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CONVERGENCE THEOREMS FOR THE H;-INTEGRAL

I.J. L. Garces and P. Y. Lee

Abstract. We present two convergence theorems for the Hi-integral.

The Henstock integral is now relatively well-known. An attempt has been
made by Garces, Lee, and Zhao [2] to define the Henstock integral as the
Moore-Smith limit of Riemann sums. The resulting integral is the so-called
Hi-integral. It has the property that a function f is Henstock integrable on
[a, b] if and only if there is an Hi-integrable function g such that f(x) = g(z)
almost everywhere in [a,b]. Every integral has a corresponding convergence
theorem. For example, the Denjoy integral has the controlled convergence the-
orem, whereas the Perron integral has the generalized dominated convergence
theorem. Corresponding to the Henstock integral, which is equivalent to both
the integrals of Denjoy and Perron, is the equi-integrability theorem with the
strong Lusin condition. It is the purpose of the current paper to present two
(well-known) convergence theorems that hold for the Hi-integral. We assume
that the reader is familiar with the definition of the Henstock integral [5].

A division D of [a,b] is a finite set of interval-point pairs ([u,v],) such
that the intervals [u,v] are non-overlapping, [a,b] = U[u,v], and £ € [u,v]. If
d(z) > 0 for = € [a,b], then a division D = {([u,v],€)} is said to be o-fine if
€ € [u,v] C (€—=08(8),&+0(§)) for each ([u,v],£) € D. A function f is said
to be Henstock integrable to a real number A on [a, b] if for every € > 0 there
exists a positive function § on [a, b] such that for every J-fine division D, we
have

(D)> " F()(v—u)— Al <e.

Let D be the family of all §-fine divisions of [a,b] for some given §(x) > 0,
x € [a,b]. For D1, Dy € D, we write Dy > D; if for every ([s,t],n) € Da there
exists ([u,v],§) € Dy such that [s,t] C [u,v], and {£ : ([u,v],§) € D1} C {n:
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([s,t],n) € D2}. Then (D, >) is a directed set. A function f is Hj-integrable
to a real number A on [a,b] if A is the Moore-Smith limit [1] of the Riemann
sums using the directed set (D, >); that is, there exists a positive function ¢
on [a,b] such that for every € > 0 there exists a d-fine division Dy such that
for every o-fine division D > Dy of [a, b], we have

Zf (v—u)— Al <e.

Here, A is the Hjp-integral of f on [a,b]. Some examples of Hi-integrable
functions were considered in [2]. It is easy to see that every Hi-integrable
function on [a, b] is Henstock integrable there and the two integrals are equal.
Note that the Cauchy Criterion and the Saks-Henstock Lemma [5] also hold
for the Hi-integral. For convenience, we say that f is Hi-integrable on a set
X C [a,b]if fXx is H;-integrable on [a, b], where Xx denotes the characteristic
function of X on [a, b].

Let a function F' be defined on [a,b] and X C [a,b]. Then F is said to be
AC*(X) if for every € > 0 there exists 7 > 0 such that for any partial division
D = {([u,v],£)} with w or v € X, we have

(D) Z lv—u| <n implies (D) Z |F(u,v)| < e,

where F(u,v) = F(v)—F(u). On the other hand, a sequence {F},} of functions
defined on [a, b] is said to be UAC*(X) if, in the definition of AC*(X) above,
n > 0 is independent of n. Further, {F,} is UACG* on [a,b] if [a,b] = UX;
such that {F,} is UAC*(X;) for each i. We can assume that X; is closed for
each 1.

Our proof of the first convergence theorem we want to establish is based
on the following three lemmas, in which Lemma 1 is easy.

Lemma 1. Let {f,} be a sequence of Hy-integrable functions on [a, b, with
{F,} the sequence of primitives of {fn}. If {fn} converges uniformly on [a,b],
then {F,,} is UACG* on [a,b].

Lemma 2. Let X C [a,b] be closed. If f is Hi-integrable on [a,b] and its
primitive F' is AC*(X), then f is Hy-integrable on X.

