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FIXED POINTS AND APPROXIMATE FIXED POINTS IN

PRODUCT SPACES

R. Espínola and W. A. Kirk

Abstract. The paper deals with the general theme of what is known about

the existence of fixed points and approximate fixed points for mappings which

satisfy geometric conditions in product spaces. In particular it is shown that

if X and Y are metric spaces each of which has the fixed point property for

nonexpansive mappings, then the product space (X ×Y )∞ has the fixed point

property for nonexpansive mappings satisfying various contractive conditions.

It is also shown that the product space H = (M × K)∞ has the approximate

fixed point property for nonexpansive mappings wheneverM is a metric space

which has the approximate fixed point property for such mappings and K is

a bounded convex subset of a Banach space.

1. INTRODUCTION

The study of fixed point theory for nonexpansive mappings in product spaces

is an outgrowth of its analog for continuous mappings. A topological space is said

to have the fixed point property if every continuous self-map of the space has a

fixed point. It has been known for some time that if both X and Y have the fixed

point property for continouus mappings, then it need not be the case that X×Y has

the fixed point property for mappings f : X × Y → X × Y which are continuous

relative to the product topology. Indeed, an example is given in [4] of a metric

space X which has the fixed point property, yet the space X × X fails to have the

fixed point property. See, for example, [6] (specifically, Theorem 4.9) for a more

extensive discussion.
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In 1968, Nadler [17] initiated a study of fixed point properties of mappings

T : X×Y → X ×Y , where X is a topological space with the fixed point property,

Y is a metric space, and T is a continuous mapping which is also a local contraction

in its second coordinate. Fora continues this approach in [7].

The above results lead naturally to the question of what happens if both X and

Y are metric spaces with the contractive conditions placed directly on T . For this
discussion we need to fix some terminology. A mapping f of a metric space (M, d)
into a metric space (N, r) is said to be nonexpansive if r(f(x), f(y)) ≤ d(x, y) for
all x, y ∈ M. If r(f(x), f(y)) < d(x, y) for all x, y ∈ M with x 6= y, then f is

said to be strictly contractive. A mapping f is said to be a generalized contraction
if for each x ∈ M there exists α(x) ∈ (0, 1) such that for each y ∈ M, r(f(x),
f(y)) ≤ α(x)d(x, y). If α is a constant map, then of course f is a contraction

mapping in the sense of Banach.

We shall use fix (f) to denote the set of fixed points of a mapping f : M → M .

If (X, ρ) and (Y, d) are metric spaces, then the metric d∞ on X × Y is defined

in the usual way:

d∞((x, u), (y, v)) = max{ρ(x, y), d(u, v)}

for (x, u), (y, v) ∈ X × Y . We shall confine ourselves to the metric d∞ in this

paper, although all of the results, indeed in some instances even stronger ones, seem

to hold for the metrics dp, p ∈ [1,∞),

dp((x, u), (y, v)) = [(ρ(x, y))p + (d(u, v))p]1/p.

A basic question now becomes: If (X, ρ) and (Y, d) have the fixed point property
for nonexpansive mappings and if T : X ×Y → X ×Y is nonexpansive relative to

the metric d∞, then does T necessarily have a fixed point? Although sharp results

have been obtained, the full answer to this question remains open.

In the next section we summarize what is known about metric fixed point theory

in product spaces. In Section 3 we prove some new results for mappings satisfying

‘contractive’ conditions. In Section 4 we prove a new result about the existence

of ‘approximate fixed points’ for nonexpansive mappings in product spaces by ap-

plying a well-known result about asymptotic regularity of ‘averaged’ nonexpansive

mappings.

2. OVERVIEW

We begin by summarizing the results of Nadler and Fora. Here and throughout

we use P1 (resp., P2) to denote the natural coordinate projection of X × Y onto X
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(resp., onto Y ). Version (C) of this result is due to Nadler; version (C′) to Fora.

Alternate proofs of these results are given in [11].

Theorem 2.1. Suppose X is a topological space which has the fixed point

property with respect to continuous mappings, suppose Y is a complete metric

space, and suppose T : X × Y → X × Y is a continuous mapping which satisfies

(C) for each x ∈ X, there exists a number λ(x) ∈ (0, 1) such that for all u, v ∈ Y,

d(P2 ◦ T (x, u), P2 ◦ T (x, v)) ≤ λ(x)d(u, v).

Then T has a fixed point if either

(a) T is uniformly continuous; or

(b) Y is locally compact.

