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FINITE MATRICES SIMILAR TO IRREDUCIBLE ONES

Ching-I Hsin

Abstract. In this paper, we prove that an n×n (n ≥ 3) complex matrix
T is similar to an irreducible matrix if and only if T is not quadratic and
rank (T − λI) ≥ n/2 for every complex number λ. As an application,
we prove that: for any integers n and k with 3 ≤ k < n, there exists an
n × n irreducible nilpotent matrix of index k. This answers a question
posed by P. R. Halmos

1. INTRODUCTION

A matrix (or an operator) is said to be irreducible if it commutes with
no (orthogonal) projection other than 0 and I, and is said to be reducible
otherwise.

Every operator on a nonseperable Hilbert space is reducible. On infinite-
dimensional seperable Hilbert spaces, Gilfeather [4] proved that every normal
operator without eigenvalue is similar to an irreducible operator. Later on,
Fong and Jiang [3] improved Gilfeather’s work by allowing the presence of
eigenvalues. The aim of this paper is to completely characterize those matrices
which are similar to irreducible ones.

Let T be a 2×2 matrix. Because T is similar to its Jordan form, T is similar

to one of the following matrices
[

α 0
0 α

]
,
[

α 0
0 β

]
or

[
α 1
0 α

]
, where α, β

are distinct complex numbers. Since
[

α 0
0 β

]
is similar to the irreducible

matrix
[

α 1
0 β

]
, we see that a 2×2 matrix is similar to an irreducible matrix

if and only if it is not a scalar matrix. We have thus characterized those 2× 2
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matrices which are similar to irreducible ones. From now on, we consider
n × n complex matrices T , where n ≥ 3. They are said to be quadratic if
T 2 + αT + βI = 0 for some complex numbers α, β. We shall prove the
following Main Theorem :

Main Theorem. An n× n (n ≥ 3) matrix T is similar to an irreducible
matrix if and only if T is not quadratic and rank (T − λI) ≥ n/2 for every
complex number λ.

We use Mn×m to denote the set of all n×m complex matrices, and Mn =
Mn×n. Also, we use diag [a1, a2, · · · , an] to denote the diagonal matrix with
entries a1, a2, · · · , an along the diagonal. For T ∈ Mn, we say that T has
property (∗) if

(∗) T is not quadratic and rank (T − λIn) ≥ n/2 for every complex number
λ.

We now prove the necessity part of the Main Theorem.

Proposition 1.1. Let T ∈ Mn (n ≥ 3). If T is similar to an irreducible
matrix, then T has property (∗).

Proof. We first show that if T is quadratic, then STS−1 is reducible for
any invertible matrix S ∈ Mn. Because T is quadratic, so is STS−1. Thus
it suffices to show that every quadratic matrix T is reducible. Gilfeather [4]
used the structure theory of binormal operators (defined in [1]) to prove this.
Here we give an alternative proof. We know that any quadratic matrix T is
unitarily equivalent to a matrix of the form

α1Im ⊕ α2I` ⊕
[

α1Ik T1

0k α2Ik

]
,

where α1, α2 ∈ C, and T1 is a k × k positive definite matrix [6]. Therefore, it

suffices to consider T of the form
[

α1Ik T1

0k α2Ik

]
. Since T1 is positive definite,

there exists a k × k unitary U such that U∗T1U is a diagonal matrix T2. Let

A be the matrix
[

α1Ik T2

0k α2Ik

]
. Then A is unitarily equivalent to T . Let

P be the projection diag [1, 0, · · · , 0]⊕ diag [1, 0, · · · , 0] on Ck ⊕ Ck. Since
PA = AP , A is reducible, and so is T .

To complete the proof, we suppose that 0 < rank(T − λIn) < n/2 for
some λ ∈ C, and show that S−1TS is reducible for any invertible matrix
S ∈ Mn. Let M be the linear span of the ranges of S−1(T − λIn)S and
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(S−1(T − λIn)S)∗, and P be the projection from Cn onto the subspace M.
Since M is a reducing subspace of S−1TS, P commutes with S−1TS. Since
0 < rank (T − λIn) < n/2, it follows that 1 ≤ dim M ≤ n − 1. Thus P is
neither 0n nor In. Therefore, S−1TS is reducible. This proves our assertion.

The rest of this paper aims to prove the sufficiency part of the Main Theo-
rem. Since the Jordan form of T is similar to T and property (∗) is preserved
under similarity, we may consider the Jordan form directly. If T has exactly
one eigenvalue, then we list all the possible cases of T and prove the Main
Theorem in Section 2. However, if T has at least two distinct eigenvalues, to
avoid messy computations, we will not consider T directly. Rather, we will
show that there exists a matrix S in the double commutant of T (defined in
Section 3) which is similar to an irreducible matrix. This will imply that T is
also similar to an irreducible matrix [3, Lemma 2.1].

