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FU JEN LECTURES IN HARDY SPACES

Der-Chen Chang

Dedicated to Professor Fon-Che Liu on his 60th Birthday

Abstract. In this paper, we survey some multiplier theorems and their
applications to estimates for wave equation in Hardy spaces Hp(Rn). We
also prove Hp boundedness for Calderón-Zygmund operators of type σ
which can be considered as a generalization of classical singular integral
operators. Using these results, we discuss some recent progress in Hp

regularity properties of the solving operators for hyperbolic equations.

1. INTRODUCTION

Based on a series of lectures presented by the author during the 1999
annual meeting of the Mathematical Society of the Republic of China, held
at Fu Jen Catholic University from December 11 to December 16, 1999, this
article attempts to present some aspects of the recent progress in Hardy spaces
and the applications of Hardy spaces to partial differential equations. The
exposition is therefore divided into two concentrations: (1) Hardy space and
(2) estimates of Calderón-Zygmund operators in Hp spaces.

It is well-known that the Lebesgue Lp spaces play an important role in
Fourier analysis. However, many important classes of operators are not well-
behaved on L1 and L∞ spaces. Many of these operators are unbounded on L1

and so L1 is too large to be the domain of such operators. By the same token,
the target space of many important operators exceeds L∞. Hence, L∞ is too
small to be the range of such operators resulting in a duality between these
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two deficiencies. We are then motivated to find substitutes for the spaces of
L1 and L∞ to alleviate this dual deficiency.

The Hardy space H1 (derived from complex function theoretic considera-
tions in the early part of the last century) and the space BMO of functions
of bounded mean oscillation (discovered in the 1960s in the context of partial
differential equations) turn out to be more appropriate spaces to study instead
of L1, L∞ respectively. In fact, many of the operators that we wish to study,
and which are ill-behaved on L1 and L∞, are bounded both on H1 and on
BMO. These two new spaces lead to deep insights concerning complex anal-
ysis, singular integrals, Cauchy integrals on Lipschitz curves, weighted norm
inequalities, and partial differential equations.

The classical theory of Hardy spaces derives, as has already been noted,
from complex function theory. Let 0 < p < ∞. The original definition for
Hp(D), in the context of the unit disc D, is as follows:

{
f holomorphic on D : sup

0<r<1

(∫ 2π

0
|f(reiθ)|pdθ

) 1
p

< ∞
}

.

On the upper half plane R2
+ ⊂ C, the definition becomes

{
f holomorphic on R2

+ : sup
y>0

(∫ +∞

−∞
|f(x + iy)|pdx

) 1
p

< ∞
}

.

(Note that these two definitions give rise to isomorphic spaces of functions,
but not canonically so. The matter is treated in detail in Hoffman [22].)

Later, the theory of Hardy spaces was generalized to the upper half-space
Rn+1

+ for (n − 1)/n < p ≤ 1 by Stein and Weiss; see [37]. The methods
developed in that paper rely heavily on the harmonicity of functions and on
the Euclidean structure of Rn. It was ten years before methods were developed
to free the Hardy space theory from specifics of Euclidean analysis.

In 1971, Burkholder, Gundy and Silverstein [4] discovered an important
fact: in order to show that a harmonic function u, defined on the unit disc, is
the real part of some holomorphic function in Hp(D), it is both necessary and
sufficient to see that the auxiliary function

u∗(eiθ) ≡ sup
0<r<1

|u(reiθ)|

lies in Lp(∂D). Notice that the Cauchy-Riemann equations no longer play any
role in this new characterization of Hp. Not even the notion of the harmonic
conjugate function need be invoked. However, lurking in the background is
the fact that u(reiθ) is the Poisson integral of its (putative) boundary function
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ũ(eiθ). Thus the Poisson kernel plays a tacit role in the characterization given
by Burkholder, Gundy and Silverstein.

Later, Fefferman and Stein [18] removed the maximal function character-
ization of the Hardy spaces from any dependence on the Poisson kernel. In
order to describe this development, we pass to the upper half plane R2

+ ⊂ C.
Let ϕ ∈ C∞

0 be a testing function, nonnegative, and with total mass 1. For
y > 0, we set ϕy(x) = y−1ϕ(x/y). Now define, for u(x + iy) = f ∗ ϕy(x) on
R2

+,

u∗(x) = sup
y>0

|u(x + iy)|.

The theorem of Fefferman and Stein is that f is the boundary value of the
real part of an Hp function in R2

+ if and only if u∗ lies in Lp(R). As a result
of this new characterization, and accompanying theorems in their paper, the
theory of Hardy spaces is now a “real variable” theory.

Today, the real variable theory of Hardy spaces is well-developed. There
are now maximal function, area integral (in the sense of Lusin), “atomic de-
composition” and “molecular decomposition” characterizations of Hp. We
refer the reader to the books of Stein [34], Garcia-Cuerva and Rubio de Fran-
cia [21], and, of course, Fefferman and Stein [18] for detailed treatment of these
ideas.

The second part of this article is concentrated on estimates of Calderón-
Zygmund operators in Hp spaces. The theory of Calderón-Zygmund on singu-
lar integral operators has become extensively studied by many mathematicians
in the past 40 years. Since then, this theory became one of the most powerful
tools attacking problems in analysis, e.g., elliptic boundary value problems,
Cauchy integrals on Lipschitz curves, ∂̄-Neumann problem, Fourier integral op-
erators etc. Readers can refer to books and papers by, e.g., Chang-Nagel-Stein
[8], Chang-Krantz-Stein [9], Chang-Dafni-Stein [10], Chang-Li [11], Christ [13],
Coifman-Meyer [16], Journé [25], Sadosky [29], Stein [33, 34, 35] etc. and ref-
erences therein.

Let f ∈ S(Rn) be a Schwartz function. It is well-known that the Fourier
transform

F(f)(ξ) = f̂(ξ) = (2π)−
n
2

∫

Rn

e−ix·ξf(x)dx

is also a Schwartz function (see Chapter 1 in Stein and Weiss [36]). Therefore,
we may define the inverse Fourier transform

F−1(f)(x) = (2π)−
n
2

∫

Rn

eix·ξ f̂(ξ)dξ
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of f̂ . Moreover, for a partial differential operator with constant coefficients,

P (D) =
m∑

|k|=0

ak
∂|k|

∂xk1
1 · · · ∂xkn

n

=
m∑

|k|=0

akDk,

we have

P (D)f(x) = (2π)−
n
2

∫

Rn

eix·ξP (iξ)f̂(ξ)dξ = (2π)−
n
2

∫

Rn

eix·ξψ(ξ)f̂(ξ)dξ.

In fact, we may treat P (D)f(x) as a multiplier operator, i.e.,

Tψ(f)(x) = F−1(ψf̂)(x).

Let us first recall the famous Marcinkiewicz multiplier theorem (see Chapter
4 in Stein [33] and Chapter 6 in Stein [34]):

Theorem 1.1. Let ψ ∈ L∞(Rn) and ψ ∈ Cn+2(Rn \ {0}). Suppose that
∣∣∣Dk

ξ ψ(ξ)
∣∣∣ ≤ Ck(1 + |ξ|)−λ−|k|

for some λ > 0 and all |k| ≤ n + 2. Then

‖Tψ(f)‖Lp
s+λ

≤ Cp‖f‖Lp
s

for all f ∈ L2(Rn)∩Lp(Rn), 1 < p < ∞. Here Lp
s(Rn) is the Lp-Sobolev space

of order s.

Basically, the above theorem rounds out the picture of Lp-estimates for
constant coefficient elliptic differential operators (see Hörmander [23] and Stein
[33]). It is very interesting to generalize the above result to the case 0 < p ≤ 1.
In order to do that, we have to consider Hardy spaces as our domain and target.
As we have mentioned in the beginning of this section, the Hardy space Hp(Rn)
is defined as the set of all distribution f whose maximal function

f∗(x) = sup
0<ε<∞

|f ∗ ϕε(x)| ∈ Lp(Rn).

Here ϕ ∈ S(Rn) with
∫
Rn ϕ(x)dx 6= 0 and ϕε(x) = ε−nϕ(x/ε) (see Fefferman

and Stein [18]). One of the purposes of this article is to discuss Hp estimates for
solving operators of hyperbolic equations, i.e., Hp estimates for the operator

T (f)(x) = (2π)−
n
2

∫

Rn

eiΦ(x,ξ)ψ(ξ)f̂(ξ)dξ.
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Roughly speaking, the above operator is very close to a multiplier operator,
i.e., Φ(x, ξ) = x·ξ. Before we go further, let us review some results of multiplier
theory on Hardy spaces. A function ψ is called a multiplier on Hp space, i.e.,
ψ ∈ M(Hp), if ψ is a measurable function and for each f ∈ Hp(Rn), we have
F−1(ψf̂) ∈ Hp(Rn). Moreover,

f 7→ Tψ(f) = F−1(ψf̂)

is a bounded linear operator on Hp(Rn). In this case, the operator norm will
be called the norm of the multiplier ψ, i.e.,

‖ψ‖M(Hp) = ‖Tψ‖op = sup
f∈Hp,f 6=0

‖Tψ(f)‖Hp

‖f‖Hp
.

Now the question is: does this operator make sense? Of course, we can treat
f as a tempered distribution, i.e., f ∈ S ′(Rn). It follows that f̂ ∈ S ′(Rn).
However, can we define Fourier transform on the product of a measurable
function with a tempered distribution? Therefore, we have to study Fourier
transform on Hp spaces more carefully. Now let us consider Hp space by using
atomic decomposition.

Definition 1.2. Let 0 < p ≤ 1 ≤ q ≤ ∞ with p 6= q. A (p, q, s)-atom
a(x) centered at the origin is a function in Lq(Rn) which is supported on a
ball B(0; r) for some r > 0, and satisfies

• (size condition):

‖a‖Lq ≤ |B| 1q− 1
p ;

• (moment condition): ∫

B
a(x)xkdx = 0

for all monomials xk with |k| ≤ s with s ≥ np =
[
n

(
1
p − 1

)]
.

A (p, q, s)-atom centered at x0 ∈ Rn is defined to be a Lq(Rn) function a
on Rn such that ηx0(a)(x) = a(x−x0) is a (p, q, s)-atom centered at the origin.
Now we may give another definition of Hardy spaces as follows (see Coifman
[14] and Garnett-Latter [20]):

Hp
(q)(R

n)

=

{
f ∈ L2(Rn) : f =

∞∑

k=1

λkak, where ak are (p, q, s)-atoms,
∞∑

k=1

|λk|p < ∞
}

,
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equipped with a “norm” as follows:

‖f‖p
Hp

(q)

= inf

{ ∞∑

k=1

|λk|p
}

,

where the infimum is taken over all possible (p, q, s)-atomic decompositions of
f . Let r ≤ q, r ≥ 1, q > p; then (p, q, s)-atoms satisfy

(
1
|B|

∫

B
|a(y)|rdy

) 1
r

≤
(

1
|B|

∫

B
|a(y)|qdy

) 1
q

≤ |B| 1q− 1
p ≤ |B| 1r− 1

p .