Assumptions (a) and (b) can be dropped if condition (C) is strengthened to

(C′) for each x ∈ X, there exists a number λ(x) ∈ (0, 1) and a neighborhood Vx

such that for each w ∈ Vx and all u, v ∈ Y,

d(P2 ◦ T (w, u), P2 ◦ T (w, v)) ≤ λ(x)d(u, v).

We now turn to nonexpansive mappings in product spaces. In [15], it was

shown that if a bounded closed convex subset H of a Banach space has the fixed

point property for nonexpansive mappings, and if K is a bounded closed convex

subset of either a uniformly convex or uniformly smooth Banach space, then every

nonexpansive T : H ×K → H ×K has a fixed point. This result led to a sequence

of generalizations, culminating in a remarkable result of T. Kuczumow [16].

In order to describe Kuczumow’s result, we need some additional facts. It is

known that, in general, a weakly compact convex subset of a Banach space need not

have the fixed point property for nonexpansive mappings (Alspach [1]), but at the

same time weak compactness (or reflexivity of the underlying space) in conjunction

with a variety of other geometric conditions (e.g., see [9]) does in fact assure that

any closed convex set has the fixed point property for nonexpansive mappings. In

view of this, the following definition is quite natural.

Definition 2.1. A closed convex subset K is said to have the generic fixed

point property (for nonexpansive mappings) if for every nonexpansive T : K → K
and every T -invariant nonempty closed convex H ⊆ K, fix (T )∩ H 6= ∅.

Kuczumow used a retraction approach based on a method of Bruck [3] to prove

the following.

Theorem 2.2. Let X be a Banach space. Suppose K ⊆ X is weakly compact

convex and has the generic fixed point property, and suppose (Y, d) is a metric
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space which has the fixed point property for nonexpansive mappings. Then every

nonexpansive T : (K × Y )∞ → (K × Y )∞ has a fixed point.

Kuczumow observed that if X is a conjugate space, then the weak topology in

the above result can be replaced by the weak∗ topology.

Bruck’s paper [3] is remarkably rich in ideas, and in fact a different approach

found in the same paper can be modified to prove the following result. The details

are found in [12].

Theorem 2.3. Let E be a Banach space. SupposeX ⊆ E is a separable closed

convex subset of E which has the generic fixed point property, and suppose (Y, d)
is a separable metric space which has the fixed point property for nonexpansive

mappings. Then every nonexpansive T : (X × Y )∞ → (X × Y )∞ has a fixed

point.

While its method of proof is different, it is not clear to what extent, if any,

Theorem 2.3 is actually qualitativelymore general than Theorem 2.2. This is because

there is no known example of a closed convex subset of a Banach space which has

the generic fixed point property yet fails to be weakly compact.

There are perhaps two additional results which should be mentioned. While

we are basically interested here in the case p = ∞, it is quite easy to prove the
following for 1 ≤ p < ∞.

Theorem 2.4. Let E and F be Banach spaces. Suppose X ⊆ E and Y ⊆
F both have the fixed point property for nonexpansive mappings. Then every

nonexpansive T : (X × Y )p → (X × Y )p has a fixed point for 1 ≤ p < ∞.

A proof of the above result is given in [14], based on an argument given for the

following result in [11].

Theorem 2.5. Let E and F be Banach spaces. Suppose X ⊆ E and Y ⊆
F both have the fixed point property for generalized contractions. Then every

generalized contractionT : (X×Y )p → (X×Y )p has a fixed point for 1 ≤ p ≤ ∞.

This completes an overview of what appear to be the most important known

results. We now turn to some new observations.

3. CONTRACTIVE MAPPINGS IN PRODUCT SPACES

If the assumption of nonexpansiveness is strengthened, then it is possible to

prove additional results in a fairly direct manner.
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Theorem 3.1. Let (X, ρ) and (Y, d) be metric spaces. Suppose Y has the

fixed point property for nonexpansive mappings and suppose X has the fixed point

property for strictly contractive mappings, and suppose T : (X×Y )∞ → (X×Y )∞
is a nonexpansive mapping which satisfies the additional condition

ρ(P1 ◦ T (x, u), P1 ◦ T (y, v)) < d∞((x, u), (y, v))

for all (x, u), (y, v) ∈ X × Y satisfying ρ(x, y) 6= d(u, v). Then T has a fixed

point.

