho ||\tilde{u}||_{L^{p}(B)}$, where $\rho = (\min_{x \in \overline{Z}} |\det G|)^{-1/p} > 0$,

$$\begin{split} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(Z)} &= \left\| \sum_r^N \frac{\partial \tilde{u}}{\partial y_r} \frac{\partial y_r}{\partial x_i} \right\|_{L^p(Z)} \\ &\leq \left(\int_Z \left| \frac{\partial \tilde{u}(\psi(x))}{\partial y_1} \frac{\partial y_1}{\partial x_i} \right|^p dx \right)^{\frac{1}{p}} + \ldots + \left(\int_Z \left| \frac{\partial \tilde{u}(\psi(x))}{\partial y_N} \frac{\partial y_N}{\partial x_i} \right|^p dx \right)^{\frac{1}{p}} \\ &\leq \max_{x \in \bar{Z}, 1 \leq r \leq N} \left| \frac{\partial y_r}{\partial x_i} \right| \left[\left(\int_Z \left| \frac{\partial \tilde{u}(\psi(x))}{\partial y_1} \right|^p dx \right)^{\frac{1}{p}} + \ldots + \left(\int_Z \left| \frac{\partial \tilde{u}(\psi(x))}{\partial y_N} \right|^p dx \right)^{\frac{1}{p}} \right] \\ &\leq \max_{x \in \bar{Z}, 1 \leq r \leq N} \left| \frac{\partial y_r}{\partial x_i} \right| \left[\left(\int_B \left| \frac{\partial \tilde{u}(y)}{\partial y_1} \right|^p \right] J \psi^{-1}(y) |dy|^{\frac{1}{p}} + \ldots + \left(\int_Z \left| \frac{\partial \tilde{u}(y)}{\partial y_N} \right|^p \right] J \psi^{-1}(y) |dy|^{\frac{1}{p}} \right] \\ &\leq \max_{x \in \bar{Z}, 1 \leq r \leq N} \left| \frac{\partial y_r}{\partial x_i} \right| \rho \sum_r^N \left\| \frac{\partial \tilde{u}}{\partial y_r} \right\|_{L^p(B)} \\ &\leq \beta_1 \rho \sum_r^N \left\| \frac{\partial \tilde{u}}{\partial y_r} \right\|_{L^p(B)} \quad \text{by (2.1.9),} \end{split}$$

which implies that

$$\left\|\frac{\partial u}{\partial x_i}\right\|_{L^p(Z)} \le \beta_1 \rho \sum_r^N \left\|\frac{\partial \tilde{u}}{\partial y_r}\right\|_{L^p(B)}$$

for all i, and

$$\begin{split} \left\| \frac{\partial^2 u}{\partial x_i \partial x_j} \right\|_{L^p(Z)} &= \left\| \sum_{r,s}^N \frac{\partial^2 \tilde{u}}{\partial y_r \partial y_s} \frac{\partial y_r}{\partial x_i} \frac{\partial y_s}{\partial x_j} + \sum_r^N \frac{\partial \tilde{u}}{\partial y_r} \frac{\partial^2 y_r}{\partial x_i \partial x_j} \right\|_{L^p(Z)} \\ &\leq \left\| \sum_{r,s}^N \frac{\partial^2 \tilde{u}}{\partial y_r \partial y_s} \frac{\partial y_r}{\partial x_i} \frac{\partial y_s}{\partial x_j} \right\|_{L^p(Z)} + \left\| \sum_r^N \frac{\partial \tilde{u}}{\partial y_r} \frac{\partial^2 y_r}{\partial x_i \partial x_j} \right\|_{L^p(Z)} \\ &\leq \max_{x \in \bar{Z}, 1 \le r, s \le N} \left| \frac{\partial y_r}{\partial x_i} \frac{\partial y_s}{\partial x_j} \right| \sum_{r,s}^N \left\| \frac{\partial^2 \tilde{u}}{\partial y_r \partial y_s} \right\|_{L^p(Z)} \\ &+ \max_{x \in \bar{Z}, 1 \le r \le N} \left| \frac{\partial^2 y_r}{\partial x_i \partial x_j} \right| \sum_{r,s}^N \left\| \frac{\partial \tilde{u}}{\partial y_r} \right\|_{L^p(Z)} \\ &\leq \beta \rho \sum_{r,s}^N \left\| \frac{\partial^2 \tilde{u}}{\partial y_r \partial y_s} \right\|_{L^p(B)} + \beta_1 \rho \sum_{r,s}^N \left\| \frac{\partial \tilde{u}}{\partial y_r} \right\|_{L^p(B)}, \end{split}$$