This implies that for 1 ≤ r < q, every (p, q, s)-atom is also a (p, r, s)-atom.
Moreover, there exist two universal constants C1 and C2 such that

C1‖f‖Hp
(q)
≤ ‖f‖Hp

(∞)
≤ C2‖f‖Hp

(q)
for all f ∈ Hp

(q)(R
n).

Hence, we may use Hp(Rn) to represent Hp
(q)(R

n) for all 1 ≤ q ≤ ∞ with p > q

(see Chang [7]). Now, with the help of the moment condition, we have the
following result:

Lemma 1.3. Let 0 < p ≤ 1 and let a be a (p, 2, s)-atom supported on a
ball B centered at the origin. Then

1.

|Dkâ(ξ)| ≤ C|ξ|np+1−|k|

‖a‖d
�

np+1

n
+ 1

2

�
−1

L2

;

2.
‖(Dkâ)2‖Lq′ ≤ C

‖a‖d
�

2|k|
n

+ 1
q

�
−2

L2

for 0 ≤ |k| ≤ s. Here (1/q) + (1/q′) = 1, 1 ≤ q′ ≤ ∞, d = 1/[(1/p) − (1/2)]
and C is a constant independent of a.

Proof. (1) By the size condition of a, we know that

|B| ≤ ‖a‖−d
L2 .

Let P (x) be the Taylor polynomial expansion of e−ix·ξ at ξ = 0 of degree
np − |k|. Then

Dkâ(ξ)= (2π)−
n
2

∫

B
a(x)(−ix)ke−ix·ξdx

= (2π)−
n
2

∫

B
a(x)(−ix)k

[
e−ix·ξ − P (x)

]
dx.
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Therefore,

|Dkâ(ξ)|≤ C|ξ|np+1−|k|
∫

B
|a(x)| · |x|np+1dx

≤ C|ξ|np+1−|k||B|np+1

n
+ 1

2 ‖a‖L2

≤ C|ξ|np+1−|k|‖a‖−d
�

np+1

n
+ 1

2

�
+1

L2 .

(2) When q′ = 1, we have q = ∞ and

∫

Rn

|Dkâ(ξ)|2dξ = C

∫

B
|xk|2|a(x)|2dx

≤ C|B| 2|k|n ‖a‖2
L2 ≤ C‖a‖−

2d|k|
n

+2

L2 .

When q′ = ∞, we have q = 1 and

|Dkâ(ξ)|2 = C

(∫

B
|xk| · |a(x)|dx

)2

≤ C|B| 2|k|n
+1‖a‖2

L2 ≤ C‖a‖−d
�

2|k|
n

+1
�
+2

L2 .

Now we may use results for q′ = 1 and q′ = ∞ to obtain estimates for 1 <
q′ < ∞. The proof of the lemma is complete.

Remark 1. When B is centered at other point x0 6= 0, the above lemma is
still true since the difference of the Fourier transform of a between supp(a) ⊂
B(0; r) and supp(a) ⊂ B(x0; r) is only a complex number with absolute value
1.

Using the atomic decomposition of Hp(Rn), it is easy to obtain the follow-
ing result (see also Coifman [15] and Stein [34, p. 128]):

Proposition 1.4. Let f ∈ Hp(Rn), 0 < p ≤ 1. Then f̂ is a continuous
function. Moreover,

|f̂(ξ)| ≤ C · ‖f‖Hp · |ξ|n
�

1
p
−1
�
.

2. MULTIPLIER THEORY ON Hp SPACES
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In order to study multiplier theory on Hp(Rn), we need to study atomic
decomposition for Hp one step further. Roughly speaking, showing an operator
T is bounded from Hp into Lp, it is enough to show that the Lp norm of T (a)
is uniformly bounded for all (p, q, s)-atoms a. However, we cannot use this
method to show that T is bounded from Hp into itself since T (a) is, in general,
no longer a (p, q, s)-atom. This is because T (a) does not necessarily satisfy
the size condition.

Let us start with a simple example. Suppose n = 1 and p = 1. It is
well-known that the Hilbert transform H is bounded from H1(R) into H1(R).
It is natural for us to see how the operator H acts on a 1-atom.

Let a be a (1, 2, 0)-atom supported on an interval I which is centered at
the origin. Then we have

‖H(a)‖L2(R) ≤ C‖a‖L2(R) ≤ C · |I|− 1
2 .(2.1)

We also know that when |x| > 2|I|,

|H(a)(x)|=
∣∣∣∣
∫

R
a(y)
x− y

dy

∣∣∣∣ =
∣∣∣∣
∫

R

[
1

x− y
− 1

x

]
a(y)dy

∣∣∣∣

≤ C

|x|2
∫

I
|ya(y)|dy ≤ C

|I|
|x|2 ,

and therefore,
∫

|x|>2|I|
|x|2|H(a)(x)|2dx ≤ C

∫

|x|>|I|
|x|2 · |I|

2

|x|4 dx ≤ C|I|.

On the other hand,
∫

|x|≤2|I|
|x|2|H(a)(x)|2dx ≤ C · |I|2 · |I|−1 ≤ C|I|.

It follows that
∫

R
|x|2|H(a)(x)|2dx ≤ C|I|.(2.2)

Combining (2.1) and (2.2), we conclude that

(∫

R
|H(a)(x)|2dx

) 1
2
(∫

R
|x|2|H(a)(x)|2dx

) 1
2

≤ C.

We will use this property ofH(a) to study molecular decomposition for Hp(Rn).
Inspired by the above discussion, we may define an H1(R) “molecule” m(x)
(centered at x0) as follows:
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•
(∫

R
|m(x)|2dx

) 1
4
(∫

R
|x− x0|2|m(x)|2dx

) 1
4

< ∞,(2.3)

• ∫

R
m(x)dx = 0.

The number on the left-hand side of (2.3) is called the “norm” of the molecule
m(x), denoted as N (m). Apparently, m ∈ H1(R) and a (1, 2, 0)-atom is an
H1 molecule. Therefore, we may conclude that f ∈ H1(R) if and only if

f(x) =
∞∑

k=1

µkmk(x), a.e. x ∈ R.

Here mk(x) are H1-molecules for all k ∈ N with

∞∑

k=1

N (mk) < ∞ and
∞∑

k=1

|µk| < ∞.

Moreover, from the above example, we know that the image of a 1-atom under
the action of Hilbert transform H is an H1-molecule.

Now we may extend the above discussion to general n and p. As we may
expect, this will be much more complicated than the case for n = p = 1.

Definition 2.1. Let 0 < p ≤ 1 ≤ q ≤ ∞ with p 6= q, s ≥ np, and ε >
max{s/n, (1/p)−1}. Denote α = 1−(1/p)+ε and β = 1−(1/q)+ε. An Lq(Rn)
function m is called a (p, q, s, ε)-molecule centered at x0 if |x|nβm(x) ∈ Lq(Rn)
and
• (size condition) :

N (m) =
(∫

Rn

|m(x)|qdx

) α
qβ

·
(∫

Rn

|x− x0|qnβ |m(x)|qdx

) 1
q
− α

qβ

< ∞;

• (moment condition):
∫

Rn

m(x)xkdx = 0, 0 ≤ |k| ≤ s.

According to Definition 2.1, it is easy to see that the molecule we had
discussed at the beginning of this section is in fact a (1, 2, 0, 1/2)-molecule.

Remark 2. The conditions p < q and ε > (1/p)− 1 guarantee α > 0 and
0 < α/β < 1 and ε is an index which shows how fast the decay of m(x) at



330 Der-Chen Chang

infinity is. It is easy to show that if m(x) is a (p, q, s, ε)-molecule, then it is a
(p, q, s, ε′)-molecule whenever ε′ < ε with ε′ > max{s/n, (1/p)− 1}.

We can define Hp(Rn) as follows (see Taibleson and Weiss [28]): f ∈
Hp(Rn) if and only if

f =
∞∑

k=1

λkmk,

where mk’s are (p, q, s, ε)-molecules withN (mk) < C for all k and
∑∞

k=1 |λk|p <
∞. Moreover,

‖f‖p
Hp(Rn) = inf

{ ∞∑

k=1

|λk|p
}

.

Here the infimum is taken over all possible molecular decompositions of f .

Proposition 2.2. Let ψ be an Hp(Rn) multiplier, 0 < p ≤ 1, with norm
A. Then there exists a constant C independent of ψ such that

|ψ(ξ)| ≤ CA

for all ξ 6= 0. Moreover, ψ is a continuous function defined on Rn \ {0}.

Proof. Since ψ ∈M(Hp) with norm A, we have

‖Tψ(f)‖Hp = ‖F−1(ψf̂)‖Hp ≤ A · ‖f‖Hp .(2.4)

Let ft(x) = t−n/pf(x/t), t > 0. Then f 7−→ ft is a bounded operator on
Hp(Rn) with

‖ft‖Hp = ‖f‖Hp .(2.5)

This is because if a is a (p,∞, s)-atom supported on the ball B, then

‖at‖L∞ ≤ t
−n

p ‖a‖L∞ ≤ t
−n

p |B|− 1
p = |Bt|−

1
p ,

where Bt = {x/t : x ∈ B}. It follows that at is also a (p,∞, s)-atom. By
Proposition 1.4, (2.4) and (2.5), we have

|ψ(ξ)f̂t(ξ)| ≤ CA · ‖f‖Hp |ξ|n
�

1
p
−1
�
.(2.6)

Notice that
f̂t(ξ) = t

n(1− 1
p
)
f̂(tξ).
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For ξ 6= 0, denote ξ′ = ξ/|ξ|, t = |ξ|−1. Then (2.6) implies that

|ψ(ξ)f̂|ξ|−1(ξ)| = |ψ(ξ) · |ξ|n
�

1
p
−1
�
f̂(ξ′)| ≤ CA · ‖f‖Hp · |ξ|n

�
1
p
−1
�
.

Hence, we have
|ψ(ξ)f̂(ξ′)| ≤ CA · ‖f‖Hp .

Pick φ ∈ C∞(R) with supp(φ) ⊂ [
2−2, 22

]
and φ ≡ 1 on

(
2−1, 2

)
. Let f̂0(ξ) =

φ(|ξ|). Then by Plancherel’s formula, it is easy to show that f0 is a (p, 2, s, ε)-
molecule. Therefore, f0 ∈ Hp(Rn). Moreover, f̂0(ξ′) = 1. It follows that

|ψ(ξ)| ≤ CA · ‖f0‖Hp = CA.

From the above discussion, we know that ψ(ξ) is the Fourier transform of an
Hp distribution when ξ 6= 0. Hence, we may conclude that ψ is a continuous
function by Proposition 1.4.

Lemma 2.3. Let N be an integer with N > n/2. Assume that

R2|k|−n

∫

R≤|x|≤2R
|Dkψ(x)|2dx ≤ A2(2.7)

for all 0 ≤ |k| ≤ N and R > 0. Then there exists a constant C independent
of ψ such that

1. when q = 1 or n/q > 2(|k| −N) + n, we have

[∫

R≤|x|≤2R
|Dkψ(x)|2qdx

] 1
q

≤ C2A2R
n
q
−2|k|;(2.8)

2. when 2(|k|−N)+n < 0, we have |x||k||Dkψ(x)| ≤ CA. Moreover, Dkψ(x)
is a continuous function on Rn \ {0}.

