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EXACT BOUNDARY CONTROLLABILITY FOR HEAT
EQUATION WITH TIME DEPENDENT COEFFICIENTS

Yung-Jen Lin Guo

Abstract. We consider the exact boundary controllability for one-
dimensional linear heat equation with coefficients depending on the space
variable and the time variable. We show that the functions of Gevrey
class 2 are reachable when the initial functions are continuous.

1. Introduction

The aim of this work is to study the exact boundary controllability prob-
lem for one-dimensional linear heat equation with coefficients depending on
the space variable and the time variable. We consider the following initial
boundary value problem for a linear heat equation with Dirichlet boundary
conditions

wt − wxx = a(x, t)wx + b(x, t)w + c(x, t) on (0, 1)× (0,∞),(1.1)

w(0, t) = 0 for t ≥ 0,(1.2)

w(x, 0) = w0(x) for x ∈ [0, 1],(1.3)

w(1, t) = h(t) for t ≥ 0,(1.4)
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where c(x, t) is an infinitely differentiable function and a(x, t) and b(x, t) are
Gevrey class 2 functions in [0, 1] × [0,∞). What this means is that positive
constants Ci, Hi, i = 1, 2, exist such that

|∂α1
x ∂α2

t a(x, t)| ≤ C1H
α1+α2
1 (2(α1 + α2))!,

|∂α1
x ∂α2

t b(x, t)| ≤ C2H
α1+α2
2 (2(α1 + α2))!

for (x, t) ∈ [0, 1] × [0,∞), α1 ≥ 0, α2 ≥ 0. The problem of exact boundary
controllability for (1.1)–(1.4) can be stated as follows. Given T > 0 and a
function wf (x) in an apppropriate space, is it possible to find a corresponding
controller h(t) so that the solution of the resulting problem (1.1)-(1.4) sat-
isfies w(x, T ) = wf (x) for x ∈ [0, 1] for every initial data w0(x) in another
appropriate space?

The method we use here is based on the work of Y.-J. L. Guo and W.
Littman [6] in which the control problem is transferred to two well-posed
problems. For our case, the method proceeds roughly as follows:

(1) Extend the domain of the initial data w0 to be [0, 2] so that the extended
w0 is still continuous and w0(x) ≡ 0 in a neighborhood of 2. We also
extend the domain of a(x, t), b(x, t) and c(x, t) to be {(x, t) : 0 ≤ x ≤
2, 0 < t < ∞} so that all properties of a(x, t), b(x, t) and c(x, t) are
maintained.

(2) With the new modified initial data w0(x) and the functions a(x, t), b(x, t)
and c(x, t), solve the initial-boundary value problem:

vt − vxx = a(x, t)vx + b(x, t)v + c(x, t) on (0, 2)× (0,∞),(1.5)

v(0, t) = 0 for t ≥ 0,(1.6)

v(2, t) = 0 for t ≥ 0,(1.7)

v(x, 0) = w0(x) for x ∈ (0, 2).(1.8)

(3) Let ψ be a cut-off function satisfying ψ(t) = 1 for t ≤ T/2 and ψ(t) = 0
for t ≥ T . Let

g(t) = vx(0, t)ψ(t),

where v is the solution in (2).
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(4) Solve the Cauchy problem

uxx = ut − a(x, t)ux − b(x, t)u− c(x, t) for t ≥ T0, x > 0,(1.9)

u(0, t) = 0, ux(0, t) = g(t) for t ≥ T0(1.10)

in the x-direction to get a solution which vanishes for t ≥ T and equals
the solution v for t ≤ T/2, where T0 is a positive constant.

(5) The boundary function is obtained by setting h(t) = u(1, t).

The initial-boundary value problem (1.5)-(1.8) can be solved by the stan-
dard method. To solve the second problem (1.9)-(1.10), we use the nonlinear
Cauchy-Kowalevski Theorem. If the solution u(x, t) of (1.9)-(1.10) exists be-
yond x = 1, we obtain a controller by reading the values of v(x, t) and u(x, t)
at x = 1 where v(x, t) and u(x, t) are solutions of (1.5)-(1.8) and (1.9)-(1.10)
respectively. To estimate the length of the x-interval of existence for the so-
lution u(x, t), we shall recheck the constants in the proof of the nonlinear
Cauchy-Kowalevski Theorem. In [6], the authors consider the control problem
for semilinear heat equations and the result of the null boundary controllabil-
ity for semilinear heat equations is obtained for continuously differentiable and
sufficiently small initial data. The small condition on initial data is imposed
to ensure that the interval of existence for the problem similar to problem
(1.9)-(1.10) is greater than 1. In this work, we only assume that the initial
data are continuous without imposing the smallness condition. The linearity
of differential equation and the Gevrey class 2 properties for the coefficients
a(x, t) and b(x, t) will help us to show that the x-interval of existence for
problem (1.9)-(1.10) is greater than 1.