which implies that

$$\left\|\frac{\partial^2 u}{\partial x_i \partial x_j}\right\|_{L^p(Z)} \le \beta \rho \sum_{r,s}^N \left\|\frac{\partial^2 \tilde{u}}{\partial y_r \partial y_s}\right\|_{L^p(B)} + \beta_1 \rho \sum_{r,s}^N \left\|\frac{\partial \tilde{u}}{\partial y_r}\right\|_{L^p(B)}$$

for all i and j. To summarize, we can obtain that

$$\|u\|_{W^{2,p}(Z)} \le \eta \|\tilde{u}\|_{W^{2,p}(B)},$$

where η is a nonnegative constant dependent of ψ . Thus, returning to our original coordinate Z, we have got our estimates,

$$||u||_{W^{2,p}(Z)} \le C(||u||_{L^{p}(Z)} + ||L_{v}u||_{L^{p}(Z)}),$$

where $C = C(N, p, \lambda, \Lambda, Z, \partial Z, \psi)$.

2.2. Existence Results

The results of the preceding section will now be applied to establish the existence of solutions of the following quasilinear elliptic problem:

(2.2.1)
$$\begin{cases} Lu = \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u = f(x) & \text{in } Z, \\ u = 0 & \text{on } \partial Z. \end{cases}$$

where $f \in L^p(Z)$, $p \ge N$. For the moment, we suppose $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$, a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , c are bounded Carathédory functions, with $c \le 0$. By the existence and uniqueness theorem of the strong solution for the Dirichlet problem [1, p. 241], there exists a unique solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to the equation $L_v u = f(x)$ for each $v \in W_0^{1,p}$. Consider the mapping F which assigns $v \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to the solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ satisfying the following equation

(2.2.2)
$$L_v u = \sum_{i,j=1}^N a_{ij}(x,v) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^N b_i(x,v) \frac{\partial u}{\partial x_i} + c(x,v)u = f(x) \quad x \in \mathbb{Z},$$

i.e., $F : v \in W^{2,p}(Z) \cap W_0^{1,p}(Z) \mapsto F(v) = u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ (F is well-defined provided p > N/2). From the following theorem, we can obtain the L^{∞} estimate for the solution u = F(v) to equation (2.2.2).

Weak Maximum Principle of A. D. Aleksandrov [1, p. 220]: Consider

$$Lu = \sum_{i,j=1}^{N} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u = f(x),$$

where L is elliptic in the domain Ω , and the coefficient matrix $A = [a_{ij}]$ is positive definite everywhere in Ω . For such operators, we will let D denote the determinant of A and set $D^* = D^{1/n}$ so that D^* is the geometric mean of the eigenvalues of A such

that $0 < \omega \leq D^* \leq \gamma$, where ω and γ are the minimum and maximum eigenvalues of A respectively. If $|b|/D^*$, $f/D^* \in L^N(\Omega)$, $c \leq 0$ in Ω , $u \in C^0(\overline{\Omega}) \cap W^{2,N}_{\text{loc}}(\Omega)$, and $Lu \geq f$ in bounded domain Ω , then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+ + C \left\| \frac{f}{D^*} \right\|_{L^N(\Omega)},$$

where C is a constant dependent on N, diam Ω , and $\|b/D^*\|_{L^{N}(\Omega)}$.

For the equation (2.2.2), u is zero on the boundary of Z. Since a_{ij} is bounded, $D^* = D^{1/N}$ is a bounded function and $0 < \lambda \leq D^*$, where λ is an ellipticity constant in (2.1.1). For $p \geq N$, we then have $f \in L^N(Z)$ and

(2.2.3)
$$\sup_{Z} |u| \le C ||f||_{L^{N}(Z)},$$

where C is a constant dependent on N, λ , Λ , and diam Z (the maximum principle is valid for $p \ge N$). With the aid of (2.1.8), we have the following inequality

$$(2.2.4) ||u||_{W^{2,p}} \le C ||f||_{L^p(Z)} for all u = F(v), v \in W^{2,p}(Z) \cap W^{1,p}_0(Z).$$

We proceed to show that there exists a fixed point u of F; u then is a solution of the problem (2.2.1) by the Schauder Fixed Point Theorem. It suffices to show that $F : \mathcal{K} \to \mathcal{K}$ is continuous and \mathcal{K} is a compact convex set in a Banach space. We have the following lemma.

