TAIWANESE JOURNAL OF MATHEMATICS Vol. 6, No. 2, pp. 175-180, June 2002 This paper is available online at http://www.math.nthu.edu.tw/tjm/

COUNTEREXAMPLES IN ERGODIC THEORY OF EQUICONTINUOUS SEMIGROUPS OF OPERATORS

J. J. Koliha

Abstract. The paper gives counterexamples in abstract ergodic theory of an equicontinuous semigroup S of linear operators on a locally convex space X. In particular, it is shown that the orbit of an element $x \in X$ may contain a unique fixed point of S without x being necessarily ergodic.

1. INTRODUCTION AND PRELIMINARIES

Let S be a semigroup of continuous linear operators on a locally convex space X, and let co S be the set of all convex combinations of elements of S. Further, we define

(1.1)
$$\mathcal{F}(\mathcal{S}) = \bigcap_{A \in \mathcal{S}} (I - A)^{-1}(0);$$

the elements of the set $\mathcal{F}(S)$ are the *fixed points* of S. We observe that co S is a semigroup containing S as a subsemigroup. For any $x \in X$ and any $\mathcal{H} \subset \operatorname{co} S$, we set

(1.2)
$$\mathcal{H}x = \bigcup_{A \in \mathcal{H}} Ax, \quad \mathcal{K}(x) = \overline{\operatorname{co}}(\mathcal{S}x), \quad \mathcal{K}(x, \mathcal{H}) = \bigcap_{A \in \mathcal{H}} \mathcal{K}(Ax).$$

 $\mathcal{K}(x)$ is called the *orbit* of x under S and $\mathcal{K}(x, \mathcal{H})$ the *joint orbit* of x under \mathcal{H} . (Alternatively, $\mathcal{K}(x)$ is the closure of (co S)x.)

Definition 1.1. Let S be an equicontinuous semigroup of linear operators on X. We say that a point $x \in X$ is *ergodic* under S if the joint orbit $\mathcal{K}(x, \cos S)$ consists of a single point. By $\mathcal{E}(S)$ we denote the set of all ergodic points of S.

Received April 25, 2000; revised August 22, 2000.

Communicated by S.-Y. Shaw.

2000 Mathematics Subject Classification: 47A35, 22A99.

Key words and phrases: Equicontinuous semigroup, linear operator, ergodic element, orbit, locally convex space, Alaoglu-Birkhoff convergence.

There is an interesting relation between ergodicity of an element and the Alaoglu– Birkhoff convergence [1].

An Alaoglu–Birkhoff net (AB-net) $\{x_{\alpha}\}$ is a map $\alpha \mapsto x_{\alpha}$ of a transitively ordered index set Δ into a Hausdorff topological space Z. We say that a net $\{x_{\alpha}\}$ converges in the sense of Alaoglu–Birkhoff (AB-converges) to $a \in Z$ if for each neighbourhood N(a) of a and each $\alpha \in \Delta$ there exists $\alpha_0 \ge \alpha$ in Δ such that $x_{\beta} \in N(a)$ for all $\beta \ge \alpha_0$. The point $b \in Z$ is a cluster point of the AB-net $\{x_{\alpha}\}$ if, for each neighbourhood N(b) of b and each $\alpha \in \Delta$, there exists $\beta \ge \alpha$ in Δ with $x_{\beta} \in N(b)$. The AB-convergence was introduced in [1, pp. 293-295] and further studied in subsequent works such as [2, 3, 5].

Returning to our operator semigroup S on a locally convex space X, we consider AB-nets of the following type: For a given $x \in X$, $\{x_A\}$ in this paper will always denote the net $A \mapsto Ax$ with the index set co S transitively ordered by stipulating that

 $A \leq B$ if there exists $C \in \operatorname{co} S$ such that CA = B.

We write $x_A \to a$ if the net $\{x_A\}$ AB-converges to $a \in X$ in the locally convex topology of X, and $x_A \rightharpoonup a$ if it AB-converges in the weak topology of X.

We then have the following criteria for ergodicity in which convergence means the AB-convergence.

Theorem 1.2. If S is an equicontinuous semigroup S of linear operators on a locally convex space X, the following conditions are equivalent :

(i) x is ergodic with $\mathcal{K}(x, \operatorname{co} S) = \{a\}.$

- (ii) $\mathcal{K}(x, \operatorname{co} \mathcal{S}) \cap \mathcal{F}(\mathcal{S}) = \{a\}.$
- (iii) $a \in \mathcal{K}(x, \operatorname{co} \mathcal{S}) \cap \mathcal{F}(\mathcal{S}).$
- (iv) $x_A \rightarrow a$.
- (v) $x_A \rightharpoonup a$.

