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EXISTENCE OF STRONG SOLUTIONS TO SOME QUASILINEAR

ELLIPTIC PROBLEMS ON BOUNDED SMOOTH DOMAINS

Tsang-Hai Kuo and Yeong-Ju Chen

Abstract. We consider the following quasilinear elliptic problems in a bounded

smooth domain Z of RN , N ≥ 3:




Lu =
N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u = f(x) in Z,

u = 0 on ∂Z,

where f(x) ∈ Lp(Z) and all the coefficients aij , bi, c are Carathédory
functions. Suppose that aij ∈ C0,1(Z̄ × R), aij , ∂aij/∂xi, ∂aij/∂r,
bi, c ∈ L∞(Z × R), c ≤ 0 for i, j = 1, ...N and the oscillations

of aij = aij(x, r) with respect to r are sufficiently small. A global
estimate for a solution u ∈ W 2,p(Z) ∩W 1,p

0 (Z) is established and the
existence of a strong solution u ∈ W 2,p(Z) ∩ W 1,p

0 (Z) is proved for
p > N .

Furthermore, we replace f(x) by f(x, r, ξ) which is defined on
Z × R × RN and is a Carathédory function. Assume that

|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ, 0 ≤ θ < 2,

whereC0 is a nonnegative constant, h(|r|) is a locally bounded function,
and −c ≥ α0 > 0 for some constant α0. We prove the existence of

solution u ∈ W 2,p(Z) ∩W 1,p
0 (Z) for the equation Lu = f(x, u,∇u).
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1. INTRODUCTION

Let Ω be a bounded C1,1 domain in RN , N ≥ 3, and L be the following elliptic
operator in the general form:

Lu =
N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u, x ∈ Ω

We study the existence of strong solutions to the following problems:

{
Lu = f(x) in Ω,
u = 0 on ∂Ω,

(1.1)

where f ∈ Lp(Ω), and
{
Lu = f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

where f(x, r, ξ) has less than quadratic growth in ξ. All the coefficient functions
aij , bi, c and the function f(x, r, ξ) : Ω× R× RN → R are Carathédory functions,
that is, the function x 7→ f(x, r, ξ) is measurable for all (r, ξ) ∈ R × RN and the

function (r, ξ) 7→ f(x, r, ξ) is continuous for a.e x ∈ Ω.
The basic idea is to consider a mapping F defined on W 2,p(Ω) ∩ W 1,p

0 (Ω)
by letting u = F (v) be the unique solution in W 2,p(Ω) ∩W 1,p

0 (Ω) to the linear
Dirichlet problem:





Lvu =
N∑

i,j=1

aij(x, v)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, v)
∂u

∂xi
+ c(x, v)u = f(x) in Ω,

u = 0 on ∂Ω.

(1.2)

The unique solvability of problem (1.2) is guaranteed by the linear existence result

[1, p. 241] under appropriate coefficient conditions. We notice that F is well-

defined for p > N/2. We shall then obtain solutions of problem (1.1) by finding
fixed points of F .

The regularity theorem of Agmon-Douglis-Nirenberg [2] asserts that

‖u‖W 2,p ≤ C(‖u‖Lp + ‖Lvu‖Lp),(1.3)

where C is a constant dependent on the moduli of continuity of the coefficients

aij(x, v(x)) on Ω̄, etc. If aij(x, r) = aij(x), then the constant C in (1.3) is

independent of v and by [1, p. 243], there exists a constant C independent of v
such that

‖u‖W 2,p ≤ C‖Lvu‖Lp = C‖f‖Lp .(1.4)



Solutions to Quasilinear Elliptic Problems 189

According to the uniqueness of problem (1.2), F is a continuous mapping in the

topology of W 1,p(Ω) (Lemma 2.2.1). From (1.4), ‖u‖W 2,p ≤ K for some constant

K > 0. Let

K = {v ∈ W 2,p(Ω)∩W 1,p
0 (Ω)| ‖v‖W 2,p(Ω) ≤ K}.

By the Sobolev imbedding theorem, K is a compact convex set in W 1,p(Ω). Apply-
ing the Schauder fixed point theorem, we then obtain a solution to problem (1.1).

In the general case aij = aij(x, r), the essence of our consideration is to establish
estimate (1.3) for which the constant C is independent of v. If Ω = B is a ball in

RN , it has been shown in [3, Proposition 3.1.2] that

‖u‖W 2,p(B) ≤ C(‖u‖Lp(B) + ‖Lvu‖Lp(B)),(1.5)

where C is independent of v. In Section 2, we intend to transform the coordinates
in a bounded smooth domain Z into a ball B. By imposing stronger conditions on

aij ∈ C0,1(Z̄×R) so that the oscillations with respect to r are sufficiently small, we
have the same estimate of (1.5) in Proposition 2.1.1. Together with the maximum

principle of A. D. Aleksandrove [1, p. 220],

sup
Z

|u| ≤ C‖f‖LN (Z),

where C is a nonnegative constant, we show that u is W 2,p(Z) bounded. By the
same argument as above, the existence of strong solutions to problem (1.1) is proved

in Proposition 2.2.2.