Lemma 2.2.1. Let $p \ge N$. Under the hypotheses of Proposition 2.1.1, the mapping $F : W^{2,p}(Z) \cap W^{1,p}_0(Z) \to W^{2,p}(Z) \cap W^{1,p}_0(Z)$ is continuous in the topology of $W^{1,p}(Z)$.

Proof: If $\{v_n\} \subset W^{2,p}(Z) \cap W_0^{1,p}(Z)$ and $v_n \to v$ in $W^{1,p}(Z)$, then there exists a subsequence, denoted by v_n , such that $v_n \to v$ a.e., and $\nabla v_n \to \nabla v$ a.e. Let $u_n = F(v_n)$ and u = F(v). We will show that $u_n \to u$ in $W^{1,p}(Z)$. Since $f \in L^p(Z)$, and $p \ge N$, by (2.2.4), $\{u_n\}$ is bounded in $W^{2,p}(Z)$. Also since $W^{2,p}(Z) \hookrightarrow W^{1,p}(Z)$ is a compact imbedding, there exists a subsequence (we relabel as $\{u_n\}$) such that $u_n \to w$ in $W^{1,p}(Z)$ with $w \in W^{1,p}(Z)$, $u_n \to w$ a.e., and $\nabla u_n \to \nabla w$ a.e. We claim that w is a weak solution of the following equation

(2.2.5)
$$\sum_{i,j=1}^{N} a_{ij}(v) \frac{\partial^2 w}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,v) \frac{\partial w}{\partial x_i} + c(x,v)w = f(x).$$

It suffies to show that

(2.2.6)
$$\int_{Z} \sum_{i,j=1}^{N} a_{ij}(v) \frac{\partial w}{\partial x_{j}} \frac{\partial \phi}{\partial x_{i}} + \int_{Z} \sum_{i=1}^{N} \left[\sum_{j=1}^{N} \left(\frac{\partial a_{ji}(v)}{\partial x_{j}} + \frac{\partial a_{ji}(v)}{\partial r} \frac{\partial v}{\partial x_{j}} \right) - b_{i}(v) \right] \frac{\partial w}{\partial x_{i}} \phi + \int_{Z} (-c(x,v))w\phi = \int_{Z} -f\phi \quad \text{for all } \phi \in C_{0}^{\infty}(Z).$$

Let $\phi \in C_0^{\infty}(Z)$. Since $u_n = F(v_n)$, we have

$$\int_{Z} \sum_{i,j=1}^{N} a_{ij}(v_n) \frac{\partial u_n}{\partial x_j} \frac{\partial \phi}{\partial x_i} + \int_{Z} \sum_{i=1}^{N} \left[\sum_{j=1}^{N} \left(\frac{\partial a_{ji}(v_n)}{\partial x_j} + \frac{\partial a_{ji}(v_n)}{\partial r} \frac{\partial v_n}{\partial x_j} \right) - b_i(v_n) \right] \frac{\partial u_n}{\partial x_i} \phi + \int_{Z} (-c(v_n)) u_n \phi = \int_{Z} -f\phi.$$

Since a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , c are bounded Carathédory functions, $u_n \to w$ a.e., $\nabla u_n \to \nabla w$ a.e., by Lebesgue's Dominated Convergence Theorem we have

$$\int_{Z} \sum_{i,j=1}^{N} a_{ij}(v_n) \frac{\partial u_n}{\partial x_j} \frac{\partial \phi}{\partial x_i} + \int_{Z} \sum_{i=1}^{N} \left[\sum_{j=1}^{N} \left(\frac{\partial a_{ji}(v_n)}{\partial x_j} + \frac{\partial a_{ji}(v_n)}{\partial r} \frac{\partial v_n}{\partial x_j} \right) - b_i(v_n) \right] \frac{\partial u_n}{\partial x_i} \phi + \int_{Z} (-c(v)) w \phi = \int_{Z} (-f) \phi \quad \text{for all } \phi \in C_0^{\infty}(Z).$$

Hence (2.2.5) holds. It follows from the uniqueness of the solution to equation (2.2.2) that we have u = w and $u_n \to u$ in $W^{1,p}(Z)$. Therefore, the proof is completed.