Theorem 3.2. Let (X, ρ) and (Y, d) be metric spaces, each of which has the
fixed point property for strictly contractive mappings. Then every strictly contrac-

tive mapping T : (X × Y )∞ → (X × Y )∞ has a fixed point.

Proof of Theorem 3.1. Fix u ∈ Y and define Tu : X → X by setting

Tu(x) = P1 ◦ T (x, u), x ∈ X.

Then if x 6= y, it follows that ρ(x, y) 6= d(u, u) = 0, and we have

ρ(Tu(x), Tu(y))= ρ(P1 ◦ T (x, u)), ρ(P1 ◦ T (y, u)) < d∞((x, u), (y, u))

= ρ(x, y).

Thus Tu is strictly contractive and by assumption has a unique fixed g(u) ∈ X.
Now define

ϕ(u) = P2 ◦ T (g(u), u).

We show that ϕ is nonexpansive. Note that since Tu(g(u)) = g(u) and Tv(g(v)) =
g(v), we have

g(u) = P1 ◦ T (g(u), u); g(v) = P1 ◦ T (g(v), v),

and, moreover, if ρ(g(u), g(v)) 6= d(u, v), then

ρ(g(u), g(v))= ρ(P1 ◦ T (g(u), u), P1 ◦ T (g(v), v))

< d∞((g(u), u), (g(v), v))

= max{ρ(g(u), g(v)), d(u, v)}

= d(u, v).

Therefore, ρ(g(u), g(v))≤ d(u, v) for all u, v ∈ Y. It follows that

d(ϕ(u), ϕ(v)) = d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))

≤ max{ρ(P1 ◦ T (g(u), u), P1 ◦ T (g(v), v)), d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))}

= d∞(T (g(u), u), T (g(v), v))≤ d∞((g(u), u), (g(v), v))

= max{ρ(g(u), g(v)), d(u, v)}= d(u, v).
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Therefore, ϕ : Y → Y is nonexpansive. Since Y has the fixed point property for

nonexpansive mappings, there exists u ∈ Y such that ϕ(u) = u; whence

u = ϕ(u) = P2 ◦ T (g(u), u).

Since by assumption g(u) ∈ fix (Tu), we have Tu(g(u)) = P1 ◦ T (g(u), u).

Proof of Theorem 3.2. The argument follows the previous one, except in this

case we must show that ϕ is strictly contractive. The fact that T is strictly contractive

assures that

max{ρ(P1 ◦ T (x, u), P1 ◦ T (y, v)), d(P2 ◦ T (x, u), P2 ◦ T (y, v))}

< max{ρ(x, y), d(u, v)}

if x 6= y or u 6= v. Following the previous argument step-by-step, we conclude that
for u ∈ Y and x 6= y, the mapping Tu is strictly contractive and has a unique fixed

point g(u). Also, if u 6= v we have

d(ϕ(u), ϕ(v))= d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))

≤ d∞(T (g(u), u), T (g(v), v))

< d∞((g(u), u), (g(v), v))

= d(u, v).

The conclusion now follows as in Theorem 3.1.

The following is a variant of Theorem 3.1. The assumptions on the mapping T

do not seem to be comparable.

Theorem 3.3. Let (X, ρ) and (Y, d) be metric spaces, each of which has the
fixed point property for nonexpansive mappings, and suppose T : (X × Y )∞ →
(X × Y )∞ is a nonexpansive mapping which satisfies the additional condition

ρ(P1 ◦ T (x, u, P1 ◦ T (y, v)) < d∞((x, u), (y, v))

for all (x, u), (y, v) ∈ X × Y satisfying u 6= v and x 6= y. Then T has a fixed

point.

Theorem 3.3 has the following immediate corollary.

Corollary 3.1. Let (X, ρ) and (Y, d) be metric spaces, each of which has the
fixed point property for nonexpansive mappings, and suppose T : (X × Y )∞ →
(X × Y )∞ is a nonexpansive mapping which is quasi-contractive in the sense that

d∞(T (x, u), T (y, v)) < d∞((x, u), (y, v))
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for all (x, u), (y, v) ∈ X × Y satisfying u 6= v and x 6= y. Then T has a (unique)
fixed point.

Note that the condition of the corollary is weaker than the contractive condition

of Theorem 3.2. In exchange, a little more is assumed about the spaces; specifically

that X has the fixed point property for nonexpansive mappings.

Proof of Theorem 3.3. Fix u ∈ Y and as before define Tu : X → X by setting

Tu(x) = P1 ◦ T (x, u), x ∈ X.