Based on the preceding results, in Section 3, we further study the existence of

strong solutions to the following quasilinear elliptic problem:

{
Lu = f(x, u,∇u) in Z,

u = 0 on ∂Z.
(1.6)

Suppose that

−c ≥ α0 > 0, for some constant α0,

and f(x, r, ξ) is a Carathédory function which satisfies

|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ,

where C0 is a nonnegative constant, h is a locally bounded function and 0 ≤ θ < 2.
Then problem (1.6) has a strong solution u ∈ W 2,p(Z)∩W 1,p

0 (Z) provided that the
oscillations of aij with respect to r are sufficiently small. The result will be shown
in Theorem 3.1. To prove the theorem, we consider the approximation of problem

(1.6). Denote the corresponding solutions by (un) (derived in Lemma 3.2). We first
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obtain a L∞ bound of subsequence of (un) (Lemma 3.3), still relabeled as (un),
and then establish a W 2,p bound of (un) (Lemma 3.4). Finally, we pass the limit to
verify that the limit u of (un) is a W 2,p(Z) ∩W 1,p

0 (Z) solution of problem (1.6).
The following notations are used in this paper. We denote by Ω, ∂Ω, B, Z,

and ∇u the open set in RN , the boundary of Ω, the ball in RN , the bounded

smooth domain in RN , and the gradient of u, respectively. We define Ck,α(Ω̄) to
be the space of functions in Ck(Ω̄) consisting of function whose kth order partial
derivatives are uniformly Hölder continuous with exponent α in Ω, 0 < α ≤ 1,
and C∞

0 to be the space of functions in C∞(Ω) with compact support in Ω. Let
Wm,p(Ω):={u ∈ LP (Ω) | weak derivatives Dαu ∈ LP (Ω) for all |α| ≤ m} and
Wm,p

0 be the closure of C∞
0 (Ω) in Wm,p(Ω). We denote by D2u = [Diju] the

Hessian matrix of second derivatives Diju (= ∂2u/∂xi∂xj), i, j = 1, 2, ...,N .

2. THE EXISTENCE OF STRONG SOLUTIONS IN BOUNDED SMOOTH DOMAINS

Let Z be a bounded domain in RN which is C1,1 diffeomorphic to a ball B

in RN , ψ be a C1,1 diffeomorphism from Z̄ onto a ball B̄ in RN and L be a

second-order elliptic operator of the following form:

Lu =
N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u x ∈ Z.(2.0)

In this section, we consider the Dirichlet problem for Lu = f(x) with f ∈ Lp(Z).
A global W 2,p estimate for u ∈ W 2,p(Z)∩W 1,p

0 (Z) is also established and is used
to prove the existence of a strong solution u ∈ W 2,p(Z)∩W 1,p

0 (Z).

2.1. Global Estimate

An operator L in (2.0) is said to be uniformly elliptic in Ω if there exists a

constant λ > 0 such that
N∑

i,j=1

aij(x, r)ξiξj ≥ λ|ξ|2 for (r, ξ) ∈ R × RN and a.e. x ∈ Ω.(2.1.1)

For a fixed point x ∈ RN , we denote by osc aij(x, r) the oscillation of aij with
respect to r in R, that is, osc aij(x, r) = sup{|aij(x, r1)− aij(x, r2)| |r1, r2 ∈ R},
and let

osc a(x, r) = max
1≤i,j≤N

osc aij(x, r).

For v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), let

Lvu =
N∑

i,j=1

aij(x, v)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, v)
∂u

∂xi
+ c(x, v)u.
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Recall the Marcinkiewicz Interpolation and Calderon-Zygmund theorems. The

Lp estimate for a solution u ∈ W 2,p
0 (Ω) of Poisson’s equation in a domain Ω [1, p.

235] is given by

‖D2u‖Lp(Ω) ≤ K‖∆u‖Lp(Ω),(2.1.2)

where K = K(N,P ) is a nonnegative constant. Notice that if Ω is a unit ball B,
the global estimate of the W 2,p(B) norm on u is given by [3, Proposition 3.1.2]

‖u‖W 2,p(B) ≤ C(‖u‖Lp(B) + ‖Lvu‖LP (B)),(2.1.3)

where C is a constant (independent of v) dependent on N,P, λ,Λ, ∂B, B and

the moduli of continuity of the coefficients aij(x, r) with respect to x on B̄,
|aij |, |bi|, |c| ≤ Λ and osc a(x, r) < λ/4K ∀x ∈ B, osc a(x, r) < λ/8N2K∀x ∈
∂B, K is a constant by (2.1.2). We start to establish a similar W 2,p(Z) estimate
as (2.1.3) for a bounded smooth domain Z of RN . A global W 2,p(Z) estimate can
be derived by using the diffeomorphism to transform the coordinates to B and then
applying the W 2,p(B) estimate. Therefore, we have the following proposition.

Proposition 2.1.1. Let Z be a bounded smooth domain in RN and the coeffi-

cients of L satisfies

aij ∈ C0,1(Z̄ × R), bi, c ∈ L∞(Z × R), |aij |, |bi|, |c| ≤ Λ,(2.1.4)

where Λ is a positive constant, i, j = 1, ..., N . Assume that there exists a C1,1

diffeomorphism ψ from Z̄ onto unit ball B̄ in RN , ψ(∂Z) = ∂B,

G =




∂ψ1

∂x1
· · · ∂ψ1

∂xN

...
. . .