Proposition 2.2.2. Let Z be a bounded smooth domain in \mathbb{R}^N satisfying the assumption of Proposition 2.1.1. Suppose $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$, a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , $c \in L^{\infty}(Z \times \mathbb{R})$, $c \leq 0$ with i, j = 1, ...N. Then, for $p \geq N$, there exist a solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to problem (2.2.1).

Proof. Consider u = F(v) for $v \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$. According to (2.2.4), we can obtain a nonnegative constant K, such that

$$||u||_{W^{2,p}(Z)} \le K \text{ for } v \in W^{2,p}(Z) \cap W_0^{1,p}(Z).$$

Let

$$\mathcal{K} = \{ v \in W^{2,p}(Z) \cap W^{1,p}_0(Z) | \quad \|v\|_{W^{2,p}(Z)} \le K \}.$$

Then F is continuous from \mathcal{K} into itself in the topology of $W^{1,p}$ by Lemma 2.2.1. Since \mathcal{K} is bounded in $W^{2,p}(Z)$ and $W^{2,p} \hookrightarrow W^{1,p}$ is a compact imbedding, \mathcal{K} is a precompact set in $W^{1,p}(Z)$. We claim that \mathcal{K} is closed in $W^{1,p}(Z)$. To see this, let $\{u_n\} \subset \mathcal{K}$ be such that $u_n \to u$ in $W^{1,p}(Z)$. Since $\{u_n\}$ is bounded in $W^{2,p}$ and $W^{2,p}$ is a reflexive space, there exists a subsequence weakly convergent to $w \in$ $W^{2,p}$. It can be shown that w = u. With the aid of $\|u\|_{W^{2,p}} \leq \underline{\lim}_n \|u_n\|_{W^{2,p}} \leq K$, we obtain that \mathcal{K} is closed in $W^{1,p}$. Hence \mathcal{K} is a compact and convex set in $W^{1,p}$ which is a Banach space. It follows readily from the Schauder Fixed Point Theorem that there exists a solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ of problem (2.2.1) in \mathcal{K} .

Remark 2.2.3. It follows from the proof of Proposition 2.2.2 that the solutions of equation (2.2.1) are bounded in $W^{2,p}(Z)$.

3. An Application to the Existence of Strong Solutions to ome Quasilinear Elliptic Problems

In this section, we consider the following quasilinear elliptic problem:

(3.1)
$$\begin{cases} \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u = f(x,u,\nabla u) & \text{in } Z, \\ u = 0 & \text{on } \partial Z, \end{cases}$$

where Z is a smooth domain in \mathbb{R}^N , $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$, a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , $c, f(x, r, \xi)$ are Carathéodory functions and $\sum_{i,j=1}^N a_{ij}\xi_i\xi_j \ge \lambda |\xi|^2$ with a nonnegative constant λ . The results of Section **2** are used to prove the following theorem.

Theorem 3.1. Let Z be a bounded smooth domain in \mathbb{R}^N satisfying the assumption of Proposition 2.1.2. Suppose $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$, a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , $c \in L^{\infty}(Z \times \mathbb{R})$ with $i, j = 1, ...N, -c \ge \alpha_0 > 0$ for some constant α_0 and

(3.2)
$$|f(x,r,\xi)| \le C_0 + h(|r|)|\xi|^{\theta} \qquad 0 \le \theta < 2,$$

where C_0 is a nonnegative constant and h(|r|) is a locally bounded function. Then there exists a solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to problem (3.1).

The proof of Theorem 3.1 is done in the following steps:

- (1) Approach equation (3.1) by truncation, and then prove the existence of approximating solutions $\{u_n\}$.
- (2) Establish L^{∞} bound for the subsequence of $\{u_n\}$.
- (3) Establish $W^{2,p}$ bound for the subsequence of $\{u_n\}$.
- (4) Pass the approximating problem to the limit.
- (5) Verify that the limit u of the subsequence of approximating solutions $\{u_n\}$ in $W_0^{1,p}$ belongs to $W^{2,p} \cap W_0^{1,p}$.