In other words, we will divide the proof of the sufficiency part of the Main
Theorem into the following two propositions.

Proposition 1.2. Let T ∈ Mn (n ≥ 3). If T has exactly one eigenvalue
and T has property (∗), then T is similar to an irreducible matrix.

Proposition 1.3. Let T ∈ Mn (n ≥ 3). If T has at least two distinct
eigenvalues and T has property (∗), then T is similar to an irreducible matrix.

It is clear that Propositions 1.1, 1.2, and 1.3 will lead to the Main Theorem.
We will prove Propositions 1.2 and 1.3 in Sections 2 and 3 respectively.

The following notations will appear frequently. Throughout this paper,
any unspecified entry of a matrix is 0. For a square matrix T , let σ(T ) denote
its spectrum, J(γ) denote the direct sum of all the Jordan blocks associated
to the eigenvalue γ, and Jn(γ) denote the n × n Jordan block associated to
the eigenvalue γ. That is, Jn(γ) is the the following n× n matrix




γ 1

γ
. . .
. . . 1

γ




.

Moreover, if N is a subspace of a finite-dimensional Hilbert space M, we use
MªN to denote the space of all vectors in M which are perpendicular to N .

2. CASE OF ONE EIGENVALUE
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The purpose of this section is to prove Proposition 1.2. Therefore, through-
out this section, we always assume that T is an n×n matrix with exactly one
eigenvalue, and has property (∗). We want to prove that T is similar to an
irreducible matrix. As mentioned in Section 1, we may consider the Jordan
form of T directly. That is, T = J(γ), where γ is the eigenvalue of T . Let

J =
m∑

i=1

⊕Jni(γ) with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2.

Then T is given by

T = J or T = γIk ⊕ J.(2.1)

It suffices to prove Proposition 1.2 for the two situations in (2.1). These will
be handled by Propositions 2.4 and 2.6 respectively. In these two propositions,
we will construct an upper-triangular matrix C which is similar to T . In order
to prove that C is irreducible, we need the following two lemmas to help our
computation.

Let

E =




γIm1 T1 X3 · · · Xn

γIm2 T2

γIm3

. . .

. . . Tn−1

γImn




.(2.2)

Lemma 2.1. (1) Let E be defined as in (2.2). If for each 1 ≤ i ≤ n − 1,
Ti is one-to-one, then any hermitian matrix commuting with E is of the form
n∑

i=1
⊕Fi.

(2) Suppose in addition that T1 = diag [t1, t2, · · · , tm1 ] with |ti| 6= |tj | if

i 6= j, m1 = m2 ≥ m3 ≥ · · · ≥ mn, Ti =
[

Xi

0(mi−mi+1)×mi+1

]
with Xi ∈ Mmi+1

diagonal for i = 2, 3, · · · , n−1. Then there exist a1, a2, · · · , am1 ∈ R such that
for each i with 1 ≤ i ≤ n, Fi = diag [a1, a2, · · · , amj ].

Proof. We first prove part (1). Let F = [Fij ]ni,j=1 be a hermitian matrix
which commutes with E. By comparing the entries of FE and EF , we see

that Fij = 0 for i > j. Since F is hermitian, F must be of the form
n∑

i=1
⊕Fi as

asserted.
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We next prove part (2). Since FE = EF , we have

FjTj = TjFj+1(2.3)

for all j = 1, 2, · · · , n−1. Note that F1 and F2 are hermitian. So setting j = 1
in (2.3) gives F1 = F2 = diag [a1, a2, · · · , am1 ] for some a1, a2, · · · , am1 ∈ R.
By (2.3), Fj = diag [a1, a2, · · · , amj ] for each j = 3, 4, · · · , n. This completes
the proof.

Lemma 2.2. Let E be defined as in (2.2). If T1 = 0 and every Ti is one-
to-one for i = 2, 3, · · · , n − 1, then any hermitian matrix commuting with E
is of the form [

F1 F0

F ∗
0 F2

]
⊕

n∑

i=3

⊕Fi.

Proof. Let F = [Fij ]ni,j=1 be a hermitian matrix which commutes with E.
By comparing the (i − 1, 1), (i − 1, 2) entries of FE and EF , we get Fi1 = 0
and Fi2 = 0 for all 3 ≤ i ≤ n. Because F is hermitian, we may assume that

F =
[

F1 F0

F ∗
0 F2

]
⊕ [Fij ]ni,j=3.