Remark 3. When |k| = 0, we have n − 2N < 0. By the above lemma,
we know that ψ is a bounded continuous function on Rn \ {0} with a bound
depending on A.

Proof. Pick a smooth, nonnegative cut-off function η with 0 ≤ η ≤ 1,

supp(η) ⊂
{

x ∈ Rn :
1
2
≤ |x| ≤ 4

}
and η ≡ 1 on {x ∈ Rn : 1 ≤ |x| ≤ 2}.



332 Der-Chen Chang

Let
f(x) = R|k|η

( x

R

)
Dkψ(x),

and
g(x) = f(Rx) = R|k|ψ(x)Dkψ(Rx).

By (2.7), we know that ‖Dmg‖L2 ≤ C ′A whenever 0 ≤ |m| ≤ k = N − |k|,
where C ′ is a constant independent of ψ,m, N and R. It follows that g ∈
L2

k(Rn). By the Sobolev embedding theorem, we know that L2
k(Rn) ⊂ C0(Rn)

if k > n/2, i.e., g is a continuous function which tends to zero whenever
|x| → ∞. When k > (n/2) − (n/r) ≥ 0, L2

k(Rn) ⊂ Lr(Rn). In particular,
‖g‖Lr ≤ CA, where C is a constant independent of ψ and R. Denote 2q = r.
Then k > (n/2) − (n/r) can be rewritten as n/q > 2(|k| − N) + n. Now we
have

[∫

R≤|x|≤2R
|Dkψ(x)|2qdx

] 1
q

≤ R−2|k|
(∫

Rn

|f(x)|2qdx

) 1
q

= R
n
q
−2|k|

(∫

Rn

|g(x)|2qdx

) 1
q

= R
n
q
−2|k| · ‖g‖2

L2q ≤ C2A2R
n
q
−2|k|

.

This is (2.8) and the proof of the lemma is therefore complete.

Theorem 2.4 (Hp multiplier theorem). Let 0 < p ≤ 1 with (1/p)−(1/2) <
N/n and let λ ≥ 0. Assume the function ψ satisfies

R2(λ+|k|)−n

∫

R≤|x|≤2R
|Dkψ(x)|2dx ≤ A2

whenver 0 ≤ |k| ≤ N . Then

‖Tψ(f)‖Hp
s+λ

≤ C‖f‖Hp
s

for all f ∈ Hp
s (Rn). Here

‖f‖Hp
s

=
∥∥∥F−1((1 + |ξ|2) s

2F(f)(ξ))
∥∥∥

Hp

is the Hardy-Sobolev space of order s. Moreover, ‖Tψ‖op ≤ CA.

Proof. Without loss of generality, we may assume that λ = 0. For λ > 0,
it can be proved by the result of λ = 0 and Plancherel’s theorem. Let a be
a (p, 2, s1)-atom with s ≤ s1. Let ε be a constant satisfying the condition of
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molecules. Then a will be a (p, 2, s, ε) molecule with N (a) ≤ C. Here C is a
constant independent of a. In particular, if a is supported on a ball centered at
the origin and N = n[(1/2)+ε] = nβ is a positive integer, then by Plancherel’s
theorem, we know that

{
‖â‖

�
1
2
− 1

p
+N

n

�
L2 · ‖Dmâ‖

1
p
− 1

2

L2

} n
N

≤ C, where |m| = N.

Next, let a be a (p, 2, N − 1)-atom. We want to show that F−1(ψâ) is a
(p, 2, np, (N/n)− (1/2)) molecule supported on a ball centered at the origin.
Moreover,

N (F−1(ψâ)
) ≤ CA,

with C a constant depending only on p,N and n. We first check the size
condition for F−1(ψâ). By Plancherel’s theorem, we just need to show that

(
‖ψâ‖

1
2
− 1

p
+N

n

L2 ‖Cm(ψâ)‖
1
p
− 1

2

L2

) n
N

≤ CA(2.9)

whenever |m| = N . Denote d = ((1/p)−(1/2))−1. Then (2.9) can be rewritten
as

‖Dm(ψâ)‖L2 ≤ CA
Nd
n ‖ψâ‖1−Nd

n

L2 .

Since 1 − (Nd/n) ≤ 0, by Lemma 2.3, |ψ(x)| ≤ CA. Therefore, it reduces to
show that

‖Dm(ψâ)‖L2 ≤ CA‖a‖1−Nd
n

L2 .

By Leibniz formula, we just need to check

‖(Dm1 â)(Dm2ψ)‖L2 ≤ CA‖a‖1−Nd
n

L2 , for all |m1|+ |m2| = N.(2.10)

In fact, if |m2| = 0 and |m1| = N , then by Lemma 1.3 (2) (with q′ = 1), we
have result (2.10). If 0 < |m2| < N , by Lemma 1.3 (1), we have

‖(Dm1 â)(Dm2ψ)‖2
L2

=
∑

`∈Z

∫

2`<|x|≤2`+1

|Dm1 â(ξ)|2|Dm2ψ(ξ)|2dξ

≤ C
M∑

`=−∞
‖a‖2(1−Nd

n
− d

2 )
L2 22`(N−|m1|)

∫

2`<|x|≤2`+1

|Dm2ψ(ξ)|2dξ

+
∞∑

`=M

(∫

2`<|x|≤2`+1

|Dm1 â(ξ)|2q′dξ

) 1
q′

(∫

2`<|x|≤2`+1

|Dm2ψ(ξ)|2qdξ

) 1
q

= I + II.
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By the hypothesis of the theorem, we know that

I ≤ CA2
M∑

`=−∞
‖a‖2(1−Nd

n
− d

2 )
L2 2`n ≤ CA22nM‖a‖2(1−Nd

n
− d

2 )
L2 .

Choosing M such that 2nM ∼ ‖a‖d
L2 , we have

I ≤ CA2‖a‖2(1−Nd
n )

L2 .

It remains to estimate II. Choose q = 1 when |m2| > n/2 and q = ∞ when
0 < |m2| ≤ n/2 and 0 < |m2| < N − (n/2). When N − (n/2) ≤ |m2| ≤ n/2,
choose q such that 1 < q < ∞ with 0 < 2|m2| − (n/q) < 2N − n. Therefore,
we can always pick q such that 2|m2| − (n/q) > 0 and q, m2 satisfying the
hypotheses of Lemma 2.3. It follows that estimate (2.8) holds. Now we may
apply Lemma 1.4 (2) to obtain the following:

II≤ CA2
∞∑

`=M

‖a‖−d
�

2|m1|
n

+ 1
q

�
+2

L2 2
�

n
q
−2|m2|

�
`

≤ CA2‖a‖−d
�

2|m1|
n

+ 1
q

�
+2

L2 2M
�

n
q
−2|m2|

�
.

Since 2nM ∼ ‖a‖d
L2 , we may conclude that

II ≤ CA2‖a‖2(1−Nd
n )

L2 .

This completes the proof of (2.10) and hence (2.9).
Next, we want to show that F−1(ψâ) satisfies the moment condition. By

(2.9), it is easy to see that Dm(ψâ) is a continuous function on Rn \ {0}
whenever |m| ≤ np. By Lemma 1.3 (1) and Lemma 2.3, we know that ψ(ξ) is
bounded and â(ξ) = O(|ξ|N+1) when |ξ| → 0. Therefore, (ψâ)(0) = 0, i.e., ψâ
satisfies the zero moment condition. In general, if 0 < |m| ≤ np ≤ N − 1, we
have

Dm(ψâ)(0) = lim
h→0

h−|m|∆m
h (ψâ)(0),

where ∆m
h is the difference operator of order m. Therefore,

|∆m
h (ψâ)(0)| ≤ C|h|m.

It follows that Dm(ψâ)(0) = 0, i.e., F−1(ψâ) satisfies the necessary moment
conditions. Since a 7→ F−1(ψâ) is translation invariant, the above result also
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holds for atoms which are supported on balls centered at arbitrary points in
Rn. Finally, for general f ∈ Hp(Rn), we know that

f =
∞∑

j=1

λjaj ,

where aj ’s are (p, 2, N − 1)-atoms and
∑∞

j=1 |λj |p ≤ 2‖f‖p
Hp . Then by the

above result, we have

F−1(ψf̂) =
∞∑

j=1

λjF−1(ψâ).

It follows that

‖F−1(ψf̂)‖Hp ≤
∞∑

j=1

|λj | · ‖F−1(ψâ)‖Hp ≤ C
∞∑

j=1

|λj | · N (F−1(ψâ))

≤ CA
∞∑

j=1

|λj | ≤ CA




∞∑

j=1

|λj |p



1
p

≤ CA‖f‖Hp .

The proof of this theorem is therefore complete.

From the above theorem, we can conclude the following result immediately:
∥∥∥∥

∂2G
∂xj∂xk

(f)
∥∥∥∥

Hp
s

≤ C‖f‖Hp
s
, for j, k = 1, . . . , n,

for all f ∈ Hp(Rn), 0 < p ≤ 1 and s ≥ 0. Here G is the Newtonian potential
for the Laplacian on Rn. Here we would like to mention another application
of Theorem 2.4 (see Miyachi [26]).

Example. Consider the following multiplier:

ψ(ξ) = (1 + |ξ|2)−λ
2 eit|ξ|2 , ξ ∈ Rn.

By Theorem 2.4, ψ ∈M(Hp) and

‖ψ‖M(Hp) ≤ C(1 + |t|)n
�

1
p
− 1

2

�
when 0 ≤ (1/p)−(1/2) ≤ λ/2n. This means that the solution u(t, x), (x ∈ Rn,
t ∈ R), of the Schrödinger equation

{
i∂u

∂t = 4u in Rn × R+

u(0, x) = f(x) on Rn
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satisfies the estimates

‖u(·, t)‖Hp
s
≤ C(1 + |t|)n

�
1
p
− 1

2

�
‖f‖Hp

s+λ

for 0 ≤ (1/p)− (1/2) ≤ λ/2n, s ∈ R. This extends the result given by Brenner
[2], where the estimate is restricted to the case:

0 <
1
p
− 1

2
<

λ

2n
, p > 1.

The above estimate is sharp since it does not hold if (1/p)− (1/2) > λ/2n as
shown by Brenner. The estimate above is sharp in another way: the factor
(1 + |t|)n((1/p)−(1/2)) cannot be improved. More generally, in the estimates

∥∥∥(1 + |ξ|2)−λ
2 eit|ξ|µ

∥∥∥
M(Hp)

≤ C(1 + |t|)n
�

1
p
− 1

2

�
,

with 0 ≤ (1/p) − (1/2) ≤ λ/nµ, which can be shown by Theorem 2.4, the
factor (1 + |t|)n((1/p)−(1/2)) cannot be improved if µ > 1. In fact,

∣∣F−1[Φ(|ξ|)r(|ξ|) exp(itν(|ξ|))](x)
∣∣ ≥ C1

|x| 12 (1−n)r(s)s
1
2
(n−1)

√
tν ′′(s)

for t ≥ 1 and |x| ≥ C2t, where r(x) = (1 + x2)λ/2, ν(x) = xµ, µ > 1. Here
s = st,x is the solution of the equation: tν ′′(s)− |x| = 0.