Lemma 3.2. Suppose that $f(x, r, \xi)$ has an L^{∞} bound. Then for $1 \leq p < \infty$ there exists a solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to problem (3.1) under the assumption of Theorem 3.1.

Proof: For each $v \in W^{1,p}(Z)$, $f(x, v, \nabla v) \in L^{\infty}(Z) \subset L^{p}(Z)$, the existence and uniqueness theorem [1, p. 241] asserts that there exists a unique $u \in W^{2,p}(Z) \cap W_{0}^{1,p}(Z)$ to the equation

$$L_{v}u = \sum_{i,j=1}^{N} a_{ij}(x,v) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + \sum_{i=1}^{N} b_{i}(x,v) \frac{\partial u}{\partial x_{i}} + c(x,v)u = f(x,v,\nabla v).$$

Moreover, by Proposition 2.1.1, we have the global estimate

$$||u||_{W^{2,p}(Z)} \le C(||u||_{L^p(Z)} + ||f(x, v, \nabla v)||_{L^p(Z)}),$$

with a constant C > 0 (independent of v). Without loss of generality, we assume $p \ge N$. Since $f \in L^{\infty}$, from the Maximum Principle of A. D. Aleksandrov [1, p. 220], we obtain $||u||_{W^{2,p}(Z)} \le M$ for some constant M > 0. Following the same process in subsection 2.2, let T be the map which associates $v \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to the solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ satisfying $L_v u = f(x, v, \nabla v)$. Notice that since $f(x, r, \xi)$ is a bounded Carathédory function, we have $f(x, v_n, \nabla v_n) \to f(x, v, \nabla v)$ in $L^1(Z)$ if $v_n \to v$ in $W^{1,p}$ and $v_n \to v$, $\nabla v_n \to \nabla v$ a.e. By a similar argument as in the proof of Lemma 2.2.1, we can show that $T: W^{2,p}(Z) \cap W_0^{1,p}(Z) \to W^{2,p}(Z) \cap W_0^{1,p}(Z)$ is continuous in the topology $W^{1,p}(Z)$. The existence of the solution $u \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to problem (3.1) then follows from Proposition 2.2.2.

Let's now consider the approximating problem of problem (3.1):

(3.3)
$$\begin{cases} \sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,u) \frac{\partial u}{\partial x_i} + c(x,u)u = f_n(x,u,\nabla u) & \text{in } Z, \\ u = 0 & \text{on } \partial Z, \end{cases}$$

where $f_n(x, r, \xi)$ is the truncation of f by $\pm n$, i.e.,

$$f_n(x, r, \xi) = \begin{cases} n & \text{if } f(x, r, \xi) \ge n, \\ f(x, r, \xi) & \text{if } |f(x, r, \xi)| \le n, \\ -n & \text{if } f(x, r, \xi) \le -n. \end{cases}$$

Clearly, $f_n(x, r, \xi) \in L^{\infty}(Z) \subset L^p(Z)$ for all n. According to Lemma 3.2, for each $1 \leq p < \infty$, there exists a solution $u_n \in W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to the approximating problem (3.3). Without loss of generality, we assume $p > N \geq 3$.

Lemma 3.3. Under the assumption of Theorem 3.1, there exists a subsequence of the approximating solution $\{u_n\}$ to problem (3.1) which is L^{∞} bounded.

Proof: Since $a_{ij} \in C^{0,1}(\overline{Z} \times \mathbb{R})$, the problem in (3.1) can be written in the following divergence form:

(3.4)
$$-\sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} a_{ij}(x,u) \frac{\partial u}{\partial x_j} + \tilde{f}(x,u,\nabla u) = 0,$$

where

$$\tilde{f}(x, u, \nabla u) = \sum_{i=1}^{N} \{ \sum_{j=1}^{N} \left[\frac{\partial a_{ji}(x, u)}{\partial x_j} + \frac{\partial a_{ji}(x, u)}{\partial r} \frac{\partial u}{\partial x_j} \right] - b_i(x, u) \} \frac{\partial u}{\partial x_i} - c(x, u)u + f(x, u, \nabla u).$$