Thus [Fij ]ni,j=3 commutes with



γIm3 T3

γIm4

. . .

. . . Tn−1

γImn




.

By Lemma 2.1 (1), we may assume that [Fij ]ni,j=3 =
n∑

i=3
⊕Fi. This completes

the proof.

Before we prove Proposition 2.4, we need the following decomposition
structure.

Remark 2.3. Let J =
m∑

i=1
⊕Jni(γ) with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2. Let

Mj = ker (J − γI)j ª ker (J − γI)j−1, and mj = dimMj for j = 1, 2, · · · , n1.
Thus J is unitarily equivalent to




γIm1 T1

γIm2

. . .

. . . Tn1−1

γImn1




on
n1∑

j=1

⊕Mj ,
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where Tj =
[

Imj+1

0(mj−mj+1)×mj+1

]
∈ Mmj×mj+1 . We note that m1 = m2 = m

and so T1 = Im. Let X0 = diag [1, 2, · · · ,m] ∈ Mm, and X = X0 ⊕ I on

M1 ⊕
(

n1∑
j=2

⊕Mj

)
. Then X is invertible and so J is similar to

A = XJX−1 =




γIm1 X0 0 · · · 0
γIm2 T2

γIm3

. . .

. . . Tn1−1

γImn1




on
n1∑

j=1

⊕Mj .

(2.4)

Throughout this section, A is defined as in (2.4).

Proposition 2.4. Let T =
m∑

i=1
⊕Jni(γ) ∈ Mn with n1 ≥ n2 ≥ · · · ≥ nm ≥

2. If T has property (∗), then T is similar to an irreducible matrix.

Proof. By Remark 2.3, T is similar to A of (2.4). Let X1 ∈ Mm be the
matrix whose entries are all equal to 1, and let

Y =




Im1 X1 0 · · · 0
Im2

Im3

. . .
Imn1




.

Then Y is invertible. Since T is not quadratic, we have n1 ≥ 3. Moreover, T
is similar to

C = Y AY −1 =




γIm1 X0 X1T2 0 · · · 0
γIm2 T2

γIm3 T3

γIm4

. . .

. . . Tn1−1

γImn1




.(2.5)

It suffices to show that C is irreducible. Let P = [Pij ]n1
i,j=1 be a projection

commuting with C. By Lemma 2.1, P =
n1∑

j=1
⊕Pj , and there exist a1, a2, · · · ,
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am ∈ R such that Pj = diag [a1, a2, · · · , amj ] for each j. Since PC = CP , we
have

P1X1T2 = X1T2P3.

A simple computation shows that a1 = a2 = · · · = am. Therefore, P = 0n or
In, and hence C is irreducible. This proves our assertion.

By Proposition 2.4, we have proved Proposition 1.2 for the case T = J
in (2.1). The other case of (2.1), namely, T = γIk ⊕ J , will be handled in
Proposition 2.6. Before that, we shall consider T to be similar to another
matrix of a special form as in the following remark.

Remark 2.5. Let T = γIk ⊕
m∑

i=1
⊕Jni(γ) ∈ Mn with n1 ≥ n2 ≥ · · · ≥

nm ≥ 2. Let J =
m∑

i=1
⊕Jni(γ). Then T = γIk ⊕ J on Ck ⊕ Cn−k. By Remark

2.3, J is similar to A of (2.4). Let X1 ∈ Mk×m1 be the matrix whose entries
are all equal to 1, and let

X =




Ik X1 0 · · · 0
Im1

Im2

. . .
Imn1




.

Then X is invertible and so T is similar to

B = X(γIk ⊕A)X−1 =




γIk 0 X1X0

γIm1 X0

γIm2 T2

γIm3

. . .

. . . Tn1−1

γImn1




,(2.6)

where X0 = diag [1, 2, · · · ,m] ∈ Mm. Throughout this section, B is defined
as in (2.6).

Proposition 2.6. Let T = γIk ⊕
m∑

i=1
⊕Jni(γ) ∈ Mn with n1 ≥ n2 ≥ · · · ≥

nm ≥ 2. If T has property (∗), then T is similar to an irreducible matrix.

Proof: By Remark 2.5, T is similar to B of (2.6). We will construct matrices
X2, X3, · · · , Xn1 in two different cases. We will use them to obtain an invertible
matrix Y , followed by an irreducible matrix C similar to T .
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Case (1): Suppose that k < m3. Let

X2 =




1
2

. . . 0k×(m2−k)

k


 ∈ Mk×m2 ,

and Xj = 0k×mj
for each j = 3, 4, · · · , n1.