(vi) $\{x_A\}$ clusters weakly at a fixed point of S.

Proof. (i) \Longrightarrow (ii). From $\mathcal{K}(a) \subset \mathcal{K}(x, \operatorname{co} S)$ follows $\mathcal{K}(a) = \{a\}$, and hence a is a fixed point of S.

 $(ii) \Longrightarrow (iii)$ is clear.

(iii) \Longrightarrow (iv). For a given 0-neighbourhood U in X choose a 0-neighbourhood V such that $\operatorname{co} \mathcal{S}(V) \subset U$ (equicontinuity). If $A \in \operatorname{co} \mathcal{S}$, find $C \in \operatorname{co} \mathcal{S}$ satisfying $CAx - a \in V$ ($a \in \mathcal{K}(Ax)$). Then $A_0 := CA \ge A$, and for each $B = DA_0 \ge A_0$ with $D \in \operatorname{co} \mathcal{S}$,

 $x_B - a = D(CAx - a) \in D(V) \subset U.$

This proves $x_A \rightarrow a$.

 $(iv) \Longrightarrow (v)$ is obvious.

(v) \Longrightarrow (vi). We need to prove that $a \in \mathcal{F}(S)$. To this end, we use properties of the AB-convergence found in [1, pp. 293-295]. Let $T \in S$. Then $Tx_A \rightarrow Ta$ (weak AB-continuity of T). The AB-net $\{x_{TA} : A \in \operatorname{co} S\}$ is a subnet of $\{x_A : A \in \operatorname{co} S\}$, and $Tx_A = x_{TA} \rightarrow a$. Hence Ta = a by the uniqueness of limits in Hausdorff spaces.

(vi) \Longrightarrow (i). Let $a \in \mathcal{F}(S)$ be a weak cluster point of x_A . We show that $a \in \mathcal{K}(x, \operatorname{co} S)$. Let $A \in \operatorname{co} S$ and let N(a) be a weak neighbourhood of a. Then there exists $B = CA \ge A$ such that $x_B = CAx \in N(a)$, so that a is in the weak closure of $\operatorname{co} S(Ax) \subset \mathcal{K}(Ax)$. Since $\mathcal{K}(Ax)$ is a closed convex set, $a \in \mathcal{K}(Ax)$ for each $A \in \operatorname{co} S$. In particular, $a \in \mathcal{K}(x)$. Suppose that $b \in \mathcal{K}(x, \operatorname{co} S)$. If U is a convex 0-neighbourhood in X, choose a 0-neighbourhood V such that $\operatorname{co} S(V) \subset (1/2)U$. There are $A, B \in \operatorname{co} S$ such that $a - Ax \in V$ and $BAx - b \in (1/2)U$. Then

$$a - b = B(a - Ax) + (BAx - b) \in B(V) + \frac{1}{2}U \subset U,$$

which proves that a = b. Hence $\mathcal{K}(x, \operatorname{co} \mathcal{S}) = \{a\}$.

In the following section we will see that some conditions of ergodicity under an equicontinuous semigroup given by Alaoglu and Birkhoff in [1] may fail. Fortunately, the main results of [1], in particular [1, Theorem 6], are unaffected by this failure:

Theorem 1.3 (Alaoglu–Birkhoff). Let X be a uniformly convex Banach space whose dual X^* is strictly convex. If S is a contraction semigroup on X, then $\mathcal{E}(S) = X$.

This theorem is reproduced in Krengel's monograph [4] as Theorem 1.10.

2. Counterexamples

In this section, S denotes an equicontinuous semigroup of linear operators on a locally convex space X.

We include the following theorem to motivate Example 2.2.

Theorem 2.1. Let S be an equicontinuous semigroup of linear operators on a locally convex space X, and let Γ be a convex subset of X invariant under S such that

(2.1)
$$|\mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)| = 1$$
 for each $x \in \Gamma$.

Then $\Gamma \subset \mathcal{E}(\mathcal{S})$.

