COUNTEREXAMPLES IN ERGODIC THEORY OF EQUICONTINUOUS SEMIGROUPS OF OPERATORS

J. J. Koliha

Abstract

The paper gives counterexamples in abstract ergodic theory of an equicontinuous semigroup \mathcal{S} of linear operators on a locally convex space X. In particular, it is shown that the orbit of an element $x \in X$ may contain a unique fixed point of \mathcal{S} without x being necessarily ergodic.

1. Introduction and Preliminaries

Let \mathcal{S} be a semigroup of continuous linear operators on a locally convex space X, and let co \mathcal{S} be the set of all convex combinations of elements of \mathcal{S}. Further, we define

$$
\begin{equation*}
\mathcal{F}(\mathcal{S})=\bigcap_{A \in \mathcal{S}}(I-A)^{-1}(0) \tag{1.1}
\end{equation*}
$$

the elements of the set $\mathcal{F}(\mathcal{S})$ are the fixed points of \mathcal{S}. We observe that co \mathcal{S} is a semigroup containing \mathcal{S} as a subsemigroup. For any $x \in X$ and any $\mathcal{H} \subset \operatorname{co} \mathcal{S}$, we set

$$
\begin{equation*}
\mathcal{H} x=\bigcup_{A \in \mathcal{H}} A x, \quad \mathcal{K}(x)=\overline{\mathrm{co}}(\mathcal{S} x), \quad \mathcal{K}(x, \mathcal{H})=\bigcap_{A \in \mathcal{H}} \mathcal{K}(A x) . \tag{1.2}
\end{equation*}
$$

$\mathcal{K}(x)$ is called the orbit of x under \mathcal{S} and $\mathcal{K}(x, \mathcal{H})$ the joint orbit of x under \mathcal{H}. (Alternatively, $\mathcal{K}(x)$ is the closure of (co $\mathcal{S}) x$.)

Definition 1.1. Let \mathcal{S} be an equicontinuous semigroup of linear operators on X. We say that a point $x \in X$ is ergodic under \mathcal{S} if the joint orbit $\mathcal{K}(x, \operatorname{co} \mathcal{S})$ consists of a single point. By $\mathcal{E}(\mathcal{S})$ we denote the set of all ergodic points of \mathcal{S}.

Received April 25, 2000; revised August 22, 2000. Communicated by S.-Y. Shaw. 2000 Mathematics Subject Classification: 47A35, 22A99.
Key words and phrases: Equicontinuous semigroup, linear operator, ergodic element, orbit, locally convex space, Alaoglu-Birkhoff convergence.

There is an interesting relation between ergodicity of an element and the AlaogluBirkhoff convergence [1].

An Alaoglu-Birkhoff net (AB-net) $\left\{x_{\alpha}\right\}$ is a map $\alpha \mapsto x_{\alpha}$ of a transitively ordered index set Δ into a Hausdorff topological space Z. We say that a net $\left\{x_{\alpha}\right\}$ converges in the sense of Alaoglu-Birkhoff (AB-converges) to $a \in Z$ if for each neighbourhood $N(a)$ of a and each $\alpha \in \Delta$ there exists $\alpha_{0} \geq \alpha$ in Δ such that $x_{\beta} \in N(a)$ for all $\beta \geq \alpha_{0}$. The point $b \in Z$ is a cluster point of the AB-net $\left\{x_{\alpha}\right\}$ if, for each neighbourhood $N(b)$ of b and each $\alpha \in \Delta$, there exists $\beta \geq \alpha$ in Δ with $x_{\beta} \in N(b)$. The AB-convergence was introduced in [1, pp. 293-295] and further studied in subsequent works such as $[2,3,5]$.

Returning to our operator semigroup \mathcal{S} on a locally convex space X, we consider AB-nets of the following type: For a given $x \in X,\left\{x_{A}\right\}$ in this paper will always denote the net $A \mapsto A x$ with the index set co \mathcal{S} transitively ordered by stipulating that

$$
A \leq B \text { if there exists } C \in \operatorname{co} \mathcal{S} \text { such that } C A=B
$$

We write $x_{A} \rightarrow a$ if the net $\left\{x_{A}\right\}$ AB-converges to $a \in X$ in the locally convex topology of X, and $x_{A} \rightharpoonup a$ if it AB-converges in the weak topology of X.

We then have the following criteria for ergodicity in which convergence means the AB -convergence.