Since a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , $c \in L^{\infty}(Z \times \mathbb{R})$ with i, j = 1, ...N, there exists a constant $\Lambda > 0$ such that a_{ij} , $\partial a_{ij}/\partial x_i$, $\partial a_{ij}/\partial r$, b_i , $c \leq \Lambda$. Thus,

$$\begin{split} &|\sum_{i,j=1}^{N} \left[\frac{\partial a_{ji}(x,u)}{\partial x_{j}}\frac{\partial u}{\partial x_{i}} + \frac{\partial a_{ji}(x,u)}{\partial r}\frac{\partial u}{\partial x_{i}}\frac{\partial u}{\partial x_{j}}\right] - \sum_{i=1}^{N} b_{i}(x,u)\frac{\partial u}{\partial x_{i}} - c(x,u)u| \\ &\leq \frac{\Lambda N}{2}(N + |\nabla u|^{2}) + \Lambda(|\nabla u|^{2}) + \frac{\Lambda}{2}(N + |\nabla u|^{2}) + \Lambda|u| \\ &\leq M|\nabla u|^{2} + \Lambda|u| + C', \end{split}$$

for some nonnegative constants $M = (\Lambda/2)(N + 3/2)$, $C' = (\Lambda N/2)(N + 1)$. Together with the hypothesis of (3.2), we have

$$|\tilde{f}(x,r,\xi)| \le C_0 + h(|r|)(1+|\xi|^2) + M|\xi|^2 + \Lambda|r| + C'$$

$$\le b(|r|)(1+|\xi|^2),$$

where b is an increasing function from \mathbb{R}^+ into \mathbb{R}^+ . Let $\phi = -C_0/\alpha_0$ and $\psi = C_0/\alpha_0$. It's clear that ϕ and ψ are the sub- and supper-solution of problem (3.1), respectively. Thus, it follows from [5, Proposition 3.6] that there is a subsequence of the approximating sequence of solutions $\{u_n\}$ to problem (3.1) (we relabel as (u_n)) with $\phi \leq u_n \leq \psi$ in Z. Hence (u_n) are $L^{\infty}(Z)$ bounded.

Theorem (Interpolation Inequality of Gagliardo-Nirenberg).

Let $\Omega \subset \mathbb{R}^N$ be an open bounded regular set and $u \in L^r \cap W^{2,p}(\Omega)$ with $1 \leq p \leq \infty$ and $1 \leq r \leq \infty$. Then $u \in W^{1,q}(\Omega)$ where q is the harmonic average of p and r, that is 1/q = ((1/2) + (1/p))/2 and

(3.5)
$$\|\nabla u\|_{L^q} \le C \|u\|_{W^{2,p}}^{\frac{1}{2}} \|u\|_{L^r}^{\frac{1}{2}}.$$

In particular $r = \infty$ and then q = 2p. We have $u \in W^{1,2p}(\Omega)$ and

(3.6)
$$\|\nabla u\|_{L^{2p}} \le C \|u\|_{W^{2,p}}^{\frac{1}{2}} \|u\|_{L^{\infty}}^{\frac{1}{2}}$$

Lemma 3.4. Under the assumptions of Theorem 3.1, there exists a subsequence of the approximating solution $\{u_n\}$ in $W^{2,p}(Z) \cap W_0^{1,p}(Z)$ to problem (3.1) which is $W^{2,p}$ bounded.

Proof. By Lemma 3.3, there exists a sequence $\{u_n\}$ which is L^{∞} bounded. Since h(|r|) is locally bounded, we have $|h(u_n)| \leq M$ for some constant M > 0. According to (3.2), we have $|f_n(x, u_n, \nabla u_n)| \leq C_0 + h(|u_n|)|\nabla u_n|^{\theta}$, $0 \leq \theta < 2$. Hence there exists a constant $C_1 > 0$ such that

(3.7)
$$|f_n(x,r,\xi)| \le C_1(1+|\nabla u_n|^{\theta}).$$

Since $\theta < 2$, there exists a constant $C_{\epsilon} > 0$ for all $\epsilon > 0$ such that