...

∂ψN
∂x1

· · · ∂ψN
∂xN


 ,

osc a(x, r) ≤ λ

4( βα)K
∀x ∈ Z,(2.1.5)

osc a(x, r) ≤ λ

8N2( βα)K
∀x ∈ ∂Z,(2.1.6)

where

ξ(GGT)ξT ≥ α|ξ|2 for some constant α > 0 ([4, P.539]),(2.17)

β = max
x∈Z̄,1≤i,j≤N

N∑

r,s

|∂ψi(x)
∂xr

∂ψj(x)
∂xs

| > 0, and K is a constant by (2.1.2).
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Then if u ∈ W 2,p(Z)∩W 1,p
0 (Z) and Lvu ∈ Lp(Z), with 1 < p <∞, we have the

estimate

‖u‖W 2,p(Z) ≤ C(‖Lvu‖LP (Z) + ‖u‖Lp(Z)),(2.1.8)

where C is constant (independent of v) dependent on N,P, λ,Λ, ∂Z,Z,ψ and the
moduli of continuity of the coefficients aij(x, r) with respect to x on Z̄ .

Proof. ψ = (ψ1, ..., ψN) is C1,1 diffeomorphism from Z̄ onto B̄. Let y = ψ(x)
for x ∈ Z, ũ(y) = u(x), ṽ(y) = v(x) and L̃ṽ ũ(y) = Lvu(x), where

L̃ṽũ(y) =
N∑

i,j=1

ãij(y, ṽ(y))
∂2ũ

∂yi∂yj
+

N∑

i=1

b̃i(y, ṽ(y))
∂ũ

∂yi
+ c(y, ṽ(y))ũ in B,

ãij(y, ṽ(y)) =
N∑

r,s=1

∂ψi
∂xr

∂ψj
∂xs

ars(x, u(x)),

b̃i(y, ṽ(y)) =
N∑

r,s=1

∂2ψi
∂xr∂xs

ars +
N∑

r=1

∂ψi
∂xr

br(x, u(x)), and c̃(y, ṽ(y)) = c(x, u(x)).

It is readily seen that ãij ∈ C0,1(B̄ × R), b̃i, c̃ ∈ L∞(B × R). For all ξ =
(ξ1, ..., ξN) ∈ RN , we have

10
∑

ãξiξj = ξãξT

= (ξG)a(ξG)T

≥ λ|ξG|2

= λ(ξG)(ξG)T

= λξGGT ξT

≥ λα|ξ|2 = λ̃|ξ|2 by (2.1.7), where λ̃ = αλ,

20 y ∈ B : osc ã(y, r)= max
1≤i,j≤N

osc ãij(y, r)

≤ max
1≤i,j≤N

∑

r,s

∣∣∂ψi(x)
∂xr

∂ψj(x)
∂xs

∣∣ osc ars(x, r)

≤ β
λ

4( βα)K
=
αλ

4K
=

λ̃

4K
by (2.1.5),

y ∈ ∂B : osc ã(y, r)≤ λ̃

8N2K
by (2.1.6),
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30 |ãij | ≤ βΛ ∀i, j, |c̃| ≤ Λ,

|b̃i|=
∣∣

N∑

r,s=1

∂2ψi
∂xr∂xs

ars +
N∑

r=1

∂ψi
∂xr

br(x, u(x))
∣∣

≤ β1Λ ∀i,

where

max
x∈Z̄,1≤i≤N

∣∣
N∑

r,s

∂2ψi
∂xr∂xs

∣∣ +
∣∣
N∑

r,s

∂ψi
∂xr

∣∣ = β1 for a constant β1 > 0.(2.19)

Hence we get |ãij |, |b̃i|, |c̃| ≤ Λ̃ = max{1, β1, β}Λ, osc ã(y, r) ≤ λ̃
4K ∀y ∈ B and

osc ã(y, r) ≤ λ̃
8N2K

∀y ∈ ∂B. Since the coefficient of L̃ satisfies the assumption
of [3, Prop. 3.1.2], we have the global estimate of W 2,p on ũ by (2.1.3),

‖ũ‖W 2,p(B) ≤ C(‖ũ‖Lp(B) + ‖L̃ṽ ũ‖LP (B)),

where C = C(N, p, λ̃, Λ̃, ψ) and C is independent of v. Since G is a nonsingular

bounded operator for all x ∈ Z̄, we have
∫

B
|ũ(y)|pdy=

∫

Z
|u(x)|p|Jψ(x)|dx

≤ max
x∈Z̄

|det G|
∫

Z
|u(x)|pdx,

where Jψ(x) = det G, where implies that ‖ũ‖Lp(B) ≤ σ‖u‖Lp(Z), where σ =
(maxx∈Z̄ |det G|)1/p > 0. Similarly, we obtain

‖L̃ṽũ‖LP (B) ≤ σ‖Lvu‖LP (Z),

∫

Z

|u(x)|pdx=
∫

B

|ũ(y)|p|Jψ−1(y)|dy

≤ max
y∈B̄

|Jψ−1(y)|
∫

B
|ũ(u)|pdy

implies that ‖u‖Lp(Z) ≤ ρ‖ũ‖Lp(B), where ρ = (minx∈Z̄ |det G|)−1/p > 0,
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∥∥∥∥
∂u