Proof. Since f is Hj-integrable on [a,b], by the Cauchy Criterion, there
exists d(x) > 0 such that given € > 0 there exists a J-fine division Dy of [a, b]
such that for any d-fine divisions D, D" > Dy of [a, b], we have

D)Zf( v —u) Zf (v—u)| <e
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Since F' is AC*(X), there exists n > 0 such that for any partial division
D = {([u,v],£)} of [a,b] with v or v € X,

(D)) lv—ul<n  implies (D)) |F(u,v)| <e.

Also, there exists a finite union E of closed intervals such that £ D X and
|E—X| < n. We can assume that a subset of Dy forms a division of E, and we
can modify d(z) > 0 such that if £ € E— X, then (£ —6(&),£+d(£))NX = 0.

Now, let D be any J-fine division of E. Then there are only two kinds of
intervals in D: those that do not intersect X and those that do. The latter
form a finite cover of X, and the union of the former consists of intervals
pairwise disjoint, each of which , denoted by [u,v] again, can be expressed as
a difference of two intervals, namely, [w, v]—[w, u) or [u, w]— (v, w] with w € X
such that (D) >, yjnx—g lw —ul <nand (D) > 1, yjax—p|w — v| < 7. Thus,
(D) > ¢ep—x Flu,w)| < € and [(D) > ¢cp_x F(w,v)| < e Consequently,
(D) > ¢ep—x F(u,v)] < 26. Meanwhile, by the Saks-Henstock Lemma, for
any partial division D > Dy of [a, b], we have

Z {f(&)(v—u)— F(u,v)}| <e.

€eE-X

Hence, [(D) > ¢cp—x (v — u)| < n implies

D) Y - u) D) S {FO®—u) - Flu.v)}

¢€E-X ¢EE—-X
+1(D) Y F(u,v)]
ceE-X
< 3e.

For any d-fine divisions D1, Dy > Dy, let D} and D3 be the respective subsets
of D; and Dy which form divisions of E. Further, let D3 = D; — D]. Then
D = D3U D7 and D' = D3 U D} are 6-fine divisions of [a, b] with D, D' > D.
Therefore,

(D1) ) £ (v —u) = (D2) Y f(E)(v —w)

fex fex

D)Zf( v —u) Zf (v—u)
0D S O —w] + (D) Z € —u)]

¢eE-X ¢eE-X

< Te.
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By the Cauchy Criterion again, the above sequence of inequalities implies that
f is Hi-integrable on X. [

Lemma 3 [2]. Let f be Hi-integrable on a closed set X1 C [a,b] using 01,
and on another closed set Xo C [a,b], with f(x) =0 for x ¢ X1 U Xo. If the
primitive F' of f on [a,b] is absolutely continuous there, then f is Hy-integrable
on X1 U Xy using §, where §(z) = 61(z) when z € X;.

We now present the uniform convergence theorem.

Theorem 4 [Uniform Convergence Theorem]. Let {f,} be a sequence of
Hi-integrable functions on [a,b]. If {fn} converges uniformly to some function
f on [a,b], then f is Hy-integrable on [a,b] and [ f =lm [ f,.

Proof. We may assume that f is Henstock integrable on [a, b]. Let {F),} be
the sequence of primitives of { f,}. By Lemma 1, {F},} is UACG* on [a, b], that
is, there exists a sequence {X;} of closed subsets of [a, b] such that [a,b] = UX;
such that {F),} is UAC*(X;) for each i. In particular, F), is AC*(X;) for each
n and for each i. Hence, by Lemma 2, each f, is Hi-integrable on X; for all .

It follows from the UACG* property (see [5, Theorem 9.8]) that for every
i there exists an integer n(i) > ¢ such that for any partial division D of [a, b]
with u or v € X;, we have

(D) " {Fuy () = Flu, )} < 7,

where F' is the Henstock primitive of f on [a, b)].

Since f,(; is Hi-integrable on X; (and, therefore, Henstock integrable
there), by the Saks-Henstock Lemma, there exists d,,;(z) > 0 such that for
any 0y,(;)-fine division D of [a,b], we have

(D) 3 | fu ()0 — 1) = Fy(u,v)| < Ql

£eX;

for all 4.