3. ESTIMATES OF CALSERÓN-ZYGMUND OPERATORS IN Hp

In this section, we continue our discussion on estimates of Calderón-Zygmund
operators in Hardy spaces by using molecular decompositions. We are going
to deal with a slightly bigger class of standard singular integral operators. We
also replace the usual Lebesgue measure dx by measures w(x)dx, where w is
an A1-weight, i.e., w ∈ A1 if and only if

M(w)(x) = sup
x∈B

1
|B|

∫

B
w(y)dy ≤ A · w(x)

for almost every x ∈ B (see Stein [34, p. 197]). Here M(w) is the Hardy-
Littlewood maximal function of w. Following results of Coifman, Taibleson
and Weiss [17], we may define weighted Hardy spaces Hp(w(x)dx) by weighted
atomic and molecular decompositions. We will not repeat similar definitions
here. Readers can consult a forthcoming work by the author.
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Definition 3.1. Let T : S(Rn) → S ′(Rn) be a linear operator and let
K(x, y) be the kernel of T, i.e.,

T (f)(x) =
∫

Rn

K(x, y)f(y)dy(3.1)

for all f ∈ C∞
0 (Rn) and for almost all x /∈ supp(f). We assume that

‖T (f)‖L2(Rn) ≤ C1‖f‖L2(Rn).

We also assume that the kernel K is smooth away from the diagonal ∆ =
{(x, y) ∈ Rn : x = y} and satisfies

∫

|x−y|>2|z−y|σ
(|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)|)dx ≤ C(3.2)

with 0 < σ ≤ 1. Then T is called a Calderón-Zygmund operator of type σ.

Remark 4. Let T be an operator given by (3.1). Assume that T : S(Rn) →
S ′(Rn) can be extended as a bounded operator from L2(Rn) into itself. We
assume further that the kernel K(x, y) satisfies the following condition:

|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)| ≤ C ·Θ
( |z − y|
|x− y|

)
· |x− y|−n

for |x − y| > 2|z − y|σ, 0 < σ ≤ 1. Here Θ : R+ → R+ is a nondecreasing
function such that Θ(0) = 0, Θ(2t) ≤ C ·Θ(t), and

∫ 1

0

Θ(t)
t

dt < ∞.

Then it is easy to see that T is a Calderón-Zygmund operator of type σ. In
particular, if σ = 1 and Θ(t) = tδ with δ > 0, then T is a standard Calderón-
Zygmund operator (see Chang [6] and Journé [25]). Therefore, all results in
this section will also hold for standard singular integral operators.

For 0 < σ ≤ 1, we denote Bj either the set {x ∈ Rn : 2j |z−y|σ ≤ |x−y| <
2j+1|z − y|σ} or the set {y ∈ Rn : 2j |x − z|σ ≤ |y − x| < 2j+1|x − z|σ}. Now
we may state our results as follows.

Theorem 3.2. Let T be a Calderón-Zygmund operator of type σ which
satisfies the following conditions: there exists a convergent series

∑∞
j=1 Cj with

positive terms such that
(∫

Bj

|K(x, y)−K(x, z)|qdx

) 1
q

≤ Cj · |Bj |−
1
q′(3.3)
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and
(∫

Bj

|K(y, x)−K(z, x)|qdx

) 1
q

≤ Cj · |Bj |−
1
q′ ,(3.4)

where (1/q) + (1/q′) = 1 with 1 < q′ < 2. We also assume further the reverse
Hölder inequality holds for q′, i.e.,

(
1
|Q|

∫

Q
wq′(x)dx

) 1
q′ ≤ C · 1

|Q|
∫

Q
w(x)dx.(3.5)

Then we have
∫

Rn

|T (f)(x)|pdx ≤ C

∫

Rn

|Mq′(f)(x)|pw(x)dx(3.6)

for 1 < p < ∞ and

w{x ∈ Rn : |T (f)(x)| > λ} ≤ c

λ

∫

Rn

|f(x)|w(x)dx.

Here

Mq′(f)(x) =
(

sup
x∈B

1
|B|

∫

B
|f(x)|q′dx

) 1
q′

.

From (3.6), we know that
∫

Rn

|T (f)(x)|pw(x)dx≤ C

∫

Rn

|Mq′(f)(x)|pw(x)dx

= C

∫

Rn

(
sup
x∈B

1
|B|

∫

B
|f(x)|q′dx

) p
q′

w(x)dx

≤ Cp,w

∫

Rn

|f(x)|
q′p
q′ w(x)dx = ‖f‖p

Lp(w(x)dx)

for q′ < p < ∞ with q > 2. Hence we have the following corollary:

Corollary 3.3. Let q′ < p < ∞, q > 2 and let T be a Calderón-Zygmund
operator of type σ which satisfies the hypotheses in Theorem 3.2. Then T,
originally defined on C∞

0 (Rn), can be extended as a bounded operator from
Lp(w(x)dx) into itself.

In order to prove the above theorem and Theorems 3.6 to 3.8 below, we
need two auxiliary lemmas.
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Lemma 3.4. Let T be a Calderón-Zygmund operator of type σ which sat-
sifies the hypotheses in Theorem 3.2. Then T can be extended as a bounded
operator from Lp(Rn) into Lp(Rn) for 1 < p < ∞ and of weak type (1,1).

The proof of Lemma 3.4 is standard. One may use Calderón-Zygmund
decomposition and the Marcinkiewicz interpolation theorem to conclude the
result. Readers can read Stein [34, Chapter 2] or Sadosky [29, Chapter 6] for
detailed discussions. The proof of the following lemma can be imitated line
by line of Stein [34, pp. 206-209] and so the details will not be explained here.

Lemma 3.5. Let w ∈ A∞ and let T be a Calderón-Zygmund operator of
type σ which satsifies the hypotheses in Theorem 3.2. Then there exist two
universal constants C and c such that for all η > 0 and λ > 0,

w{x ∈ Rn : |T (f)(x)| > 4λ, Mq′(f)(x) ≤ ηλ} ≤ Cηcw{x ∈ Rn : |T (f)(x)| > λ}

for all f ∈ C∞
0 (Rn).

Now we may use Lemmas 3.4 and 3.5 to prove our main theorems.

Proof of Theorem 3.2. By Lemma 3.4, it is easy to prove
∫

Rn

|T (f)(x)|pw(x)dx ≤ C

∫

Rn

|Mq′(f)(x)|pw(x)dx.

We will not go through the details here. Now we turn to the proof of the
following:

w{x ∈ Rn : |T (f)(x)| > λ} ≤ C

λ

∫

Rn

|f(x)|w(x)dx.

In order to do that, we consider the Calderón-Zygmund decomposition of the
function f ∈ C∞

0 (Rn) at level γ > 0 and the Whitney decomposition of the
open set Q = {x ∈ Rn : M(f)(x) > γ}. We have the following:

• Rn = Q∪ F with Q∩ F = ∅;
• |f(x)| ≤ γ for almost every x ∈ F ;

• Q = ∪∞`=1Q`, γ < 1
|Q`|

∫
Q`
|f(y)|dy ≤ 2nγ.

Let Qo
` = interior of Q`. It follows that Qo

` ∩Qo
j = ∅ for ` 6= j. Denote

g(x) =

{
f(x), x ∈ F

1
|Q`|

∫
Q`
|f(y)|dy, x ∈ Q`, ` ∈ N
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and
b(x) = f(x)− g(x).

It follows that g ∈ L2(w(x)dx) and
∫

Rn

|g(x)|2w(x)dx=
∫

F
|f(x)|2w(x)dx +

∞∑

`=1

∫

Q`

(
1
|Q`|

∫

Q`

|f(y)|dy

)2

w(x)dx

≤ γ‖f‖L1(w(x)dx) + 4nγ2

∫

Q
w(x)dx ≤ (4n + 1)γ‖f‖L1(w(x)dx).

By Lemma 3.4, we have

w{x ∈ Rn : |T (g)(x)| > γ} ≤ C ·
(‖g‖L2(w(x)dx)

γ

)2

≤ C

γ
‖f‖L1(w(x)dx).

It remains to prove

w{x ∈ Rn : |T (b)(x)| > γ} ≤ C

γ
‖f‖L1(w(x)dx).

Let Q∗
` = 27

√
nQ` and Q∗ = ∪∞`=1Q

∗
` . Obviously, we know that w(Q∗) ≤

C · w(Q). For any fixed z` ∈ Q`, we have
∫

(Q∗)c

|K(x, y)−K(x, z`)|w(x)dx

≤
∞∑

j=1

(∫

Bj

|K(x, y)−K(x, z`)|qdx

) 1
q
(∫

Bj

w(x)q′dx

) 1
q′

≤
∞∑

j=1

Cj

(
1
|Bj |

∫

Bj

w(x)q′dx

) 1
q′

≤
∞∑

j=1

Cj

(
1
|Bj |

∫

Bj

w(x)q′dx

)

≤



∞∑

j=1

Cj


M(w)(y) ≤ C · w(y).

Note that
∫
Q`

b(x)dx = 0 for all ` ∈ N. Thus, we have

∫

(Q∗)c

|T (b)(x)|w(x)dx=
∫

(Q∗)c

∣∣∣∣∣
∞∑

`=1

∫

Q`

[K(x, y)−K(x, z`)]b(y)dy

∣∣∣∣∣w(x)dx

≤
∞∑

`=1

∫

Q`

|b(y)|
{∫

(Q∗)c

|K(x, y)−K(x, z`)|w(x)dx

}
dy

≤ C
∞∑

`=1

∫

Q`

|b(y)|w(y)dy ≤ C‖f‖L1(w(x)dx).
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By the Chebyshev inequality, we obtain

w

{
x ∈ Rn : |T (b)(x)| > β

2

}
≤ C

γ
‖f‖L1(w(x)dx).

The proof of Theorem 3.2 is therefore complete.

Theorem 3.6. Let T be a Calderón-Zygmund operator of type σ which
satsifies the hypotheses in Theorem 3.2 with Cj ≤ 2−jn(2−p)/p. We assume
further that 0 < p < 1 with 1/p = q′ satisfies (3.5). Then the operator T
can be extended as a bounded operator from Hp(w(x)dx) into Lp(w(x)dx) for
0 < p ≤ 1.