Theorem 1.2. If \mathcal{S} is an equicontinuous semigroup \mathcal{S} of linear operators on a locally convex space X, the following conditions are equivalent :
(i) x is ergodic with $\mathcal{K}(x, \cos)=\{a\}$.
(ii) $\mathcal{K}(x, \cos) \cap \mathcal{F}(\mathcal{S})=\{a\}$.
(iii) $a \in \mathcal{K}(x, \operatorname{co} \mathcal{S}) \cap \mathcal{F}(\mathcal{S})$.
(iv) $x_{A} \rightarrow a$.
(v) $x_{A} \rightharpoonup a$.
(vi) $\left\{x_{A}\right\}$ clusters weakly at a fixed point of \mathcal{S}.

Proof. (i) $\Longrightarrow(i i)$. From $\mathcal{K}(a) \subset \mathcal{K}(x, \operatorname{co} \mathcal{S})$ follows $\mathcal{K}(a)=\{a\}$, and hence a is a fixed point of \mathcal{S}.
(ii) \Longrightarrow (iii) is clear.
(iii) \Longrightarrow (iv). For a given 0-neighbourhood U in X choose a 0-neighbourhood V such that $\operatorname{co} \mathcal{S}(V) \subset U$ (equicontinuity). If $A \in \operatorname{co} \mathcal{S}$, find $C \in \operatorname{co} \mathcal{S}$ satisfying $C A x-a \in V(a \in \mathcal{K}(A x))$. Then $A_{0}:=C A \geq A$, and for each $B=D A_{0} \geq A_{0}$ with $D \in \cos$,

$$
x_{B}-a=D(C A x-a) \in D(V) \subset U .
$$

This proves $x_{A} \rightarrow a$.
(iv) $\Longrightarrow(\mathrm{v})$ is obvious.
(v) $\Longrightarrow(\mathrm{vi})$. We need to prove that $a \in \mathcal{F}(\mathcal{S})$. To this end, we use properties of the AB-convergence found in [1, pp. 293-295]. Let $T \in \mathcal{S}$. Then $T x_{A} \rightharpoonup T a$ (weak AB-continuity of T). The AB-net $\left\{x_{T A}: A \in \operatorname{co} \mathcal{S}\right\}$ is a subnet of $\left\{x_{A}: A \in \operatorname{co} \mathcal{S}\right\}$, and $T x_{A}=x_{T A} \rightharpoonup a$. Hence $T a=a$ by the uniqueness of limits in Hausdorff spaces.
(vi) \Longrightarrow (i). Let $a \in \mathcal{F}(\mathcal{S})$ be a weak cluster point of x_{A}. We show that $a \in \mathcal{K}(x, \operatorname{co} \mathcal{S})$. Let $A \in \operatorname{co} \mathcal{S}$ and let $N(a)$ be a weak neighbourhood of a. Then there exists $B=C A \geq A$ such that $x_{B}=C A x \in N(a)$, so that a is in the weak closure of $\cos (\bar{S} x) \subset \mathcal{K}(A x)$. Since $\mathcal{K}(A x)$ is a closed convex set, $a \in \mathcal{K}(A x)$ for each $A \in \operatorname{co} \mathcal{S}$. In particular, $a \in \mathcal{K}(x)$. Suppose that $b \in \mathcal{K}(x, \operatorname{co} \mathcal{S})$. If U is a convex 0 -neighbourhood in X, choose a 0 -neighbourhood V such that $\operatorname{co} \mathcal{S}(V) \subset(1 / 2) U$. There are $A, B \in \operatorname{co} \mathcal{S}$ such that $a-A x \in V$ and $B A x-b \in(1 / 2) U$. Then

$$
a-b=B(a-A x)+(B A x-b) \in B(V)+\frac{1}{2} U \subset U
$$

which proves that $a=b$. Hence $\mathcal{K}(x, \operatorname{co} \mathcal{S})=\{a\}$.
In the following section we will see that some conditions of ergodicity under an equicontinuous semigroup given by Alaoglu and Birkhoff in [1] may fail. Fortunately, the main results of [1], in particular [1, Theorem 6], are unaffected by this failure:

Theorem 1.3 (Alaoglu-Birkhoff). Let X be a uniformly convex Banach space whose dual X^{*} is strictly convex. If \mathcal{S} is a contraction semigroup on X, then $\mathcal{E}(\mathcal{S})=X$.

This theorem is reproduced in Krengel's monograph [4] as Theorem 1.10.

2. Counterexamples

In this section, \mathcal{S} denotes an equicontinuous semigroup of linear operators on a locally convex space X.

We include the following theorem to motivate Example 2.2.
Theorem 2.1. Let \mathcal{S} be an equicontinuous semigroup of linear operators on a locally convex space X, and let Γ be a convex subset of X invariant under \mathcal{S} such that

$$
\begin{equation*}
|\mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)|=1 \text { for each } x \in \Gamma \tag{2.1}
\end{equation*}
$$

Then $\Gamma \subset \mathcal{E}(\mathcal{S})$.