Then

ρ(Tu(x), Tu(y))

≤ max{ρ(P1 ◦ T (x, u), P1 ◦ T (y, u)), d(P2 ◦ T (x, u), P2 ◦ T (y, u))}

= d∞(T (x, u), T (y, u))

≤ d∞((x, u), (y, u))

= ρ(x, y).

Thus Tu is nonexpansive and by assumption has a nonempty fixed point set

fix (Tu) ⊆ X. Let g be any selection of the mapping

u 7→ fix (Tu)

and define ϕ as in Theorem 3.1. We show that ϕ is nonexpansive. Since g(u) ∈
fix (Tu) and g(v) ∈ fix (Tv), we have

g(u) = P1 ◦ T (g(u), u); g(v) = P1 ◦ T (g(v), v).

Now let u, v ∈ Y. There are two cases.

1. If g(u) = g(v), then obviously ρ(g(u), g(v))≤ d(u, v) and we have

d(ϕ(u), ϕ(v)) = d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))

≤ max{ρ(P1 ◦ T (g(u), u), P1 ◦ T (g(v), v)), d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))}

= d∞(T (g(u), u), T (g(v), v))≤ d∞((g(u), u), (g(v), v))≤ d(u, v).

2. On the other hand, if g(u) 6= g(v), then it must also be the case that u 6= v.

Therefore,

ρ(g(u), g(v)) = ρ(P1 ◦ T (g(u), u), P1 ◦ T (g(v), v))
< d∞((g(u), u), (g(v), v))
= max{ρ(g(u), g(v)), d(u, v)}
= d(u, v)
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and it follows that

d(ϕ(u), ϕ(v)) = d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))

≤ max{ρ(P1 ◦ T (g(u), u), P1 ◦ T (g(v), v)), d(P2 ◦ T (g(u), u), P2 ◦ T (g(v), v))}

= d∞(T (g(u), u), T(g(v), v))

≤ d∞((g(u), u), (g(v), v))

= max{ρ(g(u), g(v)), d(u, v)} = d(u, v).

Therefore, in either case, d(ϕ(u), ϕ(v)) ≤ d(u, v), and ϕ : Y → Y is nonex-

pansive. The conclusion again follows as in Theorem 3.1.

In the preceding proof, the question might arise as to whether fix (Tu) is a
singleton. Suppose otherwise, and let g1(u) and g2(u) be distinct choices for the
selection u 7→ fix (Tu). Then according to case 2, for any v ∈ Y,

d(g1(u), g2(u)) ≤ d(g1(u), v) + d(g2(u), v) < 2d(u, v).

Obviously, this can happen only if u is an isolated point of Y.

To facilitate comparison, we summarize the foregoing results as follows:

Theorem 3.4. Let (X, ρ) and (Y, d) be metric spaces, and suppose T : (X ×
Y )∞ → (X × Y )∞ is a nonexpansive mapping. Then T has a fixed point if any

one of the following conditions holds.

(a) X and Y have the fixed point property for nonexpansive mappings and T
satisfies

d∞(T (x, u), T (y, v)) < d∞((x, u), (y, v))

for all (x, u), (y, v) ∈ X × Y satisfying u 6= v and x 6= y.

(b) Y has the fixed point property for nonexpansive mappings, X has the fixed

point property for strictly contractive mappings, and T : (X × Y )∞ →
(X × Y )∞ satisfies

ρ(P1 ◦ T (x, u), P1 ◦ T (y, v)) < d∞((x, u), (y, v))

for all (x, u), (y, v) ∈ X × Y satisfying ρ(x, y) 6= d(u, v).
(c) X and Y have the fixed point property for strictly contractive mappings and

T is strictly contractive.
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4. APPROXIMATE FIXED POINTS IN PRODUCT SPACES

In this section we prove an approximate fixed point theorem for nonexpansive

mappings in certain product spaces. A metric space (M, d) is said to have the
approximate fixed point property if any nonexpansive mapping T : M → M has

an approximate fixed point sequence, that is, a sequence {un} in M for which

limn d(un, T (un)) = 0. This of course is equivalent to saying

inf{d(x, T (x)) : x ∈ M} = 0.