J. J. Koliha

Proof. Since Γ is convex and invariant under S, it is also invariant under $\operatorname{co} S$. For any $x \in \Gamma$ and $A \in \operatorname{co} S$, $\mathcal{K}(Ax)$ contains a (unique) fixed point a by hypothesis. By (2.1), we have $\mathcal{K}(Ax) \cap \mathcal{F}(S) = \mathcal{K}(x) \cap \mathcal{F}(S) = \{a\}$ for all $A \in \operatorname{co} S$. Then $\mathcal{K}(x, \operatorname{co} S) \cap \mathcal{F}(S) = \{a\}$ and the conclusion follows from Theorem 1.2.

Example 2.2. The condition

$$(2.2) |\mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)| = 1$$

is necessary but not sufficient for the ergodicity of $x \in X$.

Let x be ergodic with $\mathcal{K}(x, \operatorname{co} S) = \{b\}$ and let $a \in \mathcal{F}(S) \cap \mathcal{K}(x)$. Then an argument similar to the one used in the proof of $(\operatorname{vi}) \Longrightarrow (i)$ in Theorem 1.2 shows that a = b, which means that (2.2) is necessary for the ergodicity of x.

To show that the condition is not sufficient, consider the Banach space ℓ^1 and the semigroup S of bounded linear operators on ℓ^1 generated by

$$V(\xi_1,\xi_2,\xi_3,\ldots) = (\frac{1}{2}\xi_1,\xi_2,\xi_3,\ldots)$$
 and $T(\xi_1,\xi_2,\xi_3,\ldots) = (0,\xi_1,\xi_2,\ldots)$.

We observe that VT = T and that each element of S is of the form T^iV^j , $i+j \ge 1$. Let $x = (1, 0, 0, ...) \in \ell^1$. Since $V^j x = 2^{-j} x \to 0$ in norm as $j \to \infty$, the orbit $\mathcal{K}(x)$ contains 0. Moreover, 0 is the only fixed point of S since I - T is injective. From the general form of operators in S we deduce that any operator $A \ge T$ in co S can be expressed as a convex combination $A = \sum_{i=1}^n \lambda_i T^i$. Then

$$||Ax|| = ||\sum_{i=1}^{n} \lambda_i e_{i+1}|| = \sum_{i=1}^{n} \lambda_i = 1,$$

where $e_i = (\delta_{ik})_{k=1}^{\infty}$. This shows that $x_A \neq 0$. Hence x is not ergodic by Theorem 1.2.

The preceding construction is a counterexample to [1, Theorem 2], which claims that $x \in X$ is ergodic if and only if $|\mathcal{F}(S) \cap \mathcal{K}(x)| = 1$.

The next result shows that condition (vi) of Theorem 1.2 cannot be weakened.

Example 2.3. The condition that $\{x_A\}$ has a weak cluster point is necessary but not sufficient for x to be ergodic: Let S be the semigroup of contractions on the Banach space ℓ^1 generated by

$$V(\xi_1, \xi_2, \xi_3, \ldots) = \left(\sum_{i=1}^{\infty} \xi_i, 0, 0, \ldots\right)$$
 and $T(\xi_1, \xi_2, \xi_3, \ldots) = (0, \xi_1, \xi_2, \ldots).$

Observe that VT = V and $V^2 = V$. If $x = (1, 0, 0, ...) \in \ell^1$, then VAx = x for all $A \in \operatorname{co} S$. Hence the net $\{x_A : A \in \operatorname{co} S\}$ contains a constant subnet

 $\{x_{VA} : A \in \operatorname{co} S\}$ convergent to x, but x is not a fixed point of S. There x is not ergodic by Theorem 1.2. The necessity is obvious.

Our example also shows that the condition $\mathcal{K}(x, \operatorname{co} S) \neq \emptyset$ is necessary but not sufficient for x to be ergodic.

Example 2.4. The condition $|\mathcal{K}(x, S) \cap \mathcal{F}(S)| \ge 1$ is necessary but not sufficient for x to be ergodic: Let Π be the permutation group on the set \mathbb{N} of all positive integers. For any $\sigma \in \Pi$, we define the operator $T_{\sigma} : \ell^{\infty} \to \ell^{\infty}$ by

$$T_{\sigma}(\xi_1,\xi_2,\ldots)=(\xi_{\sigma(1)},\xi_{\sigma(2)},\ldots).$$

All operators of the form T_{σ} ($\sigma \in \Pi$) form an operator group \mathcal{G} of linear isometries on ℓ^{∞} which is group isomorphic to Π . Let x = (1, -1, 1, -1, 1, -1, ...). We show that

$$0 \in \mathcal{K}(x, \mathcal{G})$$
 and $0 \notin \mathcal{K}(x, \operatorname{co} \mathcal{G})$