∂xi

∥∥∥∥
Lp(Z)

=
∥∥∥∥
N∑

r

∂ũ

∂yr

∂yr
∂xi

∥∥∥∥
Lp(Z)

≤ (
∫

Z

|∂ũ(ψ(x))
∂y1

∂y1
∂xi

|pdx)
1
p + ...+ (

∫

Z

|∂ũ(ψ(x))
∂yN

∂yN
∂xi

|pdx)
1
p

≤ max
x∈Z̄,1≤r≤N

|∂yr
∂xi

|[(
∫

Z
|∂ũ(ψ(x))

∂y1
|pdx

) 1
p + ...+ (

∫

Z
|∂ũ(ψ(x))

∂yN
|pdx)

1
p ]

≤ max
x∈Z̄,1≤r≤N

|∂yr
∂xi

|[(
∫

B

|∂ũ(y)
∂y1

|p|Jψ−1(y)|dy)
1
p + ...+ (

∫

Z

|∂ũ(y)
∂yN

|p|Jψ−1(y)|dy)
1
p ]

≤ max
x∈Z̄,1≤r≤N

|∂yr
∂xi

|ρ
N∑

r

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(B)

≤ β1ρ

N∑

r

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(B)

by (2.1.9),

which implies that
∥∥∥∥
∂u

∂xi

∥∥∥∥
Lp(Z)

≤ β1ρ
N∑

r

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(B)

for all i, and

∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥
Lp(Z)

=

∥∥∥∥∥
N∑

r,s

∂2ũ

∂yr∂ys

∂yr
∂xi

∂ys
∂xj

+
N∑

r

∂ũ

∂yr

∂2yr
∂xi∂xj

∥∥∥∥∥
Lp(Z)

≤

∥∥∥∥∥
N∑

r,s

∂2ũ

∂yr∂ys

∂yr
∂xi

∂ys
∂xj

∥∥∥∥∥
Lp(Z)

+

∥∥∥∥∥
N∑

r

∂ũ

∂yr

∂2yr
∂xi∂xj

∥∥∥∥∥
Lp(Z)

≤ max
x∈Z̄,1≤r,s≤N

|∂yr
∂xi

∂ys
∂xj

|
N∑

r,s

∥∥∥∥
∂2ũ

∂yr∂ys

∥∥∥∥
Lp(Z)

+ max
x∈Z̄,1≤r≤N

| ∂
2yr

∂xi∂xj
|
N∑

r,s

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(Z)

≤ βρ

N∑

r,s

∥∥∥∥
∂2ũ

∂yr∂ys

∥∥∥∥
Lp(B)

+ β1ρ

N∑

r,s

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(B)

,

which implies that

∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥
Lp(Z)

≤ βρ
N∑

r,s

∥∥∥∥
∂2ũ

∂yr∂ys

∥∥∥∥
Lp(B)

+ β1ρ
N∑

r,s

∥∥∥∥
∂ũ

∂yr

∥∥∥∥
Lp(B)
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for all i and j. To summarize, we can obtain that

‖u‖W 2,p(Z) ≤ η‖ũ‖W 2,p(B),

where η is a nonnegative constant dependent of ψ. Thus, returning to our original

coordinate Z, we have got our estimates,

‖u‖W 2,p(Z) ≤ C(‖u‖Lp(Z) + ‖Lvu‖LP (Z)),

where C = C(N, p, λ,Λ, Z, ∂Z,ψ).

2.2. Existence Results

The results of the preceding section will now be applied to establish the existence
of solutions of the following quasilinear elliptic problem:





Lu =
N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u = f(x) in Z,

u = 0 on ∂Z.

(2.2.1)

where f ∈ Lp(Z), p ≥ N . For the moment, we suppose aij ∈ C0,1(Z̄ × R),
aij , ∂aij/∂xi, ∂aij/∂r, bi, c are bounded Carathédory functions, with c ≤ 0.
By the existence and uniqueness theorem of the strong solution for the Dirichlet

problem [1, p. 241], there exists a unique solution u ∈ W 2,p(Z)∩W 1,p
0 (Z) to the

equation Lvu = f(x) for each v ∈ W 1,p
0 . Consider the mapping F which assigns

v ∈ W 2,p(Z) ∩ W 1,p
0 (Z) to the solution u ∈ W 2,p(Z) ∩ W 1,p

0 (Z) satisfying the
following equation

Lvu =
N∑

i,j=1

aij(x, v)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, v)
∂u

∂xi
+ c(x, v)u = f(x) x ∈ Z,(2.2.2)

i.e., F : v ∈ W 2,p(Z) ∩ W 1,p
0 (Z) 7→ F (v) = u ∈ W 2,p(Z) ∩ W 1,p

0 (Z) (F is

well-defined provided p > N/2). From the following theorem, we can obtain the
L∞ estimate for the solution u = F (v) to equation (2.2.2).