Case (2): Suppose that k ≥ m3. Since
n1∑

j=2
mj = rank T ≥ n/2 = (k +

n1∑
j=1

mj)/2, it follows that k ≤
n1∑

j=3
mj . So there exists 3 ≤ ` ≤ m such that

`−1∑
j=3

mj < k ≤ ∑̀
j=3

mj . For each j = 2, 3, · · · , ` − 2, we let rj =
j∑

i=3
mi and

sj = k − rj −mj+1, and let

Xj =




0rj×mj

j + 1 0 · · · 0
j + 2 0 · · · 0

. . .
... · · · ...

j + mj+1 0 · · · 0
0sj×mj




∈ Mk×mj .

In addition, let

X`−1 =




0(k−m`)×m`−1

` + 1 0 · · · 0
` + 2 0 · · · 0

. . .
... · · · ...

` + m` 0 · · · 0



∈ Mk×m`−1

,

and Xj = 0k×mj for each j = `, ` + 1, · · · , n1.
So far, we have constructed the appropriate Xj in both Cases (1) and (2).

Define

Y =




Ik 0 X2 · · · Xn1

Im1

. . .
Imn1


 .
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Then Y is invertible. Since T is not quadratic, we have n1 ≥ 3. Because T is
similar to B, T is also similar to

C = Y BY −1 =




γIk 0 X1X0 X2T2 · · · Xn1−1Tn1−1

γIm1 X0

γIm2 T2

γIm3

. . .

. . . Tn1−1

γImn1




.(2.7)

It suffices to show that C is irreducible. Let P = [Pij ]n1
i,j=0 be a projection

commuting with C. By Lemma 2.2, we may assume that

P =
[

P0 Q
Q∗ P1

]
⊕

n1∑

j=2

⊕Pj .

Since
Q∗ [X2T2 X3T3 · · · Xn1−1Tn1−1] = [0 0 · · · 0]

and [X2T2 X3T3 · · · Xn1−1Tn1−1] is surjective, we have Q∗ = 0m×k. Hence

P =
n1∑

j=0
⊕Pj and so

n1∑
j=1

⊕Pj commutes with A of (2.4). By Lemma 2.1(2),

there exist a1, a2, · · · , am ∈ R such that for each j, 1 ≤ j ≤ n1, we have Pj =
diag [a1, a2, · · · , amj ]. Since PC = CP , we have

P0XiTi = XiTiPi+1(2.8)

for all i = 2, 3, · · · , n1 − 1, and

P0X1X0 = X1X0P2.(2.9)

By (2.8), P0 is also diagonal, with diagonal terms in {a1, a2, · · · , am}. Finally,
it follows from (2.9) that a1 = a2 = · · · = am, and so P = 0n or In. Hence C
is irreducible and so we complete the proof.

It is obvious that Proposition 1.2 follows from Propositions 2.4 and 2.6.
Note that the preceeding discussions lead to an affirmative answer to a

problem posed by P. R. Halmos. An n × n matrix T is said to be nilpotent
of index k if T k = 0 but T k−1 6= 0. Halmos constructed 4 × 4 and 5 × 5
irreducible nilpotent matrices of index 3 [5, Problem 164]. The following
corollary answers his problem for the general case.

Corollary 2.7. For any integers k and n satisfying 3 ≤ k < n, there exists
an irreducible nilpotent n× n matrix of index k.
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Proof. Let n = km + `, where m and ` are integers with 0 ≤ ` < k, and
let T = Jk(0)⊕ · · · ⊕ Jk(0)︸ ︷︷ ︸

m

⊕J`(0). It is easy to see that T has property (∗).

By Propositions 2.4 and 2.6, T is similar to the irreducible matrix C of (2.5)
or (2.7), depending on whether ` 6= 1 or ` = 1. Since T is nilpotent of index
k, the same is true for C. Therefore, the matrix C is the required irreducible
nilpotent matrix.

3. CASE OF MULTIPLE EIGENVALUES

The purpose of this section is to prove Proposition 1.3. Therefore, through-
out this section, we always assume that T is an n×n matrix with at least two
distinct eigenvalues, and has property (∗). We want to prove that T is similar
to an irreducible matrix. Before that, we need the following definitions and
lemmas. For T ∈ Mn, let {T}′ = {S′ ∈ Mn | S′T = TS′} be the commutant
of T , and {T}′′ = {S ∈ Mn | SS′ = S′S for every S′ ∈ {T}′} be the double
commutant of T . In [3], Fong and Jiang proved the following.