(3.8)
$$|\nabla u_n|^{\theta} \le C_{\epsilon} + \epsilon |\nabla u_n|^2.$$

Thus $|f_n(x, u_n, \nabla u_n)| \leq M_1 + \epsilon C_1 |\nabla u_n|^2$ for a constant $M_1 > 0$. With the help of the global estimate (2.1.9), we have

$$\begin{aligned} \|u_n\|_{W^{2,p}(Z)} &\leq C(\|u_n\|_{L^p} + \|f_n(x, u_n, \nabla u_n)\|_{L^p}) \\ &\leq M_2 + \epsilon C_2 \|\nabla u_n\|_{L^{2p}}^2 \end{aligned}$$

for some constant M_2 , $C_2 > 0$. Since $u_n \in L^{\infty}(Z) \cap W^{2,p}(Z)$, from the interpolation of Gagliardo-Nirenberg Theorem, we obtain

$$\begin{aligned} \|u_n\|_{W^{2,p}(Z)} &\leq M_2 + \epsilon C_2 \|u_n\|_{W^{2,p}(Z)} \|u_n\|_{L^{\infty}(Z)} \\ &\leq M_2 + \epsilon C_3 \|u_n\|_{W^{2,p}(Z)}, \end{aligned}$$

where M_2 , C_3 are nonnegative constants. Hence, by choosing $C_3 \epsilon = 1/2$, we obtain $||u_n||_{W^{2,p}(Z)} \leq M_3$ for some constant $M_3 > 0$. Therefore, $\{u_n\}$ are $W^{2,p}$ bounded.

By Lemma 3.4, we get a sequence of approximating solutions to problem (3.1) which is $W^{2,p}$ bounded. It follows from the compactness of the imbedding $W^{2,p} \hookrightarrow W^{1,p}$ that there exists a norm convergent subsequence in $W^{1,p}$. We extract a subsequence, which is denoted again by $\{u_n\}$ such that

$$u_n \to u$$
 a.e., $\nabla u_n \to \nabla u$ a.e., and $u_n \to u$ in $W^{1,p}$.

In what follows, we show that u is a solution of problem (3.1). By passing to the limit, we obtain

$$\int \sum_{i,j=1}^{N} a_{ij}(u_n) \frac{\partial u_n}{\partial x_j} \frac{\partial \phi}{\partial x_i} + \int \sum_{i,j=1}^{N} \left[\frac{\partial a_{ji}(u_n)}{\partial x_j} + \frac{\partial a_{ji}(u_n)}{\partial r} \frac{\partial u_n}{\partial x_j} \right] \frac{\partial u_n}{\partial x_i} \phi$$
$$- \int \sum_{i=1}^{N} b_i(u_n) \frac{\partial u_n}{\partial x_i} \phi - \int c(u_n) u_n \phi = \int -f_n(x, u_n, \nabla u_n) \phi$$
$$\rightarrow \int \sum_{i,j=1}^{N} a_{ij}(u) \frac{\partial u}{\partial x_j} \frac{\partial \phi}{\partial x_i} + \int \sum_{i,j=1}^{N} \left[\frac{\partial a_{ji}(u)}{\partial x_j} + \frac{\partial a_{ji}(u)}{\partial r} \frac{\partial u}{\partial x_j} \right] \frac{\partial u}{\partial x_i} \phi$$
$$- \int \sum_{i=1}^{N} b_i(u) \frac{\partial u}{\partial x_i} \phi - \int c(u) u \phi \quad \forall \phi \in C_0^{\infty}(Z).$$

The next lemma shows that $f_n(x, u_n, \nabla u_n) \to f(x, u, \nabla u)$ in $L^1(Z)$. Therefore, u is a $W^{1,p}(Z)$ solution to the problem (3.1).

Theorem (Vitali Convergence Theorem).

Let $1 \le p \le \infty$ and (Ω, Σ, μ) be a measurable space. Let $\{f_n\}$ be a sequence of functions in L^p converging almost everywhere to a function f. Then f is in L^p and $||f_n - f||_p$ converges to zero if and only if

- (1) $\lim_{\mu(E)\to 0} \int_E |f_n|^p d\mu = 0$ uniformly $\forall n$;
- (2) for each $\epsilon > 0$ there exists a set E_{ϵ} such that $\mu(E_{\epsilon}) < \infty$ and $\int_{\Omega E_{\epsilon}} |f_n|^p d\mu < \epsilon$ for n = 1, 2, ...