Proof. Since Γ is convex and invariant under \mathcal{S}, it is also invariant under co \mathcal{S}. For any $x \in \Gamma$ and $A \in \operatorname{co} \mathcal{S}, \mathcal{K}(A x)$ contains a (unique) fixed point a by hypothesis. By (2.1), we have $\mathcal{K}(A x) \cap \mathcal{F}(\mathcal{S})=\mathcal{K}(x) \cap \mathcal{F}(\mathcal{S})=\{a\}$ for all $A \in$ co \mathcal{S}. Then $\mathcal{K}(x, \cos) \cap \mathcal{F}(\mathcal{S})=\{a\}$ and the conclusion follows from Theorem 1.2.

Example 2.2. The condition

$$
\begin{equation*}
|\mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)|=1 \tag{2.2}
\end{equation*}
$$

is necessary but not sufficient for the ergodicity of $x \in X$.
Let x be ergodic with $\mathcal{K}(x, \cos)=\{b\}$ and let $a \in \mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)$. Then an argument similar to the one used in the proof of $(\mathrm{vi}) \Longrightarrow(\mathrm{i})$ in Theorem 1.2 shows that $a=b$, which means that (2.2) is necessary for the ergodicity of x.

To show that the condition is not sufficient, consider the Banach space ℓ^{1} and the semigroup \mathcal{S} of bounded linear operators on ℓ^{1} generated by

$$
V\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(\frac{1}{2} \xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) \quad \text { and } \quad T\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(0, \xi_{1}, \xi_{2}, \ldots\right)
$$

We observe that $V T=T$ and that each element of \mathcal{S} is of the form $T^{i} V^{j}, i+j \geq 1$. Let $x=(1,0,0, \ldots) \in \ell^{1}$. Since $V^{j} x=2^{-j} x \rightarrow 0$ in norm as $j \rightarrow \infty$, the orbit $\mathcal{K}(x)$ contains 0 . Moreover, 0 is the only fixed point of \mathcal{S} since $I-T$ is injective. From the general form of operators in \mathcal{S} we deduce that any operator $A \geq T$ in co \mathcal{S} can be expressed as a convex combination $A=\sum_{i=1}^{n} \lambda_{i} T^{i}$. Then

$$
\|A x\|=\left\|\sum_{i=1}^{n} \lambda_{i} e_{i+1}\right\|=\sum_{i=1}^{n} \lambda_{i}=1
$$

where $e_{i}=\left(\delta_{i k}\right)_{k=1}^{\infty}$. This shows that $x_{A} \nrightarrow 0$. Hence x is not ergodic by Theorem 1.2.

The preceding construction is a counterexample to [1, Theorem 2], which claims that $x \in X$ is ergodic if and only if $|\mathcal{F}(\mathcal{S}) \cap \mathcal{K}(x)|=1$.

The next result shows that condition (vi) of Theorem 1.2 cannot be weakened.
Example 2.3. The condition that $\left\{x_{A}\right\}$ has a weak cluster point is necessary but not sufficient for x to be ergodic: Let \mathcal{S} be the semigroup of contractions on the Banach space ℓ^{1} generated by

$$
V\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(\sum_{i=1}^{\infty} \xi_{i}, 0,0, \ldots\right) \quad \text { and } \quad T\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(0, \xi_{1}, \xi_{2}, \ldots\right)
$$

Observe that $V T=V$ and $V^{2}=V$. If $x=(1,0,0, \ldots) \in \ell^{1}$, then $V A x=x$ for all $A \in \cos$. Hence the net $\left\{x_{A}: A \in \cos \mathcal{S}\right\}$ contains a constant subnet
$\left\{x_{V A}: A \in \operatorname{co} \mathcal{S}\right\}$ convergent to x, but x is not a fixed point of \mathcal{S}. There x is not ergodic by Theorem 1.2. The necessity is obvious.

Our example also shows that the condition $\mathcal{K}(x, \operatorname{co} \mathcal{S}) \neq \emptyset$ is necessary but not sufficient for x to be ergodic.

Example 2.4. The condition $|\mathcal{K}(x, \mathcal{S}) \cap \mathcal{F}(\mathcal{S})| \geq 1$ is necessary but not sufficient for x to be ergodic: Let Π be the permutation group on the set \mathbb{N} of all positive integers. For any $\sigma \in \Pi$, we define the operator $T_{\sigma}: \ell^{\infty} \rightarrow \ell^{\infty}$ by

$$
T_{\sigma}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{\sigma(1)}, \xi_{\sigma(2)}, \ldots\right)
$$

All operators of the form $T_{\sigma}(\sigma \in \Pi)$ form an operator group \mathcal{G} of linear isometries on ℓ^{∞} which is group isomorphic to Π. Let $x=(1,-1,1,-1,1,-1, \ldots)$. We show that

$$
0 \in \mathcal{K}(x, \mathcal{G}) \quad \text { and } \quad 0 \notin \mathcal{K}(x, \operatorname{co} \mathcal{G}) .
$$