Weak Maximum Principle of A. D. Aleksandrov [1, p. 220]:
Consider

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x),

where L is elliptic in the domain Ω, and the coefficient matrix A = [aij ] is positive
definite everywhere in Ω. For such operators, we will letD denote the determinant of
A and setD∗ = D1/n so thatD∗ is the geometric mean of the eigenvalues of A such
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that 0 < ω ≤ D∗ ≤ γ, where ω and γ are the minimum and maximum eigenvalues

of A respectively. If |b|/D∗, f/D∗ ∈ LN(Ω), c ≤ 0 in Ω, u ∈ C0(Ω̄)∩W 2,N
loc

(Ω),
and Lu ≥ f in bounded domain Ω, then

sup
Ω
u ≤ sup

∂Ω
u+ + C

∥∥∥∥
f

D∗

∥∥∥∥
LN (Ω)

,

where C is a constant dependent on N , diam Ω, and ‖b/D∗‖LN (Ω).

For the equation (2.2.2), u is zero on the boundary of Z. Since aij is bounded,
D∗ = D1/N is a bounded function and 0 < λ ≤ D∗, where λ is an ellipticity

constant in (2.1.1). For p ≥ N , we then have f ∈ LN (Z) and

sup
Z

|u| ≤ C‖f‖LN (Z),(2.2.3)

where C is a constant dependent on N , λ, Λ, and diam Z (the maximum principle
is valid for p ≥ N ). With the aid of (2.1.8), we have the following inequality

‖u‖W 2,p ≤ C‖f‖Lp(Z) for all u = F (v), v ∈ W 2,p(Z) ∩W 1,p
0 (Z).(2.2.4)

We proceed to show that there exists a fixed point u of F ; u then is a solution of

the problem (2.2.1) by the Schauder Fixed Point Theorem. It suffices to show that

F : K → K is continuous and K is a compact convex set in a Banach space. We

have the following lemma.

Lemma 2.2.1. Let p ≥ N . Under the hypotheses of Proposition 2.1.1, the

mapping F : W 2,p(Z) ∩ W 1,p
0 (Z) → W 2,p(Z) ∩ W 1,p

0 (Z) is continuous in the
topology of W 1,p(Z).

Proof: If {vn} ⊂ W 2,p(Z) ∩ W 1,p
0 (Z) and vn → v in W 1,p(Z), then there

exists a subsequence, denoted by vn, such that vn → v a.e., and ∇vn → ∇v a.e.
Let un = F (vn) and u = F (v). We will show that un → u in W 1,p(Z). Since
f ∈ Lp(Z), and p ≥ N , by (2.2.4), {un} is bounded in W 2,p(Z). Also since
W 2,p(Z) ↪→ W 1,p(Z) is a compact imbedding, there exists a subsequence (we
relabel as {un}) such that un → w in W 1,p(Z) with w ∈ W 1,p(Z), un → w a.e.,
and ∇un → ∇w a.e. We claim that w is a weak solution of the following equation

N∑

i,j=1

aij(v)
∂2w

∂xi∂xj
+

N∑

i=1

bi(x, v)
∂w

∂xi
+ c(x, v)w = f(x).(2.2.5)

It suffies to show that

∫

Z

N∑

i,j=1

aij(v)
∂w

∂xj

∂φ

∂xi
+

∫

Z

N∑

i=1

[
N∑

j=1

(
∂aji(v)

∂xj
+

∂aji(v)
∂r

∂v

∂xj
) − bi(v)]

∂w

∂xi
φ

+
∫

Z

(−c(x, v))wφ =
∫

Z

−fφ for all φ ∈ C∞
0 (Z).

(2.2.6)
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Let φ ∈ C∞
0 (Z). Since un = F (vn), we have

∫

Z

N∑

i,j=1

aij(vn)
∂un

∂xj

∂φ

∂xi
+

∫

Z

N∑

i=1

[
N∑

j=1

(
∂aji(vn)

∂xj
+

∂aji(vn)
∂r

∂vn

∂xj
) − bi(vn)]

∂un

∂xi
φ

+
∫

Z

(−c(vn))unφ =
∫

Z

−fφ.

Since aij , ∂aij/∂xi, ∂aij/∂r, bi, c are bounded Carathédory functions, un → w

a.e., ∇un → ∇w a.e., by Lebesgue’s Dominated Convergence Theorem we have
∫

Z

N∑

i,j=1

aij(vn)
∂un
∂xj

∂φ

∂xi
+

∫

Z

N∑

i=1

[
N∑

j=1

(
∂aji(vn)
∂xj

+
∂aji(vn)
∂r

∂vn
∂xj

) − bi(vn)]
∂un
∂xi

φ

+
∫

Z
(−c(v))wφ=

∫

Z
(−f)φ for all φ ∈ C∞

0 (Z).

Hence (2.2.5) holds. It follows from the uniqueness of the solution to equation

(2.2.2) that we have u = w and un → u in W 1,p(Z). Therefore, the proof is
completed.

Proposition 2.2.2. Let Z be a bounded smooth domain in RN satisfying the

assumption of Proposition 2.1.1. Suppose aij ∈ C0,1(Z̄ × R), aij , ∂aij/∂xi,
∂aij/∂r, bi, c ∈ L∞(Z × R), c ≤ 0 with i, j = 1, ...N . Then, for p ≥ N, there

exist a solution u ∈ W 2,p(Z) ∩W 1,p
0 (Z) to problem (2.2.1).