Lemma 3.5. $f_n(x, u_n, \nabla u_n) \rightarrow f(x, u, \nabla u)$ in $L^1(Z)$.

Proof. Since f is a Carathédory function, $u_n \to u$ a.e., and $\nabla u_n \to \nabla u$ a.e. we have $f_n(x, u_n, \nabla u_n) \to f(x, u, \nabla u)$ a.e. According to (3.7), we have

$$|f_n(x, u_n, \nabla u_n)| \le C_1(1 + |\nabla u_n|^{\theta})$$

 $\le C_1(2 + |\nabla u_n|^2).$

Since $\{u_n\}$ is H^1 bounded with $p > N \ge 3$, $\{f_n\}$ is a sequence of functions in $L^1(Z)$. Now, by Vitali Convergence Theorem, we conclude that $f_n(x, u_n, \nabla u_n) \rightarrow f(x, u, \nabla u)$ in $L^1(Z)$.

Lemma 3.6. Under the assumptions of Theorem 3.1, the limit u of the approximating solutions $\{u_n\}$ to problem (3.1) belongs to $W^{2,p}(Z) \cap W_0^{1,p}(Z)$.

Proof. By Lemma 3.4, there exists a constant M > 0 such that $||u_n||_{W^{2,p}(Z)} \le M$ for all n. Let

$$\mathcal{K} = \{ v \in W^{2,p}(Z) \cap W_0^{1,p}(Z) | \quad \|v\|_{W^{2,p}(Z)} \le M \}.$$

By the same argument as in the proof of Proposition 2.2.2, it follows that \mathcal{K} is closed in $W^{1,p}$. Thus the limit u of (u_n) belongs to $W^{2,p}(Z) \cap W_0^{1,p}(Z)$.

Therefore, the existence of solutions in $W^{2,p}(Z) \cap W_0^{1,p}(Z)$ asserted in Theorem 3.1 now follows readily from Lemmas 3.2-3.6.

Lemma 3.7. If $f(x, r, \xi)$ has a quadratic growth in ξ , that is $\theta = 2$ in (3.2), then there exists an H^1 bound for the approximating solutions $\{u_n\}$ to problem (3.1).

Proof. The differential equation in (3.1) can be written in the following divergence form:

$$-\sum_{i,j=1}^{N}\frac{\partial}{\partial x_{i}}a_{ij}(x,u)\frac{\partial u}{\partial x_{j}}-c(x,u)u=g(x,u,\nabla u),$$

where

$$g(x, u, \nabla u) = -f(x, u, \nabla u) + \sum_{i=1}^{N} b_i(u) \frac{\partial u}{\partial x_i} - \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} - \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial r} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}$$

Since $f(x, r, \xi)$ satisfies (3.2), we have

$$|g(x, r, \xi)| \le C + E(|r|)|\xi|^2,$$

where C is a nonnegative constant and E is a locally bounded function in \mathbb{R}^+ . Following from the proof of [6, Theorem 2.1], the approximating solution $\{u_n\}$ is H^1 bounded.

References

- 1. D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, section edition, New York, Springer-Verlag, 1983.
- S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, *Comm. Pure Appl. Math.* 12 (1959), 623-727.
- Chiung-Chiou Tsai and Tsang-Hai Kuo, On the Existence of Solutions to Some Quasilinear Elliptic Problems, Ph.D Thesis, National Chiao Tung University, Hsinchu, Taiwan, 1997.
- Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1985.
- 5. L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasi-linéaires, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* **11** (1984), 213-235.
- L. Boccardo, F. Murat and J. P. Puel, Existence de solutions failes pour deséqu-ations elliptiques quasi-linéaires à croissance quadratique, in: *Nonlinear Partial Differential Equations and Their Applications*, J. L. Lions and H. Brezis eds., Collège de France Seminar, Vol. IV, Research Notes in Math. 84, Pitman, London, 1983, pp. 19-73.

Tsang-Hai Kuo

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan E-mail: thkuo@math.nctu.edu.tw

Yeong-Ju Chen Hsinchu High School, Hsinchu, Taiwan E-mail: u8622501@cc.nctu.edu.tw