Lemma 3.1 [3, Lemma 2.1]. If there exists a matrix S ∈ {T}′′ which is
similar to an irreducible matrix, then so is T .

Lemma 3.2 [2, Lemma 1.2]. Let T =
h∑

i=1
⊕J(γi) on

h∑
i=1

⊕Cki with all γi

distinct, and let ` =
h∑

i=2
ki. The for all α1, α2, · · · , αh ∈ C, both J(γ1) ⊕ α1I`

and
h∑

i=1
⊕αiIki are in {T}′′.

As in Section 2, we may consider the Jordan form of T directly. Let
σ(T ) = {γ1, γ2, · · · , γh} with all γi distinct. For convenience, we may assume
that

T =
h∑

i=1

⊕J(γi) on
h∑

i=1

⊕Cki , where k1 ≥ k2 ≥ · · · ≥ kh.(3.1)

The following two propositions are crucial to the proof of Proposition 1.3.

Proposition 3.3. Let T =
h∑

i=1
⊕J(γi) on

h∑
i=1

⊕Cki , where all γi are distinct

and k1 ≥ k2 ≥ · · · ≥ kh. Let ` =
h∑

i=2
ki > k1 and S =

h∑
i=1

⊕iIki. If S has

property (∗), then S is similar to an irreducible matrix.
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Proposition 3.4. Let T =
h∑

i=1
⊕J(γi) on

h∑
i=1

⊕Cki , where all γi are distinct

and k1 ≥ k2 ≥ · · · ≥ kh. Let ` =
h∑

i=2
ki ≤ k1 and S = J(γ1)⊕γ2I` on Ck1⊕C`.

If S has property (∗), then S is similar to an irreducible matrix.

We shall prove Propositions 3.3 and 3.4 later. For the moment, we assume
that they are valid, and show that they lead to Proposition 1.3.

Proof of Proposition 1.3. Without loss of generality, we may assume that

T is defined as in (3.1). Let ` =
h∑

i=2
ki. If ` > k1 , then we let S =

h∑
i=1

⊕iIki .

Otherwise, if ` ≤ k1, then we let S = J(γ1)⊕γ2I` on Ck1⊕C`. By Lemma 3.2,
S is always in {T}′′. It is easy to see that since T has property (∗), so does
S. By Propositions 3.3 and 3.4, S is similar to an irreducible matrix. Finally,
by Lemma 3.1, T is also similar to an irreducible matrix.

To prove Propositions 3.3 and 3.4, we need the following lemma, which
follows from a direct computation.

Lemma 3.5. (1) Let A ∈ Mn and B ∈ Mm. If σ(A) and σ(B) are disjoint,

then A ⊕ B is similar to C =
[

A X
0m×n B

]
for any matrix X ∈ Mn×m.

In addition, any projection P commuting with C is of the form P1 ⊕ P2 on
Cn ⊕ Cm.

(2) Moreover, if A is irreducible and n ≥ m, then we may choose X to be
one-to-one in which case C is irreducible.

Proof of Proposition 3.3. By using Lemma 3.5(1) inductively, we may
construct an upper-triangular matrix C which is similar to S such that

C =




Ik1 X2 X3 · · · Xh

2Ik2 Y3 · · · Yh

3Ik3

. . .
hIkh




(3.2)

for some Xi ∈ Mk1×ki and Yi ∈ Mk2×ki . Let us describe Xi and Yi more
clearly.

Since
h∑

i=2
ki > k1, there exists g, 2 < g ≤ h, such that

g−1∑
i=2

ki < k1 ≤
g∑

i=2
ki.
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For 2 ≤ i ≤ g − 1, we let ri =
i−1∑
j=2

kj and si = k1 −
i∑

j=2
kj , and let

Xi =




0ri×ki

1
2

. . .
ki

0si×ki



∈ Mk1×ki .

Also, let

Xg =




0(k1−kg)×kg

1
2

. . .
kg



∈ Mk1×kg .

For each i, g + 1 ≤ i ≤ h, let

Xi =




1
2

. . .
ki

0(k1−ki)×ni



∈ Mk1×ki .

Also, let Yi ∈ Mk2×ki be the matrix whose entries are all equal to 1 for each
3 ≤ i ≤ h. Since S is not quadratic, we have h ≥ 3. It suffices to show that
C is irreducible. Let P = [Pij ]hi,j=1 be a projection commuting with C. By

Lemma 3.5(1) again, P =
h∑

i=1
⊕Pi. By the equality of the (1, i) entries of PC

and CP , where 2 ≤ i ≤ h, we see that Pi is diagonal for each 1 ≤ i ≤ h.
Similarly, by the equialty of the (2, i) entries of PC and CP , where 3 ≤ i ≤ h,
we see that all the diagonal entries are equal and so P = 0n or In. Therefore,
C is irreducible.