Our theorem is based on the following result, which was proved for a single

mapping (and for a more general convergence process) by Ishikawa [10]. Edelstein

and O’Brien [5] showed that the convergence is uniform over K, and subsequently

Goebel and Kirk [8] showed that in fact the convergence is uniform over x0 in K
and over the class of all nonexpansive mappings T : K → K. Another proof of this

fact is given in [13]. For a technical study of the rate of uniform convergence and

a comprehensive review of the literature, see [2].

Theorem 4.1. Let K be a bounded convex subset of a Banach space and let

ε > 0. Then there exists N ∈ N such that if n ≥ N, if x0 ∈ K, and if T : K → K
is nonexpansive, then

‖fn(x0) − fn+1(x0)‖ ≤ ε,

where f = (1/2)(I + T ).

An interesting feature of the proof given below is the fact that the penultimate

step of the proof requires the uniformity of the convergence of {fn(x0)} in the
above result over the class of all nonexpansive T : K → K.

Theorem 4.2. Suppose M is a metric space which has the approximate fixed

point property for nonexpansive mappings and suppose K is a bounded closed

convex subset of a Banach space X . Let

H = (K × M)∞.

Then H has the approximate fixed point property for nonexpansive mappings.

Proof. Let T : H → H be nonexpansive and let P1 and P2 denote the respective

coordinate projections of H onto K and M . Fix y ∈ M and define Ty : K → K

by setting

Ty(x) = P1 ◦ T (x, y), x ∈ K.

Now fix x0 ∈ K and set fy = (I + Ty)/2.
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Now, if u, v ∈ M , then

‖fu(x0) − fv(x0)‖ = (1/2)‖Tu(x0) − Tv(x0)‖

= (1/2)‖P1 ◦ T (u, x0) − P1 ◦ T (v, x0)‖

≤ (1/2)d∞(T (u, x0), T (v, x0))

≤ (1/2)d∞((u, x0), (v, x0))

= (1/2)d(u, v).

Suppose ‖fn
u (x0) − fn

v (x0)‖ ≤ d(u, v). Then

‖fn+1
u (x0) − fn+1

v (x0)‖

= ‖fu ◦ fn
u (x0) − fv ◦ fn

v (x0)‖

= (1/2)‖fn
u (x0) − Tu(fn

u (x0)) + fn
v (x0) − Tv(fn

v (x0))‖

≤ (1/2)‖fn
u (x0) − fn

v (x0)‖

+ (1/2)‖Tu(fn
u (x0))− Tv(fn

v (x0))‖

≤ (1/2)d(u, v)+ (1/2)‖P1 ◦ T (u, fn
u (x0))− P1 ◦ T (v, fn

v (x0))‖

≤ (1/2)d(u, v)+ (1/2)‖T (u, fn
u (x0)) − T (v, fn

v (x0))‖

≤ (1/2)d(u, v)+ (1/2)‖(u, fn
u (x0)) − (v, fn

v (x0))‖

≤ d(u, v).

By induction, we conclude that

‖fn
u (x0)− fn

v (x0)‖ ≤ d(u, v)

for all u, v ∈ M ; n ∈ N. Now for each n, define ϕn : M → M via the relation

ϕn(x) = P2 ◦ T (fn
x (x0), x).

Then

d(ϕn(u), ϕn(v)) = d(P2 ◦ T (fn
u (x0), u), P2 ◦ T (fn

v (x0), v))

≤ d∞((fn
u (x0), u), (fn

v (x0), v))

≤ d(u, v).
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By assumption, there exists yn ∈ M such that d(ϕn(yn), yn) ≤ 1/n, n = 1, 2, · · · .
Thus we have

d(P2 ◦ T (fn
yn

(x0), yn), yn) = d(P2 ◦ T (fn
yn

(x0), yn), P2(fn
yn

(x0), yn))

≤ 1/n.

Moreover, by Theorem 4.1,

‖P1(fn
yn

(x0), yn) − P1 ◦ T (fn
yn

(x0), yn)‖

= ‖fn
yn

(x0) − P1 ◦ T (fn
yn

(x0), yn)‖

= ‖fn
yn

(x0) − Tyn(fn
yn

(x0))‖

= (1/2)‖fn
yn

(x0)− fn+1
yn

(x0)‖ → 0.

Therefore,

d∞((fn
yn

(x0), yn), T (fn
yn

(x0), yn))

= max{(1/2)‖fn
yn

(x0) − fn+1
yn

(x0)‖, 1/n} → 0,

and {(fn
yn

(x0), yn)} is an approximate fixed point sequence for T.

The proof above is suggested by the approach of [15].
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