Proof. Consider u = F (v) for v ∈W 2,p(Z)∩W 1,p
0 (Z). According to (2.2.4),

we can obtain a nonnegative constant K, such that

‖u‖W 2,p(Z) ≤ K for v ∈ W 2,p(Z) ∩W 1,p
0 (Z).

Let

K = {v ∈ W 2,p(Z) ∩W 1,p
0 (Z)| ‖v‖W 2,p(Z) ≤ K}.

Then F is continuous from K into itself in the topology of W 1,p by Lemma 2.2.1.

Since K is bounded in W 2,p(Z) and W 2,p ↪→ W 1,p is a compact imbedding, K is

a precompact set in W 1,p(Z). We claim that K is closed in W 1,p(Z). To see this,
let {un} ⊂ K be such that un → u in W 1,p(Z). Since {un} is bounded in W 2,p

and W 2,p is a reflexive space, there exists a subsequence weakly convergent to w ∈
W 2,p. It can be shown that w = u. With the aid of ‖u‖W 2,p ≤ limn‖un‖W 2,p ≤ K,

we obtain that K is closed in W 1,p. Hence K is a compact and convex set in W 1,p

which is a Banach space. It follows readily from the Schauder Fixed Point Theorem

that there exists a solution u ∈ W 2,p(Z)∩W 1,p
0 (Z) of problem (2.2.1) in K.

Remark 2.2.3. It follows from the proof of Proposition 2.2.2 that the solutions

of equation (2.2.1) are bounded in W 2,p(Z).
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3. AN APPLICATION TO THE EXISTENCE OF STRONG SOLUTIONS TO

OME QUASILINEAR ELLIPTIC PROBLEMS

In this section, we consider the following quasilinear elliptic problem:





N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u = f(x, u,∇u) in Z,

u = 0 on ∂Z,

(3.1)

where Z is a smooth domain in RN , aij ∈ C0,1(Z̄×R), aij , ∂aij/∂xi, ∂aij/∂r, bi,
c, f(x, r, ξ) are Carathéodory functions and

∑N
i,j=1 aijξiξj ≥ λ|ξ|2 with a nonneg-

ative constant λ. The results of Section 2 are used to prove the following theorem.

Theorem 3.1. Let Z be a bounded smooth domain in RN satisfying the as-

sumption of Proposition 2.1.2. Suppose aij ∈ C0,1(Z̄×R), aij , ∂aij/∂xi, ∂aij/∂r,
bi, c ∈ L∞(Z × R) with i, j = 1, ...N, −c ≥ α0 > 0 for some constant α0 and

|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ 0 ≤ θ < 2,(3.2)

where C0 is a nonnegative constant and h(|r|) is a locally bounded function. Then
there exists a solution u ∈ W 2,p(Z) ∩W 1,p

0 (Z) to problem (3.1).

The proof of Theorem 3.1 is done in the following steps:

(1) Approach equation (3.1) by truncation, and then prove the existence of

approximating solutions {un}.
(2) Establish L∞ bound for the subsequence of {un}.
(3) Establish W 2,p bound for the subsequence of {un}.
(4) Pass the approximating problem to the limit.

(5) Verify that the limit u of the subsequence of approximating solutions {un} in
W 1,p

0 belongs to W 2,p ∩W 1,p
0 .

Lemma 3.2. Suppose that f(x, r, ξ) has an L∞ bound. Then for 1 ≤ p <
∞ there exists a solution u ∈ W 2,p(Z) ∩ W 1,p

0 (Z) to problem (3.1) under the
assumption of Theorem 3.1.

Proof: For each v ∈ W 1,p(Z), f(x, v,∇v) ∈ L∞(Z) ⊂ Lp(Z), the existence
and uniqueness theorem [1, p. 241] asserts that there exists a unique u ∈ W 2,p(Z)∩
W 1,p

0 (Z) to the equation

Lvu =
N∑

i,j=1

aij(x, v)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, v)
∂u

∂xi
+ c(x, v)u= f(x, v,∇v).
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Moreover, by Proposition 2.1.1, we have the global estimate

‖u‖W 2,p(Z) ≤ C(‖u‖Lp(Z) + ‖f(x, v,∇v)‖Lp(Z)),

with a constant C > 0 (independent of v). Without loss of generality, we assume p ≥
N . Since f ∈ L∞, from the Maximum Principle of A. D. Aleksandrov [1, p. 220],
we obtain ‖u‖W 2,p(Z) ≤M for some constantM > 0. Following the same process
in subsection 2.2, let T be the map which associates v ∈ W 2,p(Z)∩W 1,p

0 (Z) to the
solution u ∈ W 2,p(Z) ∩W 1,p

0 (Z) satisfying Lvu = f(x, v,∇v). Notice that since
f(x, r, ξ) is a bounded Carathédory function, we have f(x, vn,∇vn) → f(x, v,∇v)
in L1(Z) if vn → v in W 1,p and vn → v, ∇vn → ∇v a.e. By a similar argument
as in the proof of Lemma 2.2.1, we can show that T : W 2,p(Z) ∩ W 1,p

0 (Z) →
W 2,p(Z) ∩W 1,p

0 (Z) is continuous in the topology W 1,p(Z). The existence of the
solution u ∈ W 2,p(Z) ∩W 1,p

0 (Z) to problem (3.1) then follows from Proposition
2.2.2.