For Proposition 3.4, we consider the matrix

S = J(γ1)⊕ γ2I` on Ck1 ⊕ C`, where γ1 6= γ2 and k1 ≥ `.(3.3)

Let

J =
m∑

j=1

⊕Jnj (γ1) with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2.(3.4)
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Then J(γ1) is given by the following cases:

(3.5) Case (A): J(γ1) = J ∈ Mk1 ,

(3.6) Case (B): J(γ1) = γ1Ik ⊕ J ∈ Mk1 , with k ≥ `,

(3.7) Case (C): J(γ1) = γ1Ik ⊕ J ∈ Mk1 , with k < `.

It suffices to prove Proposition 3.4 for these three cases. They will be
handled by Lemmas 3.6, 3.7 and 3.8 respectively.

We now consider Case (A). Recall that S and J are defined as in (3.3) and

(3.4) respectively. Since ` ≤ k1, it is easy to see that k1 =
m∑

j=1
nj ≥ `.

Lemma 3.6. Let S =
m∑

j=1
⊕Jnj (γ1)⊕γ2I` ∈ Mn, where γ1 6= γ2, n1 ≥ n2 ≥

· · · ≥ nm ≥ 2, and
m∑

j=1
nj ≥ `. Then S is similar to an irreducible matrix.

Proof. Clearly S has property (∗) already. Let k1 =
m∑

j=1
nj and J =

m∑
j=1

⊕Jnj (γ1). Then J ∈ Mk1 . If n1 ≥ 3, then J is similar to an irreducible

matrix by Proposition 2.4. In addition, we know that k1 ≥ `, and that the
spectra of J and γ2I` are disjoint. By Lemma 3.5(2), S is similar to an ir-
reducible matrix. So the remaining condition is that n1 = n2 = · · ·nm = 2.
Next we construct X1, X2 and X3 in different cases. They will be used to
obtain an irreducible matrix C which is similar to S.

Case (1): Suppose that ` ≤ m. By Remark 2.3, J is similar to the matrix
A of (2.4). Namely,

A =
[

γ1Im X0

0m γ1Im

]
,

where X0 = diag [1, 2, · · · ,m] ∈ Mm. Let

X1 =




1
. . .

`

0(m−`)×`


 ∈ Mm×`,

and X2 ∈ Mm×` be the matrix with all entries equal to 1. Since the spectra
of A and γ2I` are disjoint, by Lemma 3.5(1), S is similar to

C =




γ1Im X0 X1

γ1Im X2

γ2I`


 .
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By a direct computation, we see that C is irreducible.
Case (2): Suppose that m < `. We notice that ` ≤ 2m. Let

X0 =




1 1

1
. . .
. . . 1

1



∈ Mm,

and let Y = X0 ⊕ Im ∈ M2m. Then J is similar to

J ′ = Y JY −1 =
[

γ1Im X0

0m γ1Im

]
.

In addition, let

X1 =




1
. . . 0m×(`−m)

m


 ∈ Mm×`,

and

X2 =




1

0m×(`−m)
. . .

m


 ∈ Mm×`.

Since the spectra of J ′ and γ2I` are disjoint, by Lemma 3.5(1), S is similar to

C =




γ1Im X0 X1

γ1Im X2

γ2I`


 .

By a direct computation, we see that C is irreducible. This completes the
proof.

We now prove Proposition 3.4 for Case (B) given by (3.6). Recall that J
is defined as in (3.4),

J(γ1) = γ1Ik ⊕ J ∈ Mk1 ,

and S is defined as in (3.3). Since ` ≤ k1, we have k1 =
m∑

j=1
nj + k ≥ `.

Lemma 3.7. Let S = γ1Ik ⊕ J ⊕ γ2I` ∈ Mn, where γ1 6= γ2, J =
m∑

j=1
⊕Jnj (γ1) with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2, and

m∑
j=1

nj + k ≥ `. If k ≥ `, and

S has property (∗), then S is similar to an irreducible matrix.
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Proof. By Remark 2.5, γ1Ik ⊕ J is similar to

B =




γ1Ik 0 X1X0

γ1Im1 X0

γ1Im2 T2

γ1Im3

. . .