Let $\omega \in \Pi$ be the permutation that interchanges each odd number with its successor. Then $(1/2)(I+T_{\omega}) \in \operatorname{co} S$, and $((1/2)(I+T_{\omega})A^{-1})Ax = 0$ for any $A \in \mathcal{G}$. Hence $0 \in \mathcal{K}(Ax)$ for each $A \in \mathcal{G}$. There exist permutations $\sigma_1, \sigma_2, \sigma_3 \in \Pi$ such that

$$\sigma_1(2n) = 3n, \quad \sigma_2(2n) = 3n - 1, \quad \sigma_3(2n) = 3n - 2 \text{ for } n \in \mathbb{N}.$$

Then

$$T_{\sigma_1}x = (1, 1, -1, 1, 1, -1, 1, 1, -1, \dots),$$

$$T_{\sigma_2}x = (1, -1, 1, 1, -1, 1, 1, -1, 1, \dots),$$

$$T_{\sigma_2}x = (-1, 1, 1, -1, 1, 1, -1, 1, \dots).$$

Set $V = (1/3)(T_{\sigma_1} + T_{\sigma_2} + T_{\sigma_3}) \in \operatorname{co} S$. Then $Vx = ((1/3), (1/3), (1/3), \ldots)$, and AVx = Vx for all $A \in \operatorname{co} G$, so that the orbit $\mathcal{K}(Vx)$ does not contain 0. Hence $\mathcal{K}(x, \operatorname{co} S) \cap \mathcal{F}(S) = \emptyset$.

The preceding construction is a counterexample to [1, Lemma 7.1], which claims that x is ergodic if and only if $\mathcal{K}(x, S)$ contains a fixed point of S.

Remark 2.5. What Alaoglu and Birkhoff actually proved in [1] is the following: Let \mathcal{H} be a subset of $\operatorname{co} S$ which contains S and all operators $A \in \operatorname{co} S$ such that $A \geq T$ for some $T \neq I$ in S. Then x is ergodic if and only if $\mathcal{K}(x, \mathcal{H})$ contains a fixed point. (See the first six lines of the proof of [1, Lemma 7.1]). Note that $\operatorname{co} S$ has the property required for \mathcal{H} if S contains a pair T, T^{-1} , where $T \neq I$.

We observe that the group \mathcal{G} constructed in Example 2.4 illustrates the phenomenon of multiple fixed points discussed in [1, § 13]: The orbit $\mathcal{K}(x)$ contains all fixed points of the form $(\alpha, \alpha, \alpha, \ldots), 0 \le \alpha \le 1$.

Example 2.6. Example 2.4 can be modified to show that even the stronger condition $|\mathcal{K}(x, S) \cap \mathcal{F}(S)| = 1$ does not ensure the ergodicity of x: Let \mathcal{G}_1 be the smallest group of linear operators on ℓ^{∞} containing the group \mathcal{G} defined in Example 2.4, and the operator

$$P(\xi_1,\xi_2,\xi_3,\ldots) = (-\xi_1,\xi_2,\xi_3,\ldots).$$

Then $\mathcal{F}(\mathcal{G}_1) = \{0\}$. If x and V have the same meaning as in Example 2.4 and if $A \in \operatorname{co} \mathcal{G}_1$, then all coordinates of AVx from a certain index on are equal to 1/3. As above, $0 \in \mathcal{K}_1(x, \mathcal{G}_1)$, but $0 \notin \mathcal{K}_1(Vx)$ (subscript 1 refers to orbits under \mathcal{G}_1).

ACKNOWLEDGEMENT

The author is indebted to A. P. Leung for several suggestions for the construction of the examples.

REFERENCES

- 1. L. Alaoglu and G. Birkhoff, General ergodic theorems, Ann. of Math. 41 (1940), 293-309.
- 2. M. M. Day, Oriented systems, Duke Math. J. 11 (1944), 201-229.
- 3. M. M. Day, Convergence, closure and neighborhoods, *Duke Math. J.* 11 (1944), 181-199.
- 4. U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- S. Todorčević and J. Zapletal, On the Alaoglu–Birkhoff equivalence of posets, *Illinois J. Math.* 43 (1999), 281-290.

J. J. Koliha Department of Mathematics and Statistics University of Melbourne VIC 3010, Australia E-mail: j.koliha@ms.unimelb.edu.au