Proof. In order to prove the operator is bounded from H1(w(x)dx) into
L1(w(x)dx), we just need to show that ‖T (a)‖L1(w(x)dx) ≤ A for all weighted
(1, 2, 0)-atoms a(x). By Corollary 3.3, we know that

∫

2B
|T (a)(x)|w(x)dx ≤ ‖T (a)‖L2(w(x)dx) ·

(∫

2B
w(x)dx

) 1
2

≤ A.(3.7)

On the other hand, by the hypothesis of the theorem, we know that with x0

a fixed point in B,
∫

(2B)c

|T (a)(x)|w(x)dx

≤
∫

B
|a(y)|

(∫

(2B)c

|K(x, y)−K(x, x0)|w(x)dx

)
dy

≤
∫

B
|a(y)|




∞∑

j=1

∫

Bj

|K(x, y)−K(x, x0)|pdx




1
p (∫

Bj

w(x)p′dx

) 1
p′

dy

≤
∫

B
|a(y)|

∞∑

j=1

Cj

(
1
|Bj |

∫

Bj

w(x)p′dx

) 1
p′

dy

≤
∫

B
|a(y)|

∞∑

j=1

Cj

(
1
|Bj |

∫

Bj

w(x)dx

)
dy

≤ C

∫

B
|a(y)|M(w)(y)dy ≤ C

∫

B
|a(y)|w(y)dy

≤ C · ‖a‖L2(w(x)dx) ·
(∫

2B
w(x)dx

) 1
2

≤ A.
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Combining (3.7) and the above estimate, we conclude that ‖T (a)‖L1(w(x)dx) ≤
A. Next, we show that T is bounded from Hp(w(x)dx) into Lp(w(x)dx) for
0 < p < 1. In order to do that, we just need to show that ‖T (a)‖Lp(w(x)dx) ≤ A
for all weighted (p,∞, s)-atoms a(x). Again, by Corollary 3.3 and the Hölder
inequality, we know that

∫

2B
|T (a)(x)|pw(x)dx≤ ‖T (a)‖p

L2(w(x)dx)
·
(∫

2B
w(x)dx

)1− p
2

≤ C‖a‖p
L2(w(x)dx)

·
(∫

B
w(x)dx

)1− p
2

≤ ‖a‖p
L∞(Rn)

(∫

B
w(x)dx

) p
2
(∫

B
w(x)dx

)1− p
2

≤ A.

On the other hand, we have

∫

Bj

|K(x, y)−K(x, x0)|w(x)
1
p dx

≤
(∫

Bj

|K(x, y)−K(x, x0)|qdx

) 1
q
(∫

Bj

w(x)
q′
p dx

) 1
q′

≤ Cj

(
1
|Bj |

∫

Bj

w(x)
q′
p dx

) 1
q′

≤ CCj

(
1
|Bj |

∫

Bj

w(x)dx

) 1
p

≤ CCj(M(w)(y))
1
p ≤ CCjw(y)

1
p .

Since the atom a satisfies the moment condition, by the Hölder inequality, we
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have∫

(2B)c

|T (a)(x)|pw(x)dx

≤
∫

(2B)c

∣∣∣∣
∫

B
a(y)[K(x, y)−K(x, x0)]dy

∣∣∣∣
p

w(x)dx

≤ ‖a‖p
L∞(Rn)

∞∑

j=1

∫

Bj

(∫

B
|K(x, y)−K(x, x0)|dy

)p

w(x)dx

≤ C

(∫

B
w(x)dx

)−1 ∞∑

j=1

|Bj |1−p

{∫

Bj

[∫

B
|K(x, y)−K(x, x0)|w(x)

1
p dy

]
dx

}p

≤ C

(∫

B
w(x)dx

)−1 ∞∑

j=1

|Bj |1−p

{∫

B

[∫

Bj

|K(x, y)−K(x, x0)|w(x)
1
p dx

]
dy

}p

≤ C

(∫

B
w(x)dx

)−1 ∞∑

j=1

|Bj |1−p

(∫

B
Cjw(y)

1
p dy

)p

≤ C

(∫

B
w(x)dx

)−1 ∞∑

j=1

Cp
j (2jn|B|)1−p|B|p

(
1
|B|

∫

B
w(y)dy

)

≤ C

∞∑

j=1

Cp
j 2jn(1−p) ≤ A.

Apparently, we have ‖T (a)‖Lp(Rn) ≤ A and the proof of the theorem is there-
fore complete.

Theorem 3.7. Let w ∈ A1 with w(x) ≥ C > 0 for almost every x ∈ Rn and
let T be a Calderón-Zygmund operator of type σ which satsifies the hypotheses
in Theorem 3.2 with Cj ≤ 2−2jn. We assume further that T ∗(1) = 0. Here
T ∗ is the adjoint operator of T . Then the operator T can be extended as a
bounded operator from H1(w(x)dx) into H1(w(x)dx).

Proof. For the proof of this theorem, we just need to show that T (a) is a
weighted (1, 2, 0, 1/2n)-molecule with N2,w(T (a)) ≤ A for all (1, 2, 0)-atoms a.

By Corollary 3.3 and the assumption w(x) ≥ C > 0 for almost every
x ∈ Rn, we know that

|B| ≤ C

∫

B
w(x)dx = Cw(B).

It follows that∫

2B
|T (a)(x)|2|x− x0|n+1w(x)dx ≤ C|B|1+ 1

n ‖T (a)‖2
L2(w(x)dx) ≤ Cw(B)

1
n .
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On the other hand, for x0 ∈ B fixed, notice that
∫

|x−y|>2|x0−y|
|x− x0|n+1|K(x, y)−K(x, x0)|2w(x)dx

≤ C

∞∑

j=1

(2j+2|y − x0|)n+1

(∫

Bj

|K(x, y)−K(x, x0)|2qdx

) 1
q
(∫

Bj

w(x)q′dx

) 1
q′

≤ C
∞∑

j=1

Cj |Bj |
1
n

(
1
|Bj |

∫

Bj

w(x)q′dx

) 1
q′

≤ C
∞∑

j=1

Cj |Bj |
1
n

(
1
|Bj |

∫

Bj

w(x)dx

)

≤ CM(w)(y)
∞∑

j=1

Cj2jn|B| 1n ≤ Cw(y)w(B)
1
n .

Now, as we have done in the proof of Theorem 3.6, we have the following:
∫

(2B)c

|x− x0|n+1|T (a)(x)|2w(x)dx

≤
∫

(2B)c

|x− x0|n+1

(∫

B
|a(y)| · |K(x, y)−K(x, x0)|dy

)2

w(x)dx

≤




∫

B
|a(y)|

(∫

|x−y|>2|x0−y|
|x− x0|n+1|K(x, y)−K(x, x0)|2w(x)dx

) 1
2

dy





2

≤ Cw(B)
1
n

(∫

B
|a(y)|w(y)

1
2 dy

)2

≤ Cw(B)
1
n ‖a‖2

L2(w(x)dx)|B| ≤ Aw(B)
1
n .

Therefore,

N2,w(T (a)) = ‖T (a)‖
1

n+1

L2(w(x)dx)
‖T (a)(x) · |x− x0|

n
2 ‖

n
n+1

L2(w(x)dx)
≤ A.

By the assumption T ∗(1) = 0, we also know that T (a) satisfies the moment
condition, i.e., ∫

Rn

T (a)(x)dx = 0.

This completes the proof.

Theorem 3.8. Let w ∈ A1 with w(x) ≥ C > 0 for almost every x ∈ Rn and
let T be a Calderón-Zygmund operator of type σ which satsifies the hypotheses
in Theorem 3.2 with Cj ≤ 2−2nb(j+2). We assume further that T ∗(xk) = 0
with |k| ≤ np. Here T ∗ is the adjoint operator of T . Then the operator T
can be extended as a bounded operator from Hp(w(x)dx) into Hp(w(x)dx) for
0 < p < 1.
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Proof. In order to prove this theorem, we just need to show that T (a)(x)
is a weighted (p, 2, np, ε)-molecule satisfying

N2,w(T (a)) = ‖T (a)‖
α
β

L2(w(x)dx)
‖T (a)(x)|x− x0|nβ‖1−α

β

L2(w(x)dx)
< ∞(3.8)

for all weighted (p, 2, np)-atoms a(x). Here ε > max{s/n, (1/p) − 1}, and
α = 1− (1/p) + ε, β = (1/2) + ε.

By Corollary 3.3, we have
∫

2B
|T (a)(x)|2|x− x0|2nβw(x)dx≤ C|B|2β‖T (a)‖2

L2(w(x)dx)

≤ Cw(B)2β+1− 2
p .

(3.9)

On the other hand, we know that
∫

|x−y|>2|x0−y|
|K(x, y)−K(x, x0)|2|x− x0|2nβw(x)dx

≤ C
∞∑

j=1

(2j+2|y − x0|)2nβ

(∫

Bj

|K(x, y)−K(x, x0)|2qdx

) 1
q
(∫

Bj

w(x)q′dx

) 1
q′

≤ C
∞∑

j=1

22nβ(j+2)|B|2βCj |Bj |−1− 1
q′

(∫

Bj

w(x)q′dx

) 1
q′

≤ C
∞∑

j=1

Cj22nβ(j+2)−jn|B|2β−1

(
1
|Bj |

∫

Bj

w(x)dx

)

≤ CM(w)(y)
∞∑

j=1

Cj22nβ(j+2)−jn|B|2β−1 ≤ Cw(y)w(B)2β−1.

By Minkowski’s inequality for integrals, it follows that
∫

(2B)c

|T (a)(x)|2|x− x0|2nβw(x)dx

≤
∫

(2B)c

|x− x0|2nβ

(∫

B
|a(y)||K(x, y)−K(x, x0)|dy

)2

w(x)dx

≤




∫

B
|a(y)|

(∫

|x−y|>2|x0−y|
|K(x, y)−K(x, x0)|2|x− x0|2nβw(x)dx

) 1
2

dy





2

≤ C|B|2β−1

(∫

B
|a(y)| · w(y)

1
2 dy

)2

≤ C|B|2β‖a‖2
L2(w(x)dx) ≤ Aw(B)1+2β− 2

p .



346 Der-Chen Chang

Combining (3.9) and the above estimate, we obtain (3.8). By the assumption
T ∗(xk) = 0 for all |k| ≤ np, we know that T (a) satisfies the moment conditions.
The proof of the theorem is therefore complete.

4. APPLICATIONS TO HYPERBOLIC EQUATIONS

In this section, we will apply Theorems 2.4, 3.7 and 3.8 to hyperbolic
partial differential equations, mainly hyperbolic equations. Let us consider
the Cauchy problem for the wave equation:





∂2u
∂t2

= ∆u, t > 0, x ∈ Rn,
u(0, x) = f(x), x ∈ Rn,
∂u
∂t (0, x) = g(x), x ∈ Rn.

This problem was studied by many mathematicians such as M. Beals [1],
Hirshmann [24], Fefferman-Stein [18], Miyachi [27], Seeger-Sogge-Stein [30],
Sjöstrand [31] and Sugimoto [32].

We can write the solution u = u(t, x) of the above problem as

u(t, x)= F−1(cos(t|ξ|)F(f)(ξ))(x) + F−1

(
sin(t|ξ|)
|ξ| F(g)(ξ)

)
(x)

= (U(t)f)(x) + (V (t)g)(x).

In fact, the operators U(t) and V (t) are multiplier operators:

U(t) = Tψ1 with ψ1(ξ) = cos t|ξ|,

V (t) = Tψ2 with ψ2(ξ) =
sin t|ξ|
|ξ| .