Let’s now consider the approximating problem of problem (3.1):





N∑

i,j=1

aij(x, u)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, u)
∂u

∂xi
+ c(x, u)u = fn(x, u,∇u) in Z,

u = 0 on ∂Z,

(3.3)

where fn(x, r, ξ) is the truncation of f by ±n, i.e.,

fn(x, r, ξ) =





n if f(x, r, ξ) ≥ n,

f(x, r, ξ) if |f(x, r, ξ)| ≤ n,

−n if f(x, r, ξ) ≤ −n.

Clearly, fn(x, r, ξ) ∈ L∞(Z) ⊂ Lp(Z) for all n. According to Lemma 3.2, for each
1 ≤ p <∞, there exists a solution un ∈ W 2,p(Z)∩W 1,p

0 (Z) to the approximating
problem (3.3). Without loss of generality, we assume p > N ≥ 3.

Lemma 3.3. Under the assumption of Theorem 3.1, there exists a subsequence

of the approximating solution {un} to problem (3.1) which is L∞ bounded.

Proof: Since aij ∈ C0,1(Z̄ × R), the problem in (3.1) can be written in the
following divergence form:

−
N∑

i,j=1

∂

∂xi
aij(x, u)

∂u

∂xj
+ f̃(x, u,∇u) = 0,(3.4)
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where

f̃(x, u,∇u) =
N∑

i=1

{
N∑

j=1

[
∂aji(x, u)
∂xj

+
∂aji(x, u)

∂r

∂u

∂xj
] − bi(x, u)}

∂u

∂xi

−c(x, u)u+ f(x, u,∇u).

Since aij , ∂aij/∂xi, ∂aij/∂r, bi, c ∈ L∞(Z × R) with i, j = 1, ...N , there exists
a constant Λ > 0 such that aij , ∂aij/∂xi, ∂aij/∂r, bi, c ≤ Λ. Thus,

|
N∑

i,j=1

[
∂aji(x, u)
∂xj

∂u

∂xi
+
∂aji(x, u)

∂r

∂u

∂xi

∂u

∂xj
]−

N∑

i=1

bi(x, u)
∂u

∂xi
− c(x, u)u|

≤ ΛN
2

(N + |∇u|2) + Λ(|∇u|2) +
Λ
2

(N + |∇u|2) + Λ|u|

≤M |∇u|2 + Λ|u|+ C ′,

for some nonnegative constants M = (Λ/2)(N + 3/2), C ′ = (ΛN/2)(N + 1).
Together with the hypothesis of (3.2), we have

|f̃(x, r, ξ)|≤ C0 + h(|r|)(1 + |ξ|2) +M |ξ|2 + Λ|r|+ C ′

≤ b(|r|)(1+ |ξ|2),

where b is an increasing function from R+ into R+. Let φ = −C0/α0 and ψ =
C0/α0. It’s clear that φ and ψ are the sub- and supper-solution of problem (3.1),
respectively. Thus, it follows from [5, Proposition 3.6] that there is a subsequence

of the approximating sequence of solutions {un} to problem (3.1) ( we relabel as
(un)) with φ ≤ un ≤ ψ in Z. Hence (un) are L

∞(Z) bounded.

Theorem (Interpolation Inequality of Gagliardo-Nirenberg).

Let Ω ⊂ RN be an open bounded regular set and u ∈ Lr ∩ W 2,p(Ω) with
1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞. Then u ∈ W 1,q(Ω) where q is the harmonic average
of p and r, that is 1/q = ((1/2) + (1/p))/2 and

‖∇u‖Lq ≤ C‖u‖
1
2

W 2,p‖u‖
1
2
Lr .(3.5)

In particular r = ∞ and then q = 2p. We have u ∈ W 1,2p(Ω) and

‖∇u‖L2p ≤ C‖u‖
1
2

W 2,p‖u‖
1
2
L∞ .(3.6)

Lemma 3.4. Under the assumptions of Theorem 3.1, there exists a subsequence

of the approximating solution {un} in W 2,p(Z)∩W 1,p
0 (Z) to problem (3.1) which

is W 2,p bounded.
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Proof. By Lemma 3.3, there exists a sequence {un} which is L∞ bounded.

Since h(|r|) is locally bounded, we have |h(un)| ≤ M for some constant M > 0.
According to (3.2), we have |fn(x, un,∇un)| ≤ C0 + h(|un|)|∇un|θ, 0 ≤ θ < 2.
Hence there exists a constant C1 > 0 such that

|fn(x, r, ξ)| ≤ C1(1 + |∇un|θ).(3.7)

Since θ < 2, there exists a constant Cε > 0 for all ε > 0 such that

|∇un|θ ≤ Cε + ε|∇un|2.(3.8)

Thus |fn(x, un,∇un)| ≤ M1 + εC1|∇un|2 for a constant M1 > 0. With the help
of the global estimate (2.1.9), we have

‖un‖W 2,p(Z)≤ C(‖un‖Lp + ‖fn(x, un,∇un)‖Lp)

≤M2 + εC2‖∇un‖2
L2P

for some constant M2, C2 > 0. Since un ∈ L∞(Z) ∩W 2,p(Z), from the interpo-
lation of Gagliardo-Nirenberg Theorem, we obtain

‖un‖W 2,p(Z)≤M2 + εC2‖un‖W 2,P (Z)‖un‖L∞(Z)

≤M2 + εC3‖un‖W 2,P (Z),

whereM2, C3 are nonnegative constants. Hence, by choosing C3ε = 1/2, we obtain
‖un‖W 2,p(Z) ≤M3 for some constantM3 > 0. Therefore, {un} are W 2,p bounded.