Let Y1 = Xj and YV; = X, — (X1 UXoU--- UXifl) for v = 2,3,....
Put 0(x) = 0p)(2) if © € Y;. We may modify J,;), if necessary, such that
(2 = 0p) (), @ + 0piy(2)) N X; = for = ¢ X;.

Given € > 0, there exists a positive integer N = n(ig) such that

o0

1 €
i:%;l?« and  |fa(6) = FO)I < 3
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for all n > N and for all £ € [a,b]. Further, by Lemma 3, there exists a d-fine
division Dy of [a, b] such that for any d-fine division D > Dy of [a, b], we have

D) » @) —u) = Fx(u,v)}| <e
EEX,
Write n(€) = n(ip) when & € X;, and n(§) = n(i) when n(i) > N = n(ip).
Thus,
D) {f(&)(v—u) = Fu,v)}| < \ Z{f (v—u) fn(g)(ﬁ)(U—U)}\
D) Y {Fue) F(u,v)}
Z{fn(g) U - ’LL) - Fn(E) (’LL, U)}|

< 46.
Hence, f is Hi-integrable on [a, b]. ]

We now consider the Hi-integral version of equi-integrability [4, 6] or uni-
formly Henstock integrable [3].

Let {fn} be a sequence of H;-integrable functions on [a,b]. We say that
{fn} is equi-Hj-integrable on [a,b] if there exists d(x) > 0 such that for each
€ > 0 there exists a d-fine division Dy of [a, b] such that for any J-fine division
D > Dy of [a,b], we have

an (v—u)—Fy(a,b)] <e
for all n, where F), is the primitive of f, on [a,b].

Lemma 5. Let {f,} be a sequence of Hy-integrable functions on |a,b] with
FE,, as the primitive of f, on [a,b] such that {f,} converges pointwise to a
function f on [a,b]. If {fn} is equi-Hy-integrable on [a,b], then {F,(a,b)} is
a Cauchy sequence.

Proof. By definition, there exist §(x) > 0 and a d-fine division D,, of [a, b]
such that for all o-fine divisions D > D,,, of [a, b], we have

an (v —u) (ab)|<2im

for all n. Given an € > 0, choose an integer M > 0 such that 1/2M < ¢ and

’(DM)an(f)(U —u) — (Dwm) me (v—u)| <e
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for all n,m > M, where D)y is a d-fine division of [a, b]. Then, for n,m > M,
|F(a,b) — Fpy(a,b)| < |Fy(a,b) — (D) an (v—u)
|(Dar) an (v—u)— (D) me (v—u)
|(Dar) me (v—u)— Fp(a,b)|
< 3e.

Hence, {F,(a,b)} is a Cauchy sequence. |

Theorem 6. If the conditions of Lemma &5 are satisfied, then f is Hi-
integrable on [a,b] and [ f =1lim [ f,.

Proof. By definition, there exists d(x) > 0 such that for every € > 0 there
exists a d-fine division Dy on [a, b] such that for any d-fine division D > Dy of
[a, b], we have

Z fr(§)(v—u) — Fr(u,v)| <€
for all n. By Lemma 5, there exists an integer N > 0 such that
|F(a,b) — F(a,b)| < e

for all n > N, where F(a,b) is the limit of {F,(a,b)}. Let D be any d-fine
division of [a, b] with D > Dy. Then there exists an integer k£ > N such that

D)Zf( v —u) ka (v—u)| <e

since D is finite and f, — f pointwise. Hence,

f(&)(v—u)— F(a,b)| < f(&)(v—u) fe(&) (v —u)
D)}, (D Z D)},
ka (v —u) — Fi(a, b)]
+ ‘Fk(avb) - (av b)’
< 3e.

Thus, f is Hj-integrable to F(a,b) on [a,b]. [

It should be noted that uniform convergence (Theorem 4) will also follow
as a consequence of equi-Hi-integrability (Theorem 6), but the proof is as
lengthy as the direct one given for Theorem 4.

So far, no other convergence theorems have been established for this rel-
atively new integral. After a quite long battle for a proof of the uniform
convergence theorem, the authors are still optimistic that the other known
convergence theorems for other integrals will also hold for the Hi-integral.
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