When n = 1, it is known that U(t) and V (t) are bounded operators in
Lp(R), 1 < p < ∞, i.e., the following inequalities hold for all p:

‖U(t)f‖Lp ≤ Cp(t)‖f‖Lp and ‖V (t)g‖Lp ≤ Cp(t)‖g‖Lp .(4.1)

In fact, by Theorem 2.4, we know that U(t) and V (t) are also bounded oper-
ators in Hp(R), 0 < p ≤ 1, i.e.,

‖U(t)f‖Hp ≤ Cp(t)‖f‖Hp and ‖V (t)g‖Hp ≤ Cp(t)‖g‖Hp .(4.2)

The situation is quite different if n ≥ 2:

‖U(t)f‖Lp ≤ Cp(t)‖f‖Lp ⇐⇒ p = 2;

‖V (t)g‖Lp ≤ Cp(t)‖g‖Lp ⇐⇒
∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
1

n− 1
.



Fu Jen Lectures in Hardy Spaces 347

Instead of the simple inequalities (4.1) and (4.2), let us consider the fol-
lowing operators, for n ≥ 2 and p 6= 2, if we take λ and µ sufficiently large:

f 7→ λt−λ

∫ t

0
(t− s)λ−1U(s)fds,

f 7→ λt−λ

∫ t

0
(t− s)λ−1V (s)fds,

(I−∆)
µ
2 f 7→ U(t)f,

and
(I−∆)

µ
2 f 7→ V (t)f.

Then these four operators are also Fourier multiplier operators with

ψ1,λ,t(ξ) = λt−λ

∫ t

0
(t− s)λ−1 cos(s|ξ|)ds,(4.3)

ψ2,λ,t(ξ) = λt−λ

∫ t

0
(t− s)λ−1 sin(s|ξ|)

|ξ| ds,(4.4)

ψ3,µ,t(ξ) = (1 + |ξ|2)−µ
2 cos(t|ξ|),(4.5)

and

ψ4,µ,t(ξ) = (1 + |ξ|2)−µ
2
sin(t|ξ|)
|ξ| .(4.6)

We shall study the problems related to these multipliers. Let Φ be a fixed
smooth function on the real line R such that

0 ≤ Φ(x) ≤ 1, Φ(x) =
{

0 if x ≤ 1,
1 if x ≥ 2.

It is easy to see that

ψ1,λ,t(ξ) = λΓ(λ)(t|ξ|)−λ cos
(

t|ξ| − λπ

2

)
+ H(tξ),

where H(ξ) satisfies
∣∣∣DkH(ξ)

∣∣∣ ≤ Ck|ξ|−1−|k| for |ξ| > 1

and all |k| ≥ 0. By Theorems 1.1 and 2.4, we know that H(tξ) ∈ M(Hp)
for 0 < p < ∞. Therefore, Hp estimates for the multiplier ψ1,λ,t is equivalent
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to the Hp estimates for Φ(|ξ|)|ξ|−λ cos (|ξ| − (λπ/2)). Similar conclusions also
hold for ψ2,λ,t, ψ3,µ,t and ψ4,µ,t. Immitating the arguments in Miyachi [27], we
obtain the following lemma:

Lemma 4.1. Let ψj,λ,t, j = 1, 2, be defined in (4.3), (4.4) and let ψj,µ,t,
j = 3, 4, be defined in (4.5), (4.6), respectively. Then we have the following:

1. ψ1,λ,t ∈M(Hp) if and only if

Φ(|ξ|)|ξ|−λ cos
(
|ξ| − λπ

2

)
∈M(Hp).

Moreover, if ψ1,λ,t ∈M(Hp), then ‖ψ1,λ,t‖M(Hp) does not depend on the
variable t.

2. ψ2,λ,t ∈M(Hp) if and only if

Φ(|ξ|)|ξ|−λ−1 sin
(
|ξ| − λπ

2

)
∈M(Hp).

Moreover, if ψ2,λ,t ∈ M(Hp), then ‖ψ2,λ,t‖M(Hp)/t does not depend on
the variable t.

3. ψ3,µ,t ∈M(Hp) if and only if

Φ(|ξ|)|ξ|−µ cos |ξ| ∈ M(Hp).

Moreover, if ψ3,µ,t ∈M(Hp), then ‖ψ3,µ,t‖M(Hp) ≤ C(1 + t)µ.

4. ψ4,µ,t ∈M(Hp) if and only if

Φ(|ξ|)|ξ|−µ−1 sin |ξ| ∈ M(Hp).

Moreover, if ψ4,µ,t ∈M(Hp) and µ ≥ 0, then ‖ψ4,µ,t‖M(Hp) ≤ Ct(1+t)µ.

Hence, Lemma 4.1 reduces the problem to studying multipliers of the fol-
lowing form:

ψ(ξ) = Φ(|ξ|)|ξ|−λe±i|ξ|,

i.e.,

Tψ(f)(x) = (2π)−
n
2

∫

Rn

Φ(|ξ|)|ξ|−λei(x·ξ±|ξ|)f̂(ξ)dξ

with λ ≥ 0. Now we may apply Theorem 2.4 to prove the following theorem:
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Theorem 4.2. Let n ≥ 2 and λ ≥ 0. Then the operator Tψ is bounded on
Hp(Rn) into itself if and only if

(n− 1)
∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤ λ.

Applying the above theorem, we have the following corollary immediately.

Corollary 4.3. Let ψj,λ,t, j = 1, 2, be defined in (4.3), (4.4) and let ψj,µ,t,
j = 3, 4, be defined in (4.5), (4.6), respectively. Then we have the following:

1.

‖Tψ1,λ,t
(f)‖Hp ≤ Cp(t)‖f‖Hp ⇐⇒

∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
λ

n− 1
.

In this case, Cp(t) = Cp is a constant independent of the t-variable.

2.

‖Tψ2,λ,t
(f)‖Hp ≤ Cp(t)‖f‖Hp ⇐⇒

∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
λ + 1
n− 1

.

In this case, Cp(t) = Cpt.

3.

‖Tψ3,µ,t(f)‖Hp ≤ Cp(t)‖(I−∆)
µ
2 f‖Hp ⇐⇒

∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
µ

n− 1
.

In this case, Cp(t) = Cp(1 + t)(n−1)| 1
p
− 1

2
|.

4.

‖Tψ4,µ,t(f)‖Hp ≤ Cp(t)‖(I−∆)
µ
2 f‖Hp ⇐⇒

∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
µ + 1
n− 1

.

In this case, Cp(t) satisfies the following: when µ ≥ 0, Cp(t) = Cp(1 +
t)γ(n,p) with γ(n, p) = max {(n− 1) |(1/p)− (1/2)| − 1, 0} ; when −1 ≤
µ < 0,

Cp(t) =
{

Cpt, t ≥ 1,
Cpt

1+µ, 0 < t < 1.

If we look at the proof of Theorem 4.2 carefully, the crucial ingredient we
used there was the surface {ξ ∈ Rn : |ξ| = 1} has nonvanishing Gaussian
curvature everywhere. It is easy to generalize Theorem 4.2 to the following
theorem (see Miyachi [27]):

Theorem 4.4. Let φ be a positive homogeneous function of degree 1. As-
sume that φ is smooth and positive on Rn\{0} and that the Gaussian curvature
of the surface

Σ = {ξ ∈ Rn : φ(ξ) = 1}
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never vanishes on Σ. Let a and b be positively homogeneous functions of degree
−λ, λ ≥ 0. Suppose that a and b are smooth on Rn \ {0}. Then the function

ψt(ξ) = Φ(φ(ξ))(a(ξ)eitφ(ξ) + b(ξ)e−itφ(ξ))

is a Fourier multiplier on Hp(Rn) if and only if |(1/p) − (1/2)| ≤ λ/(n − 1).
Moreover, there exist positive constants C1 and C2 such that for t ≥ 1,

C1t
(n−1)

��� 1p− 1
2

��� ≤ ‖ψt‖M(Hp) ≤ C2t
(n−1)

��� 1p− 1
2

���
.

Notice that the constants Cp(t)’s given in Corollary 4.3 are sharp. This
can be seen by Theorem 4.4 and the inequality

‖ψ‖L∞ ≤ Cp‖ψ‖M(Hp), 0 < p < ∞.

A similar argument also allows us to obtain the following result:

Corollary 4.5 (Marcinkiewicz multiplier theorem). Let φ be as men-
tioned in Theorem 4.4, λ > 0, n ≥ 2, and

N = max
{[

nλ

n− 1

]
+ 1,

[n

2

]
+ 1

}
.

Suppose that ψ ∈ CN (Rn \ {0}) and

R2(λ+|k|)−n

∫

R≤|ξ|≤2R
|Dkψ(ξ)|2dξ ≤ A2 ∀ R > 0

for all 0 < |k| ≤ N . Then we have
∥∥∥−1

[
Φ(φ(ξ))ψ(ξ)e±iφ(ξ)f̂(ξ)

]∥∥∥
Hp

s+λ

≤ CA‖f‖Hp
s

whenever |(1/p)− (1/2)| ≤ λ/(n− 1).

In fact, we may generalize the above results to the following operator: for
f ∈ S(Rn) and x ∈ Rn,

T (f)(x) =
∫

Rn

eiΦ(x,ξ)ψ(x, ξ)f̂(ξ)dξ,

where the phase function Φ(x, ξ) and the amplitude function ψ(x, ξ) satisfy
the following properties:

1. ψ ∈ C∞(Rn × (Rn \ {0}));
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2. for each ξ ∈ Rn, supp(ψ(·, ξ)) ⊂ K with K a compact subset in Rn;

3. Φ : Rn × (Rn \ {0}) → R is smooth;

4. there exist C > 0 and λ ≥ 0 such that
∣∣∣∂α

x ∂k
ξ ψ(x, ξ)

∣∣∣ ≤ C(1 + |ξ|)−λ−|k| for all x ∈ K;

5. Φ is homogeneous of degree 1 in the ξ-variable, i.e., Φ(x, δξ) = δΦ(x, ξ),
for all δ > 0, x ∈ K, and ξ ∈ Rn \ {0};

6. the rotational curvature of Φ never vanishes, i,e.,

det
(

∂2Φ(x, ξ)
∂xj∂ξk

)
6= 0

for all x ∈ K, ξ ∈ Rn \ {0}.
Under the above assumptions, Seeger, Sogge and Stein proved the following

celebrated result (see [30]):
Assume that n ≥ 2 and 0 < λ < (n − 1)/2. The operator T is a bounded

operator from Lp(Rn) into itself, 1 < p < ∞, if and only if
∣∣∣∣
1
p
− 1

2

∣∣∣∣ ≤
λ

n− 1
.

In this talk, we want to apply the above theorem to Hp estimates for
solutions of hyperbolic equations. In order to make this article self-contained,
we will prove Hp result for Seeger-Sogge-Stein theorem when T is a multiplier
operator, i.e., ψ(x, ξ) = ψ(ξ). Let us first consider the L2 estimates for the
operator T .

Theorem 4.6. Assume that the phase function Φ(x, ξ) and the amplitude
function ψ(x, ξ) satisfy the above conditions (1) to (6) with λ = 0. Then T
defines a bounded operator from L2(Rn) into itself.