By Lemma 3.4, we get a sequence of approximating solutions to problem

(3.1) which is W 2,p bounded. It follows from the compactness of the imbedding

W 2,p ↪→ W 1,p that there exists a norm convergent subsequence inW 1,p. We extract

a subsequence, which is denoted again by {un} such that

un → u a.e., ∇un → ∇u a.e., and un → u in W 1,p.

In what follows, we show that u is a solution of problem (3.1). By passing to the

limit, we obtain

∫ N∑

i,j=1

aij(un)
∂un
∂xj

∂φ

∂xi
+

∫ N∑

i,j=1

[∂aji(un)
∂xj

+
∂aji(un)
∂r

∂un
∂xj

]∂un
∂xi

φ

−
∫ N∑

i=1

bi(un)
∂un
∂xi

φ−
∫
c(un)unφ =

∫
−fn(x, un,∇un)φ

→
∫ N∑

i,j=1

aij(u)
∂u

∂xj

∂φ

∂xi
+

∫ N∑

i,j=1

[∂aji(u)
∂xj

+
∂aji(u)
∂r

∂u

∂xj

] ∂u
∂xi

φ

−
∫ N∑

i=1

bi(u)
∂u

∂xi
φ−

∫
c(u)uφ ∀φ ∈ C∞

0 (Z).
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The next lemma shows that fn(x, un,∇un) → f(x, u,∇u) in L1(Z). Therefore,
u is a W 1,p(Z) solution to the problem (3.1).

Theorem (Vitali Convergence Theorem).

Let 1 ≤ p ≤ ∞ and (Ω,Σ, µ) be a measurable space. Let {fn} be a sequence
of functions in Lp converging almost everywhere to a function f . Then f is in Lp

and ‖fn − f‖p converges to zero if and only if
(1) limµ(E)→0

∫
E |fn|pdµ = 0 uniformly ∀n;

(2) for each ε > 0 there exists a setEε such that µ(Eε) <∞ and
∫
Ω−Eε

|fn|pdµ <
ε for n = 1, 2, ... .

Lemma 3.5. fn(x, un,∇un) → f(x, u,∇u) in L1(Z).

Proof. Since f is a Carathédory function, un → u a.e., and ∇un → ∇u a.e.
we have fn(x, un,∇un) → f(x, u,∇u) a.e. According to (3.7), we have

|fn(x, un,∇un)|≤ C1(1 + |∇un|θ)

≤ C1(2 + |∇un|2).

Since {un} is H1 bounded with p > N ≥ 3, {fn} is a sequence of functions in
L1(Z). Now, by Vitali Convergence Theorem, we conclude that fn(x, un,∇un) →
f(x, u,∇u) in L1(Z).

Lemma 3.6. Under the assumptions of Theorem 3.1, the limit u of the approx-
imating solutions {un} to problem (3.1) belongs to W 2,p(Z)∩W 1,p

0 (Z).

Proof. By Lemma 3.4, there exists a constantM > 0 such that ‖un‖W 2,p(Z) ≤
M for all n. Let

K = {v ∈ W 2,p(Z) ∩W 1,p
0 (Z)| ‖v‖W 2,p(Z) ≤M}.

By the same argument as in the proof of Proposition 2.2.2, it follows that K is

closed in W 1,p. Thus the limit u of (un) belongs to W 2,p(Z) ∩W 1,p
0 (Z).

Therefore, the existence of solutions inW 2,p(Z)∩W 1,p
0 (Z) asserted in Theorem

3.1 now follows readily from Lemmas 3.2-3.6.

Lemma 3.7. If f(x, r, ξ) has a quadratic growth in ξ, that is θ = 2 in (3.2),
then there exists an H1 bound for the approximating solutions {un} to problem
(3.1).
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Proof. The differential equation in (3.1) can be written in the following diver-

gence form:

−
N∑

i,j=1

∂

∂xi
aij(x, u)

∂u

∂xj
− c(x, u)u = g(x, u,∇u),

where

g(x, u,∇u) = −f(x, u,∇u)+
N∑

i=1

bi(u)
∂u

∂xi
−

N∑

i,j=1

∂aij
∂xi

∂u

∂xj
−

N∑

i,j=1

∂aij
∂r

∂u

∂xi

∂u

∂xj
.

Since f(x, r, ξ) satisfies (3.2), we have

|g(x, r, ξ)| ≤ C + E(|r|)|ξ|2,

where C is a nonnegative constant and E is a locally bounded function in R+.

Following from the proof of [6, Theorem 2.1], the approximating solution {un} is
H1 bounded.
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