Let $\omega \in \Pi$ be the permutation that interchanges each odd number with its successor. Then $(1 / 2)\left(I+T_{\omega}\right) \in \operatorname{co} \mathcal{S}$, and $\left((1 / 2)\left(I+T_{\omega}\right) A^{-1}\right) A x=0$ for any $A \in \mathcal{G}$. Hence $0 \in \mathcal{K}(A x)$ for each $A \in \mathcal{G}$. There exist permutations $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \Pi$ such that

$$
\sigma_{1}(2 n)=3 n, \quad \sigma_{2}(2 n)=3 n-1, \quad \sigma_{3}(2 n)=3 n-2 \quad \text { for } n \in \mathbb{N} .
$$

Then

$$
\begin{aligned}
& T_{\sigma_{1}} x=(1,1,-1,1,1,-1,1,1,-1, \ldots), \\
& T_{\sigma_{2}} x=(1,-1,1,1,-1,1,1,-1,1, \ldots), \\
& T_{\sigma_{3}} x=(-1,1,1,-1,1,1,-1,1,1, \ldots) .
\end{aligned}
$$

Set $V=(1 / 3)\left(T_{\sigma_{1}}+T_{\sigma_{2}}+T_{\sigma_{3}}\right) \in \operatorname{co} \mathcal{S}$. Then $V x=((1 / 3),(1 / 3),(1 / 3), \ldots)$, and $A V x=V x$ for all $A \in \operatorname{co} \mathcal{G}$, so that the orbit $\mathcal{K}(V x)$ does not contain 0 . Hence $\mathcal{K}(x, \operatorname{co} \mathcal{S}) \cap \mathcal{F}(\mathcal{S})=\emptyset$.

The preceding construction is a counterexample to [1, Lemma 7.1], which claims that x is ergodic if and only if $\mathcal{K}(x, \mathcal{S})$ contains a fixed point of \mathcal{S}.

Remark 2.5. What Alaoglu and Birkhoff actually proved in [1] is the following: Let \mathcal{H} be a subset of \cos which contains \mathcal{S} and all operators $A \in \operatorname{co} \mathcal{S}$ such that $A \geq T$ for some $T \neq I$ in \mathcal{S}. Then x is ergodic if and only if $\mathcal{K}(x, \mathcal{H})$ contains a fixed point. (See the first six lines of the proof of [1, Lemma 7.1]). Note that $\operatorname{co} \mathcal{S}$ has the property required for \mathcal{H} if \mathcal{S} contains a pair T, T^{-1}, where $T \neq I$.

We observe that the group \mathcal{G} constructed in Example 2.4 illustrates the phenomenon of multiple fixed points discussed in [1, § 13]: The orbit $\mathcal{K}(x)$ contains all fixed points of the form $(\alpha, \alpha, \alpha, \ldots), 0 \leq \alpha \leq 1$.

Example 2.6. Example 2.4 can be modified to show that even the stronger condition $|\mathcal{K}(x, \mathcal{S}) \cap \mathcal{F}(\mathcal{S})|=1$ does not ensure the ergodicity of x : Let \mathcal{G}_{1} be the smallest group of linear operators on ℓ^{∞} containing the group \mathcal{G} defined in Example 2.4, and the operator

$$
P\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(-\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) .
$$

Then $\mathcal{F}\left(\mathcal{G}_{1}\right)=\{0\}$. If x and V have the same meaning as in Example 2.4 and if $A \in \operatorname{co} \mathcal{G}_{1}$, then all coordinates of $A V x$ from a certain index on are equal to $1 / 3$. As above, $0 \in \mathcal{K}_{1}\left(x, \mathcal{G}_{1}\right)$, but $0 \notin \mathcal{K}_{1}(V x)$ (subscript 1 refers to orbits under \mathcal{G}_{1}).

Acknowledgement

The author is indebted to A. P. Leung for several suggestions for the construction of the examples.

References

1. L. Alaoglu and G. Birkhoff, General ergodic theorems, Ann. of Math. 41 (1940), 293-309.
2. M. M. Day, Oriented systems, Duke Math. J. 11 (1944), 201-229.
3. M. M. Day, Convergence, closure and neighborhoods, Duke Math. J. 11 (1944), 181-199.
4. U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
5. S. Todorčević and J. Zapletal, On the Alaoglu-Birkhoff equivalence of posets, Illinois J. Math. 43 (1999), 281-290.

J. J. Koliha
Department of Mathematics and Statistics
University of Melbourne
VIC 3010, Australia
E-mail: j.koliha@ms.unimelb.edu.au