Proof. Since ‖f‖L2 = ‖f̂‖L2 , we just need to consider the L2-boundedness
of the following operator:

T ′(f)(x) =
∫

Rn

eiΦ(x,ξ)ψ(x, ξ)f(ξ)dξ.

Let S be a measurable subset of {ξ ∈ Rn : |ξ| = 1} such that diam(S) ≤ δ,
where δ is a very small positive number. We may assume that for ψ(x, ξ) 6= 0
with ξ 6= 0, we have

ξ ∈ Γ =
{

ξ ∈ Rn : ξ 6= 0,
ξ

|ξ| ∈ S

}
.



352 Der-Chen Chang

Therefore,

‖T ′(f)‖2
L2 =

∫

Rn

(T ′f)(x)(T ′f)(x)dx

=
∫

Rn

ei(Φ(x,ξ)−Φ(x,ζ))ψ(x, ξ)ψ(x, ζ)f(ξ)f(ζ)dξdζdx

=
∫

Rn

K(ξ, ζ)f(ξ)f(ζ)dx,

where
K(ξ, ζ) =

∫

Rn

ei(Φ(x,ξ)−Φ(x,ζ))ψ(x, ξ)ψ(x, ζ)dx.

It reduces to showing that

sup
ζ∈Rn

∫

Rn

|K(ξ, ζ)|dξ ≤ C, sup
ξ∈Rn

∫

Rn

|K(ξ, ζ)|dζ ≤ C.(4.7)

Once we achieve this goal, then by Schur’s lemma, we have

‖T ′(f)‖2
L2 ≤ C‖f‖2

L2 .

In order to prove (4.7), we just need to show that

|K(ξ, ζ)| ≤ C(1 + |ξ − ζ|)−(n+1)

with x ∈ K and ξ, ζ ∈ Γ. First we want to prove the following two inequalities
∣∣∣Dk

x(Φ(x, ξ)− Φ(x, ζ))
∣∣∣ ≤ Ck|ξ − ζ|(4.8)

and

| 5x (Φ(x, ξ)− Φ(x, ζ))| ≥ C1|ξ − ζ|(4.9)

for all multi-indices k ∈ (Z+)n. Since both |ξ − ζ| and |Φ(x, ξ)− Φ(x, ζ)| are
homogeneous of degree 1, it suffices to assume that

|ξ| = 1 ≥ |ζ|.
When |ζ| > 1/2, by the mean-value theorem, it is easy to obtain (4.8). When
|ζ| ≤ 1/2, we have
∣∣∣Dk

x(Φ(x, ξ)− Φ(x, ζ))
∣∣∣ ≤

∣∣∣Dk
xΦ(x, ξ)

∣∣∣+
∣∣∣Dk

xΦ(x, ζ)
∣∣∣ ≤ Ck|ξ|+Ck|ζ| ≤ C ′

k|ξ−ζ|,

which is (4.8). In order to prove (4.9), we need to look at the phase function
Φ(x, ξ) more carefully. By assumption (6) of the phase function Φ(x, ξ), we
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know that ∂2Φ(x,ξ)
∂xj∂ξk

is homogeneous of degree zero and nonsingular away from
the origin. Therefore, there exists a constant C1 such that

∣∣∣∣∣∣

(
n∑

k=1

∂2Φ(x, ξ)
∂xj∂ξk

ηk

)

j

∣∣∣∣∣∣
≥ C1|η|(4.10)

for all x ∈ K, ξ ∈ Rn\{0} and all η ∈ Rn. Denote5xΦ(x, ξ) = Φx(x, ξ). Then
Φx(x, ξ) is homogeneous of degree 1 in the ξ-variable. By Euler’s identity, we
have

Φx(x, ξ) =
n∑

k=1

∂Φx(x, ξ)
∂ξk

ξk.

Hence,

|Φx(x, ξ)| ≥ C1|ξ| for all x ∈ K, ξ ∈ Rn \ {0}.(4.11)

Next, consider the Taylor’s expansion

Φx(x, ξ)− Φx(x, ζ) =
n∑

k=1

∂Φx(x, ξ)
∂ξk

(ξk − ζk) +O(|ξ − ζ|2).

For x ∈ K, |ξ| = 1 and |ξ − ζ| ≤ 1/2, the term
∑n

k=1
∂Φx(x,ξ)

∂ξk
(ξk − ζk) can be

estimated by using (4.10) and the estimate for the term O(|ξ − ζ|2) is trivial.
Therefore, we conclude that there exists a very small positive number δ1 such
that

|Φx(x, ξ)− Φx(x, ζ)|

≥ C1

2
|ξ − ζ| for all x ∈ K, |ξ| = 1 and |ξ − ζ| ≤ δ1.

(4.12)

Now, we may use (4.11) and (4.12) to obtain (4.9). Since both sides of (4.9)
are homogeneous of degree 1 and |ξ| = 1 ≥ |η|, it is easy to see that (4.9) holds
for |ξ− ζ| ≤ δ1. Now we may assume that |ξ− ζ| > δ1. Since ξ, ζ ∈ Γ, we have

1− |ζ| =
∣∣∣∣

ζ

|ζ| − ζ

∣∣∣∣ ≥ |ξ − ζ| −
∣∣∣∣ξ −

ζ

|ζ|

∣∣∣∣ ≥ δ1 − δ ≥ δ1

2

with δ a very small positive number. Since Φx(x, ξ) is homogeneous of degree
1, we have

Φx(x, ξ)− Φx(x, ζ)= Φx(x, ξ)− Φx(x, |ζ|ξ) + Φx(x, |ζ|ξ)− Φx(x, ζ)

= (1− |ζ|)Φx(x, ξ) + |ζ|
(

Φx(x, ξ)− Φx

(
x,

ζ

|ζ|
))

= I + II.
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Since 1− |ζ| ≥ δ1/2, by (4.11), we have

|I| ≥ C1(1− |ζ|) ≥ C1
δ1

2
.

By (4.8), we have

|II| ≤ |ζ| · C0 ·
∣∣∣∣ξ −

ζ

|ζ|

∣∣∣∣ ≤ C0δ

because |ζ| ≤ 1 and ξ, ζ ∈ Γ. Here δ is a very small positive number. Therefore,
there exists a constant C > 0 such that

|Φx(x, ξ)− Φx(x, ζ)| ≥ C1
δ1

2
− C0δ ≥ C1

δ1

3
≥ C|ξ − ζ|.

Denote Φ(x, ξ)−Φ(x, ζ) = Θ(x; ξ, ζ) and ψ(x, ξ)ψ(x, ζ) = ϕ(x; ξ, ζ). Then we
have

1
i

n∑

j=1

1
| 5x Θ|2

∂Θ
∂xj

· ∂eiΘ

∂xj
=

1
i

n∑

j=1

θj
∂eiΘ

∂xj
= eiΘ,

where θj = 1
|5xΘ|2

∂Θ
∂xj

. Therefore,

K(ξ, ζ)=
∫

Rn

eiΘ(x;ξ,ζ)ϕ(x; ξ, ζ)dx =
1
i

∫

Rn




n∑

j=1

θj
∂eiΘ

∂xj


ϕdx

= i
n∑

j=1

∫

Rn

eiΘ

(
∂θj

∂xj
ϕ + θj

∂ϕ

∂xj

)
dx.

Applying integration by parts n + 1 times to the above identity, we obtain

K(ξ, ζ) = in+1
∑

|k|+`=n+1

C

∫

Rn

eiΘ(∂k1
x θj1) · · · (∂ks

x θjs)(∂
`
xϕ)dx.(4.13)

By (4.8) and (4.9), we know that the integrand in (4.13) is nonvanishing for
x ∈ K and ξ, ζ ∈ Γ. Moreover, for 0 < |k| ≤ n + 1, we have

|∂k
xθj |≤ C ·

∑

r=1,...,|k|, kj 6=0

| 5x Θ|−1−r|∂k1
x ∂j1Θ| · · · |∂ks

x ∂jsΘ|

≤ C · |ξ − ζ|−1.

(4.14)

For |k| = 0, we have

|θj | = 1
| 5Θ|2 ·

∣∣∣∣
∂Θ
∂xj

∣∣∣∣ ≤ C · |ξ − ζ|−1.(4.15)
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Plugging (4.14) and (4.15) into (4.13), we have

|K(ξ, ζ)| ≤ C ·
∑

`≤n+1

∫

K
|ξ− ζ|−(n+1)

∣∣∣∂`
x(ψ(x, ξ)ψ(x, ζ)

∣∣∣ dx ≤ C · |ξ− ζ|−(n+1).

On the other hand,

|K(ξ, ζ)| ≤
∫

K

∣∣∣∂`
x(ψ(x, ξ)ψ(x, ζ)

∣∣∣ dx ≤ C,

since K is compact and λ = 0. Summarizing the above discussion, we have

|K(ξ, ζ)| ≤ C · (1 + |ξ − ζ|)−(n+1).

This completes the proof of the theorem.

Let us now consider the following Cauchy problem
{

P (Dt, Dx)u(t, x) = 0, x ∈ Rn, t ∈ R+,

Dj
t u(0, x) = gj(x), j = 0, 1, . . . , m− 1, x ∈ Rn.

Here the operator P (Dt, Dx) is a homogeneous constant coefficient partial
operator of degree m in Dt, Dx1 , . . . , Dxn which is strictly hyperbolic, i.e.,
the symbol P(τ, ξ) can be factorized as

P(τ, ξ) = (τ − φ1(ξ)) · · · (τ − φm(ξ)),

where the characteristic roots {φj(ξ)}m
j=1 are homogeneous of degree 1 and are

ordered as
φ1(ξ) > φ2(ξ) > · · · > φm(ξ) for ξ 6= 0.

We further assume that each characteristic root φj(ξ), j = 1, . . . , m, is either
identically positive for ξ 6= 0 or identically negative. Then the solution of the
above Cauchy problem can be represented as

u(t, x) =
m∑

j=1

m−1∑

λ=0

Ψj,λ
t (D)gj .