. . . Tn1−1

γ1Imn1




,(3.8)

where X0 = diag [1, 2, · · · ,m] ∈ Mm and X1 ∈ Mk×m whose entries are all
equal to 1. Next we construct matrices X2, X3, · · · , Xn1 in different cases.
They will be used to obtain an invertible matrix Y , which leads to an irre-
ducible matrix C similar to S.

Case (1): Suppose that k < ` + m3. Let

X2 =








0(k−m3)×m2

1 0 · · · 0
2 0 · · · 0

. . .
... · · · ...

m3 0 · · · 0



∈ Mk×m2 if k ≥ m3,




1
2

. . . 0k×(m2−k)

k


 ∈ Mk×m2 if k < m3,

and Xj = 0k×mj for j = 3, 4, · · · , n1.

Case (2): Suppose that k ≥ ` + m3. Since ` +
n1∑

j=2
mj = rank S ≥ n/2 =

(k+`+
n1∑

j=1
mj)/2, it follows that k ≤

n1∑
j=3

mj +`. Thus there exists 3 ≤ r ≤ n1,

such that
r−1∑
j=3

mj + ` < k ≤
r∑

j=3
mj + `. For each 2 ≤ j ≤ r − 2, we let
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rj =
j∑

i=3
mi + `, sj = k − rj −mj+1, and let

Xj =




0rj×mj

j + 1 0 · · · 0
j + 2 0 · · · 0

. . .
... · · · ...

j + mj+1 0 · · · 0
0sj×mj




∈ Mk×mj
.

Also, let

Xr−1 =




0(k−mr)×mr−1

r + 1 0 · · · 0
r + 2 0 · · · 0

. . .
... · · · ...

r + mr 0 · · · 0



∈ Mk×mr−1 .

For each j = r, r + 1, · · · , n1, let Xj = 0k×mj .
So far, we have constructed the appropriate Xj in both Cases (1) and (2).

Define

Y =




Ik 0 X2 · · · Xn1

Im1

Im2

. . .
Imn1




.

Then Y is invertible. Since S is not quadratic, we have n1 ≥ 2. Since γ1Ik⊕J
is similar to B of (3.8), γ1Ik ⊕ J is similar to

D = Y BY −1 =




γ1Ik 0 X1X0 X2T2 · · · Xn1−1Tn1−1

γ1Im1 X0

γ1Im2 T2

γ1Im3

. . .

. . . Tn1−1

γ1Imn1




.
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Let

Xn1+1 =




n1 + 1
n1 + 2

. . .
n1 + `

0(k−`)×`



∈ Mk×`.

Since the spectra of γ2I` and D are disjoint, by Lemma 3.5 (1), S is similar to

C =




γ1Ik 0 X1X0 X2T2 · · · Xn1−1Tn1−1 Xn1+1

γ1Im1 X0

γ1Im2 T2

γ1Im3

. . .

. . . Tn1−1

γ1Imn1

γ2I`




.

It suffices to show that C is irreducible. Let P = [Pij ]n1+1
i,j=0 be a projection

commuting with C. By Lemma 3.5 (1), P = [Pij ]n1
i,j=0⊕Pn1+1. It follows that

[Pij ]n1
i,j=o is a projection commuting with D. By Lemma 2.2, we may further

assume that

P =
[

P0 Q
Q∗ P1

]
⊕

n1∑

j=2

⊕Pj .

Since
Q∗[X2T2 X3T3 · · · Xn1−1Tn1−1 Xn1+1] = [0 0 · · · 0 0]

and [X2T2 X3T3 · · · Xn1−1Tn1−1 Xn1+1] is surjective, Q∗ = 0m×k, and so

P =
n1+1∑
j=0

⊕Pj . Since
n1∑

j=1
⊕Pj commutes with




γ1Im1 X0 0 · · · 0
γ1Im2 T2

γ1Im3

. . .

. . . Tn1−1

γ1Imn1




,

by Lemma 2.1 (2), there exist a1, a2, · · · , am ∈ R such that each Pj = diag
[a1, a2, · · · , amj ]. Since PC = CP , we have

P0XiTi = XiTiPi+1(3.9)
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for all i = 2, 3, · · · , n1 − 1,

P0Xn1+1 = Xn1+1Pn1+1(3.10)

and

P0X1X0 = X1X0P2.(3.11)

By (3.9) and (3.10), there exist b1, b2, · · · , b` ∈ R such that Pn1+1 = diag
[b1, b2, · · · , b`] and P0 = Pn1+1 ⊕ R for some diagonal matrix R ∈ Mk−` with
entries in {a1, a2, · · · , am}. Finally, it follows from (3.11) that ai = bj for all
i and j, and so P = 0n or In. Hence C is irreducible and so we complete the
proof.

