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COUNTEREXAMPLES IN ERGODIC THEORY

OF EQUICONTINUOUS SEMIGROUPS OF OPERATORS

J. J. Koliha

Abstract. The paper gives counterexamples in abstract ergodic theory of an

equicontinuous semigroup S of linear operators on a locally convex space X .
In particular, it is shown that the orbit of an element x ∈ X may contain a

unique fixed point of S without x being necessarily ergodic.

1. INTRODUCTION AND PRELIMINARIES

Let S be a semigroup of continuous linear operators on a locally convex space
X , and let co S be the set of all convex combinations of elements of S. Further,
we define

F(S) =
⋂

A∈S
(I − A)−1(0);(1.1)

the elements of the set F(S) are the fixed points of S. We observe that co S is a
semigroup containing S as a subsemigroup. For any x ∈ X and any H ⊂ coS, we
set

Hx =
⋃

A∈H
Ax, K(x) = co (Sx), K(x,H) =

⋂

A∈H
K(Ax).(1.2)

K(x) is called the orbit of x under S and K(x,H) the joint orbit of x under H.
(Alternatively, K(x) is the closure of (co S)x.)

Definition 1.1. Let S be an equicontinuous semigroup of linear operators on
X . We say that a point x ∈ X is ergodic under S if the joint orbit K(x, coS)
consists of a single point. By E(S) we denote the set of all ergodic points of S.
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There is an interesting relation between ergodicity of an element and the Alaoglu–

Birkhoff convergence [1].

An Alaoglu–Birkhoff net (AB-net) {xα} is a map α 7→ xα of a transitively

ordered index set ∆ into a Hausdorff topological space Z. We say that a net {xα}
converges in the sense of Alaoglu–Birkhoff (AB-converges) to a ∈ Z if for each

neighbourhood N(a) of a and each α ∈ ∆ there exists α0 ≥ α in ∆ such that

xβ ∈ N(a) for all β ≥ α0. The point b ∈ Z is a cluster point of the AB-net {xα}
if, for each neighbourhoodN(b) of b and each α ∈ ∆, there exists β ≥ α in ∆ with

xβ ∈ N(b). The AB-convergence was introduced in [1, pp. 293-295] and further
studied in subsequent works such as [2, 3, 5].

Returning to our operator semigroup S on a locally convex spaceX , we consider
AB-nets of the following type: For a given x ∈ X , {xA} in this paper will always
denote the net A 7→ Ax with the index set co S transitively ordered by stipulating
that

A ≤ B if there exists C ∈ co S such that CA = B.

We write xA → a if the net {xA} AB-converges to a ∈ X in the locally convex

topology of X , and xA ⇀ a if it AB-converges in the weak topology of X .

We then have the following criteria for ergodicity in which convergence means

the AB-convergence.

Theorem 1.2. If S is an equicontinuous semigroup S of linear operators on a
locally convex space X, the following conditions are equivalent :

( i ) x is ergodic with K(x, coS) = {a}.
( ii ) K(x, coS)∩ F(S) = {a}.
(iii) a ∈ K(x, coS) ∩ F(S).
(iv) xA → a.

( v ) xA ⇀ a.

(vi) {xA} clusters weakly at a fixed point of S.

Proof. (i)=⇒(ii). From K(a) ⊂ K(x, coS) follows K(a) = {a}, and hence a

is a fixed point of S.
(ii)=⇒(iii) is clear.
(iii)=⇒(iv). For a given 0-neighbourhood U in X choose a 0-neighbourhood

V such that coS(V ) ⊂ U (equicontinuity). If A ∈ coS, find C ∈ coS satisfying
CAx − a ∈ V (a ∈ K(Ax)). Then A0 := CA ≥ A, and for each B = DA0 ≥ A0

with D ∈ coS,
xB − a = D(CAx − a) ∈ D(V ) ⊂ U.

This proves xA → a.

(iv)=⇒(v) is obvious.
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(v)=⇒(vi). We need to prove that a ∈ F(S). To this end, we use properties of
the AB-convergence found in [1, pp. 293-295]. Let T ∈ S. Then TxA ⇀ Ta (weak
AB-continuity of T ). The AB-net {xTA : A ∈ coS} is a subnet of {xA : A ∈ coS},
and TxA = xTA ⇀ a. Hence Ta = a by the uniqueness of limits in Hausdorff
spaces.