Here the symbol of the operator Ψj,λ
t (D) is of the form

ψj,λ
t (ξ) = eitφj(ξ)aj,λ(ξ)

with aj,λ(ξ) ∈ S−λ and 0 /∈ supp(aj,λ). Let t > 0. We have

[Ψj,λ
t (D)gj ](x) = tj [Ψj,λ

1 (D)(gj(t·))]
(x

t

)
.
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Hence the problem reduces to studying the following multiplier operator:

Tψ(D) = −1 [ψ(ξ)] = −1
[
eiφ(ξ)aλ(ξ)

]
,

where φ ∈ Cω(Rn \ {0}) is homogeneous of degree 1 and aλ(ξ) ∈ C∞(Rn) is
homogeneous of degree −λ for large |ξ| and vanishes near the origin. We shall
assume φ(ξ) > 0 for ξ 6= 0 since it is one of the characteristic roots {φj}m

j=1.
Estimates for the case φ(ξ) < 0 can be easily derived from those for the case
φ(ξ) > 0. Furthermore, we assume that the hypersurface

Σ = {ξ ∈ Rn : φ(ξ) = 1}

is strictly convex, i.e., every tangent plane of Σ never lies on Σ except for the
tangent point. In particular, in case m = 2, the Gaussian curvature of Σ never
vanishes. Let us investigate the properties of the kernel

K(x) = F−1
ξ [ψ(ξ)](x) = (2π)−

n
2

∫

Rn

e{ix·ξ+φ(ξ)}aλ(ξ)dξ.(4.16)

Let the spherical map ν of the surface Σ be

ν : p ∈ Σ 7→ 5φ(p)
| 5 φ(p)| ∈ Sn−1,

and let κ(p) be the Gaussian curvature at the point p ∈ Σ with respect to
the spherical map ν. Since Σ is strictly convex, the spherical map ν is a
homomorphism. From calculation below, it can be seen that the kernel K(x)
has a singularity on the hypersurface

Σ∗ = {−5 φ(ξ) : ξ ∈ Σ} = {x ∈ Rn : H(x) = 0},

where

H(x) = |x| −
∣∣∣∣5φ

(
ν−1

(
− x

|x|
))∣∣∣∣ .

The expression (4.16) of the kernel is an oscillatory integral. Therefore, we
may rewrite it as

K(x) = (2π)−
n
2

∫

Rn

e{ix·ξ+φ(ξ)}(L∗)Maλ(ξ)dξ

for all positive integers M . Here

L =
(x +5φ) · 5ξ

i|x +5φ|2



Fu Jen Lectures in Hardy Spaces 357

and L∗ is the transpose of L. From this we can easily obtain the following:

Proposition 4.7. The kernel K(x) is smooth in Rn \ Σ∗ and we have

(
∂

∂x

)β

K(x) = O(|x|−M ) as |x| → ∞

for every β and for every M > 0.

By the compactness of the sphere Sn−1 and the rotation invariance of
the geometric preoperties, we may assume that aλ(ξ) in (4.16) is supported
in a sufficiently small open conic neighborhood Γ of the “north pole” en =
(0, . . . , 0, 1) ∈ Sn−1. Then by (4.16) again, we can just pay attention to x near
the point −5 φ(en) ∈ Σ∗.

Since Euler’s identity
φ(ξ) = ξ · 5φ(ξ)

yields φ′xn
(en) = φ(en) > 0, the hypersurface Σ can be expressed locally as

Σ ∩ Γ = {(y, h(y)) : y ∈ U}

by the implicit function theorem. Here U ⊂ Rn−1 is a sufficiently small open
neighborhood of the origin and h : U → R is a real analytic function.

The strict convexity of the hypersurface Σ implies that the function h is
concave and the map h′ : U → h′(U) ⊂ Rn−1 is a homeomorphism.

For the point x near −5 φ(en) ∈ Σ∗, we define the point z ∈ U by

(z, h(z)) = ν−1(−x/|x|) ∈ Σ∗.

If we write x = (x′, xn) with x′ = (x1, . . . , xn−1), this is equivalent to the
following:

h′(z) = − x′

xn

because of the trivial equality

− x

|x| =
5φ

| 5 φ|(z, h(z))

and of the fact that the vector (−h′(z), 1) is normal to the hypersurface Σ at
the point (z, h(z)).

Then the Gaussian curvature κ is represented as

κ

(
ν−1

(
− x

|x|
))

=
(−1)n−1 deth

′′
(z)

{1 + | 5 h(z)|2}n+1
2

.
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On the other hand, by Euler’s identity

(z, h(z)) · 5φ(z, h(z)) = 1,

we have

H(x) = −xn

∣∣∣∣5φ

(
κ

(
ν−1

(
− x

|x|
)))∣∣∣∣ (x−1

n + h(z)− h′(z) · z).

Besides, we may decompose the kernel K(x) as following:

K(x) =
∞∑

j=1

Kj(x),

where Kj is defined as follows:

Kj(x)= F−1
ξ [ψ(ξ)Φj(xnφ(ξ))] (x)

= (2π)−
n
2

∫

Rn

ei(x·ξ+φ(ξ))aλ(ξ)Φj(xnφ(ξ))dξ.

Here {Φj(t)}∞j=0 is a partition of unity of Littlewood-Paley, that is,

Φ(t) ∈ C∞
0 ({t : t > 0}), Φj(t) = Φ

( |t|
2j

)
, j ≥ 1 and

∞∑

j=1

Φj(t) = 1.

Then we have the following result (see Sugimoto [32] and Chang-Sugimoto
[12]):

Proposition 4.8. For sufficiently small ε, η ≥ 0, every term Kj(x) has
the estimate

∥∥∥∥∥κ

(
ν−1

(
− x

|x|
))−η

H(x)ε

(
∂

∂x

)k

Kj(x)

∥∥∥∥∥
L1

≤ Ck,ε,η2
j
�

(n−1)
2

−λ+|k|−ε
�

Here the constant Ck,ε,η is independent of the number j. In particular, there
exists a constant Ck such that

∥∥∥∥∥
(

∂

∂x

)k

Kj(x)

∥∥∥∥∥
L1({x∈Rn: |x|≥ρ})

≤ Ck2j
�

(n−1)
2

−λ+|k|
�
,

for all ρ ≥ 2
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Immediately, we may apply the above proposition to the kernel Kj(x) with
λ = (n− 1) ((1/p)− (1/2)), i.e., we need to check the following:

∫

|x|≥α|y|
|Kj(x− y)−Kj(x)|dx

≤

 ∑

2j≤|y|−1

+
∑

2j>|y|−1




∫

|x|≥α|y|
|Kj(x− y)−Kj(x)|dx

= Σ1 + Σ2.

• Estimate of Σ1:

∫

|x|≥α|y|
|Kj(x− y)−Kj(x)|dx≤ C

∫

|x|≥α|y|
|y| ·

∣∣∣∣∣
(

∂

∂x

)k

Kj(x− ωy)

∣∣∣∣∣ dx

≤ C

∫

|x+ωy|≥α|y|
|y| ·

∣∣∣∣∣
(

∂

∂x

)k

Kj(x)

∣∣∣∣∣ dx

≤ C|y| ·
∫

|x|≥α
2
|y|

∣∣∣∣∣
(

∂

∂x

)k

Kj(x)

∣∣∣∣∣ dx.

Here |k| = 1 and 0 < ω < 1. The third inequality above holds because the
following reason:

|x| ≥ (α− ω)|y| ≥ (α− 1)|y| ≥
(
α− α

2

)
|y| ≥ α

2
|y|.

• Estimate of Σ2:
∫

|x|≥α|y|
|Kj(x− y)−Kj(x)|dx≤

∫

|x|≥α|y|
|Kj(x− y)|dx +

∫

|x|≥α|y|
|Kj(x)|dx

≤
∫

|x+y|≥α|y|
|Kj(x)|dx +

∫

|x|≥α|y|
|Kj(x)|dx

≤ 2
∫

|x|≥α
2
|y|
|Kj(x)|dx.

Once again, the third inequality above holds because of the following reason:

|x| ≥ (α− 1)|y| ≥
(
α− α

2

)
|y| ≥ α

2
|y|

since α ≥ 2.
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Now we may apply Proposition 4.8 to obtain the following result: if λ ≤
(n− 1)/2 then ((n− 1)/2)− λ + 1 > 0,

|Σ1|≤ C
∑

2j≤|y|−1

2j(n−1
2
−λ+1)|y|

≤ C|y|−(n−1
2
−λ+1)|y| ≤ C|y|−(n−1

2
−λ),

and
|Σ2| ≤ C

∑

2j≥|y|−1

2j(n−1
2
−λ) ≤ C|y|−(n−1

2
−λ).

Hence
|Σ1 + Σ2| ≤ C|y|−(n−1

2
−λ).

It follows that ∫

|x|≥α|y|
|Kj(x− y)−Kj(x)|dx < C.

This tells us that the multiplier operator Tψ is weak type (1,1). It follows that
Tψ defines a bounded operator from H1(Rn) into L1(Rn).

Let RJ , J = (j1, . . . , j`) ∈ (Z+)`, be the Riesz transform of order `, i.e.,
the Fourier multiplier transform TψJ

with

ψJ(ξ) =
(
−i

ξj1

|ξ|
)
· · ·

(
−i

ξj1

|ξ|
)

, ξ ∈ Rn.

Here the factor (−iξj/|ξ|) shall be replaced by 1 if j = 0. Then we have the
following theorem (see Fefferman and Stein [18]):

Theorem 4.9. Let p > (n − 1)/(n − 1 + `). Then f ∈ L2(Rn) ∩Hp(Rn)
if and only if RJ(f) ∈ L2(Rn) ∩ Lp(Rn) for all J ∈ (Z+)`; and there exist
constants C1 and C2 depending only on p, n, and ` such that

C1

∑

J

‖RJ(f)‖Lp ≤ ‖f‖Hp ≤ C2

∑

J

‖RJ(f)‖Lp

for all f ∈ L2(Rn) ∩Hp(Rn).

By Theorem 4.6, we know that Tψ is strong type (2,2). Now using Theorem
4.9 and the fact that Tψ is of weak-type (1,1), we conclude that Tψ is a bounded
operator from H1(Rn) into itself since it is a multiplier operator (see Stein
[34, Chapter 3]). By interpolation theorem between L2(Rn) and H1(Rn) (see
Folland and Stein [19]), we know that Tψ(D) is bounded from Lp(Rn) into
itself, 1 < p < 2. Since Tψ is a convolution operator, we also know that



Fu Jen Lectures in Hardy Spaces 361

Tψ is bounded from Lp(Rn) into itself, 2 < p < ∞, by duality argument.
Moreover, since Tψ(D) is basically a convolution operator, we also conclude
that Tψ(D) defines a bounded operator from BMO(Rn) into itself. A locally
integrable function f is said to be in BMO(Rn) (the function of bounded
mean oscillation) if

‖f‖# ≡ sup
B

{
1
|B|

∫

B
|f(x)− fB|pdx

} 1
p

< ∞, some 1 ≤ p < ∞.

Here B ranges over all balls in Rn and fB denotes the average of f over the
ball. Recently, applying Theorems 2.4, 3.8 and Proposition 4.8, we obtain Hp

estimates for the operator Tψ(D) with pθ < p < 1. We will not go through the
detail here and readers can consult a forthcoming paper (Chang and Sugimoto
[12]).

Theorem 4.10. If the hypersurface Σ is strictly convex and |(1/p) −
(1/2)| ≤ λ/(n− 1), then

1. the operator Tψ(D) is bounded on the Hardy-Sobolev spaces Hp
s (Rn) with

s ∈ R and pθ < p < ∞, where pθ < 1 is an index depending on the
vanishing order of the Gaussian curvature;

2. the operator Tψ(D) is bounded on the Besov spaces Bs
p,q(Rn) with 1 ≤

p, q ≤ ∞ and s ∈ R.

Here the Besov spaces are a generalization of classes of Hölder continuous
functions. For instance, Bs∞,∞, s > 0, is “almost” the same as the class of
functions which are [s]-times differentiable and whose derivatives are Hölder
continuous of order s− [s].
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