By Lemma 3.7, we have proved Proposition 3.4 for Case (B) given by (3.6).
This leaves only the final Case (C) given by (3.7). As in Case (B) (or Lemma

3.7), we have k1 =
m∑

j=1
nj + k ≥ `.

Lemma 3.8. Let S = γ1Ik ⊕ J ⊕ γ2I` ∈ Mn, where γ1 6= γ2, J =
m∑

j=1
⊕Jnj (γ1) with n1 ≥ n2 ≥ · · · ≥ nm ≥ 2, and

m∑
j=1

nj + k ≥ `. If k < `

and S has property (∗), then S is similar to an irreducible matrix.

Proof. By Remark 2.5, γ1I ⊕ J is similar to

B =




γ1Ik 0 X1X0

γ1Im1 X0

γ1Im2 T2

γ1Im3

. . .

. . . Tn1−1

γ1Imn1




,(3.12)

where X0 = diag [1, 2, · · · ,m] ∈ Mm and X1 ∈ Mk×m whose entries are all
equal to 1. By Lemma 3.5(1), we may construct an upper-triangular matrix
C which is similar to S, such that

C =




γ1Ik 0 X1X0 0 · · · 0 Y0

γ1Im1 X0 Y1

γ1Im2 T2 Y2

γ1Im3

. . . Y3

. . . Tn1−1
...

γ1Imn1
Yn1

γ2I`




(3.13)
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for some Yi ∈ Mmi×` for 1 ≤ i ≤ n1 and Y0 ∈ Mk×`. We now construct Yi as
follows. Let

Y0 =




1
2

. . . 0k×(`−k)

k


 ∈ Mk×`.

For Y1, Y2, · · · , Yn1 , consider the following two cases.
Case (1): Suppose that m > `. Let Y1 = 0m×` and

Y2 =




1
2

. . .
`

0(m−`)×`



∈ Mm×`.

Also, let Yj = 0mj×` for each j = 3, 4, · · · , n1.
Case (2): Suppose that m ≤ `. For each 1 ≤ j ≤ n1, we will construct Yj

depending on whether ` ≤ k + m or not. We first set u = m + k + 2.
Case (2a): Suppose that ` ≤ k + m. Let

Y1 =




u + 1
u + 2

0(`−k)×k
. . .

u + (`− k)
0(m−`−k)×k 0(m−`−k)×(`−k)



∈ Mm×`,

and Yj = 0mj×` for j = 2, 3, · · · , n1.
Case (2b): Suppose that ` > k + m. Let

Y1 =




u + 1
u + 2

0m×k
. . . 0m×(`−m−k)

u + m


 ∈ Mm×`.

Since k +
m∑

i=1
ni ≥ `, there exists 1 < r ≤ n1 such that k +

r−1∑
j=1

mj < ` ≤ k +

r∑
j=1

mj . For each j = 2, 3, · · · , r−1, we let rj = k+
j−1∑
i=1

mi and sj = `−mj−rj ,
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and let

Yj =




j + 1
j + 2

0mj×rj

. . . 0mj×sj

j + mj


 ∈ Mmj×`.

Also, let

Yr =




r + 1
r + 2

0mr×(`−mr)
. . .

r + mr


 ∈ Mmr×`.

For j = r + 1, r + 2, · · · , n1, let Yj = 0mj×`.
We have constructed the appropriate Yj in both Cases (1) and (2). Since

S is not quadratic, we have n1 ≥ 2. It suffices to show that C is irreducible.
Let P = [Pij ]n1+1

i,j=0 be a projection commuting with C. By Lemma 3.5(1), we
may assume that that P = [Pij ]n1

i,j=0⊕Pn1+1, and so [Pij ]n1
i,j=0 commutes with

B. By Lemma 2.2, we may assume that

P =
[

P0 Q
Q∗ P1

]
⊕

n1+1∑

j=2

⊕Pj .

By the (0, n1 + 1) and (1, n1 + 1) entries of PC = CP , we have

P0Y0 + QY1 = Y0Pn1+1,(3.14)

and

Q∗Y0 + P1Y1 = Y1Pn1+1.(3.15)

By (3.14) and (3.15), Q = 0k×m, P0 = diag [b1, b2, · · · , bk] for some b1, b2, · · · , bk ∈
R, and Pn1+1 = P0 ⊕ R for some R ∈ M`−k. By computing PC = CP entry
by entry, we see that P = 0n or In. Therefore, C is irreducible. This proves
our assertion.

The above lemmas complete the proof of Proposition 3.4 and hence that
of the Main Theorem.
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