(vi)=⇒(i). Let a ∈ F(S) be a weak cluster point of xA. We show that

a ∈ K(x, coS). Let A ∈ coS and let N(a) be a weak neighbourhood of a.

Then there exists B = CA ≥ A such that xB = CAx ∈ N(a), so that a is
in the weak closure of coS(Ax) ⊂ K(Ax). Since K(Ax) is a closed convex
set, a ∈ K(Ax) for each A ∈ coS. In particular, a ∈ K(x). Suppose that
b ∈ K(x, coS). If U is a convex 0-neighbourhood in X , choose a 0-neighbourhood
V such that coS(V ) ⊂ (1/2)U . There are A, B ∈ coS such that a−Ax ∈ V and

BAx − b ∈ (1/2)U . Then

a − b = B(a − Ax) + (BAx − b) ∈ B(V ) + 1
2U ⊂ U,

which proves that a = b. Hence K(x, coS) = {a}.

In the following section we will see that some conditions of ergodicity under an

equicontinuous semigroup given by Alaoglu and Birkhoff in [1] may fail. Fortu-

nately, the main results of [1], in particular [1, Theorem 6], are unaffected by this

failure:

Theorem 1.3 (Alaoglu–Birkhoff). Let X be a uniformly convex Banach space

whose dual X∗ is strictly convex. If S is a contraction semigroup on X , then

E(S) = X .

This theorem is reproduced in Krengel’s monograph [4] as Theorem 1.10.

2. COUNTEREXAMPLES

In this section, S denotes an equicontinuous semigroup of linear operators on a
locally convex space X .

We include the following theorem to motivate Example 2.2.

Theorem 2.1. Let S be an equicontinuous semigroup of linear operators on a
locally convex space X, and let Γ be a convex subset of X invariant under S such
that

|F(S)∩ K(x)| = 1 for each x ∈ Γ.(2.1)

Then Γ ⊂ E(S).
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Proof. Since Γ is convex and invariant under S, it is also invariant under coS.
For any x ∈ Γ andA ∈ coS, K(Ax) contains a (unique) fixed point a by hypothesis.
By (2.1), we have K(Ax) ∩ F(S) = K(x) ∩ F(S) = {a} for all A ∈ coS. Then
K(x, coS) ∩ F(S) = {a} and the conclusion follows from Theorem 1.2.

Example 2.2. The condition

|F(S)∩ K(x)| = 1(2.2)

is necessary but not sufficient for the ergodicity of x ∈ X .
Let x be ergodic with K(x, coS) = {b} and let a ∈ F(S) ∩ K(x). Then an

argument similar to the one used in the proof of (vi)=⇒(i) in Theorem 1.2 shows
that a = b, which means that (2.2) is necessary for the ergodicity of x.

To show that the condition is not sufficient, consider the Banach space `1 and

the semigroup S of bounded linear operators on `1 generated by

V (ξ1, ξ2, ξ3, . . .) = (1
2ξ1, ξ2, ξ3, . . .) and T (ξ1, ξ2, ξ3, . . .) = (0, ξ1, ξ2, . . .).

We observe that V T = T and that each element of S is of the form T iV j , i+j ≥ 1.
Let x = (1, 0, 0, . . .) ∈ `1. Since V jx = 2−jx → 0 in norm as j → ∞, the orbit
K(x) contains 0. Moreover, 0 is the only fixed point of S since I − T is injective.

From the general form of operators in S we deduce that any operator A ≥ T in

coS can be expressed as a convex combination A =
∑n

i=1 λiT
i. Then

‖Ax‖ = ‖
n∑

i=1

λiei+1‖ =
n∑

i=1

λi = 1,

where ei = (δik)∞k=1. This shows that xA 6→ 0. Hence x is not ergodic by Theorem
1.2.

The preceding construction is a counterexample to [1, Theorem 2], which claims

that x ∈ X is ergodic if and only if |F(S)∩ K(x)| = 1.
The next result shows that condition (vi) of Theorem 1.2 cannot be weakened.

Example 2.3. The condition that {xA} has a weak cluster point is necessary
but not sufficient for x to be ergodic: Let S be the semigroup of contractions on
the Banach space `1 generated by

V (ξ1, ξ2, ξ3, . . .) =
( ∞∑

i=1

ξi, 0, 0, . . .
)

and T (ξ1, ξ2, ξ3, . . .) = (0, ξ1, ξ2, . . .).

Observe that V T = V and V 2 = V . If x = (1, 0, 0, . . .) ∈ `1, then V Ax = x

for all A ∈ coS. Hence the net {xA : A ∈ coS} contains a constant subnet
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{xVA : A ∈ coS} convergent to x, but x is not a fixed point of S. There x is not

ergodic by Theorem 1.2. The necessity is obvious.

Our example also shows that the condition K(x, coS) 6= ∅ is necessary but not
sufficient for x to be ergodic.

Example 2.4. The condition |K(x,S)∩F(S)| ≥ 1 is necessary but not sufficient
for x to be ergodic: Let Π be the permutation group on the set N of all positive

integers. For any σ ∈ Π, we define the operator Tσ : `∞ → `∞ by

Tσ(ξ1, ξ2, . . .) = (ξσ(1), ξσ(2), . . .).

All operators of the form Tσ (σ ∈ Π) form an operator group G of linear isometries
on `∞ which is group isomorphic to Π. Let x = (1,−1, 1,−1, 1,−1, . . .). We
show that

0 ∈ K(x,G) and 0 /∈ K(x, coG).

Let ω ∈ Π be the permutation that interchanges each odd number with its successor.
Then (1/2)(I+Tω) ∈ coS, and ((1/2)(I+Tω)A−1)Ax = 0 for any A ∈ G. Hence
0 ∈ K(Ax) for each A ∈ G. There exist permutations σ1, σ2, σ3 ∈ Π such that

σ1(2n) = 3n, σ2(2n) = 3n − 1, σ3(2n) = 3n − 2 for n ∈ N.

Then
Tσ1x = (1, 1,−1, 1, 1,−1, 1, 1,−1, . . .),

Tσ2x = (1,−1, 1, 1,−1, 1, 1,−1, 1, . . .),

Tσ3x = (−1, 1, 1,−1, 1, 1,−1, 1, 1, . . .).

Set V = (1/3)(Tσ1 + Tσ2 + Tσ3) ∈ coS. Then V x = ((1/3), (1/3), (1/3), . . .),
and AV x = V x for all A ∈ coG, so that the orbit K(V x) does not contain 0.
Hence K(x, coS) ∩ F(S) = ∅.

The preceding construction is a counterexample to [1, Lemma 7.1], which claims

that x is ergodic if and only if K(x,S) contains a fixed point of S.

Remark 2.5. What Alaoglu and Birkhoff actually proved in [1] is the following:

Let H be a subset of coS which contains S and all operators A ∈ coS such that
A ≥ T for some T 6= I in S. Then x is ergodic if and only if K(x,H) contains a
fixed point. (See the first six lines of the proof of [1, Lemma 7.1]). Note that coS
has the property required for H if S contains a pair T , T−1, where T 6= I .

We observe that the group G constructed in Example 2.4 illustrates the phenom-
enon of multiple fixed points discussed in [1, § 13]: The orbit K(x) contains all
fixed points of the form (α, α, α, . . .), 0 ≤ α ≤ 1.
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Example 2.6. Example 2.4 can be modified to show that even the stronger

condition |K(x,S) ∩ F(S)| = 1 does not ensure the ergodicity of x: Let G1 be

the smallest group of linear operators on `∞ containing the group G defined in

Example 2.4, and the operator

P (ξ1, ξ2, ξ3, . . .) = (−ξ1, ξ2, ξ3, . . .).

Then F(G1) = {0}. If x and V have the same meaning as in Example 2.4 and if

A ∈ coG1, then all coordinates of AV x from a certain index on are equal to 1/3.
As above, 0 ∈ K1(x,G1), but 0 /∈ K1(V x) (subscript 1 refers to orbits under G1).
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