From the solutions of the problems (1.5)-(1.8) and (1.9)-(1.10), we derive
the null boundary controllability for linear heat equations and thus the exact
boundary controllability for (1.1).

A great many developments in the controllability theory of the linear heat
equation were initiated by Fattorini and Russell. These have been presented
in numerous articles (see, e.g., [3, 4]). We mention the work of Fattorini and
Russell [4] about the exact controllability for linear heat equations of the form

ut = (p(x)ux)x + q(x).

In this work, we also consider linear heat equation but with coefficients de-
pending on the space variable and the time variable.

The paper is organized as follows. In Section 2, we use the nonlinear
Cauchy-Kowalevski Theorem to solve the Cauchy problem (1.9)-(1.10). Since
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we need to estimate the interval of existence, we restate the nonlinear Cauchy-
Kowalevski Theorem in detail in this section. In Section 3, we discuss the null
boundary controllability problem. Then we use this result to obtain the exact
boundary controllability for (1.11) in Section 4.

2. Solutions of the Cauchy Problem in the x-Direction

In this section, we shall use the nonlinear Cauchy-Kowalevski Theorem to
solve the following problem:

uxx = ut − a(x, t)ux − b(x, t)u− c(x, t) for x > 0, t ≥ T0,(2.1)

u(0, t) = 0, ux(0, t) = g(t) for t ≥ T0,(2.2)

where g(t) is a Gevrey class 2 function and T0 is a positive constant. We will
prove that the solution exists and the x-inteval of existence is greater than 1.

The nonlinear Cauchy-Kowalevski Theorem was originally due to Ovcyan-
nikov and is exploited (see, e.g., [2, 10]) in a number of ways to obtain results
in the study of the nonlinear abstract Cauchy problem

du

dx
= F (u, x), |x| < η, η > 0,

u(0) = u0.

Here the solutions are sought, as functions of the variable x, in a scale of
Banach spaces {Xs}. The nonlinear Cauchy-Kowalevski Theorem is a gen-
eralization of the well-known Cauchy-Kowalevski Theorem and is reduced to
the Cauchy-Kowalevski Theorem when all data are real analytic.

We shall use the same method as used in [6] to solve problem (2.1)-(2.2).
Since we shall estimate the parameters in the nonlinear Cauchy-Kowalevski
Theorem to obtain the interval of existence, we shall restate the Theorem here.
We begin by considering a 1-parameter family of Banach spaces {Xs} where
the parameter s is allowed to vary in [0, 1].

Definition 2.1 {Xs}0≤s≤1 is a scale of Banach spaces if for any s ∈ [0, 1],
Xs is a linear subspace of X0 and if s′ ≤ s then Xs ⊂ Xs′ and the natural
injection of Xs into Xs′ has norm less than or equal to 1.

We denote by ‖ · ‖s the norm of Xs.
For each i, i = 1, · · · ,m, let {Xi

s}0≤s≤1 be a scale of Banach spaces with
norm ‖ · ‖i

s. Consider the system of differential equations
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dui

dx
= Fi(u1, u2, · · · , um, x), |x| < η, η > 0, i = 1, · · · ,m,(2.3)

ui(0) = ui,0, i = 1, · · · ,m,(2.4)

where the ui, as functions of the variable x, are in Xi
s, i = 1, · · · , m.

We need the following assumptions.

(H1) ui,0 ∈ Xi
s for every s ∈ [0, 1] and satisfies

‖ui,0‖s ≤ Ri,0

for some Ri,0 < ∞ for i = 1, · · · ,m.

(H2) There are Ri > Ri,0 > 0, i = 1, · · · ,m, η > 0, such that for every pair
of numbers s, s′ with 0 ≤ s′ < s ≤ 1 the mapping Fi(u1, · · · , um, x),
i = 1, · · · ,m, is continuous from the set

{u1 ∈ X1
s | ‖u1‖s < R1}× · · · × {um ∈ Xm

s | ‖um‖s < Rm}
×{x | |x| < η}

into Xi
s′ .

(H3) There are constants Ci, i = 1, · · · ,m, such that for every pair of numbers
s, s′ with 0 ≤ s′ < s ≤ 1, for all ‖uj‖s < Rj , ‖vj‖s < Rj , j = 1, · · · ,m,
and for all x, |x| < η, we have

‖Fi(u1, u2, · · · , um, x)− Fi(v1, v2, · · · , vm, x)‖s′

≤ Ci

(s− s′)αi
[ϑ1

i ‖u1 − v1‖s + · · ·+ ϑm
i ‖um − vm‖s],

i = 1, · · · , m,

where the number ϑj
i is set to be zero if Fi is independent of uj and to

be one otherwise, for some parameters αi ≥ 0, i = 1, · · · ,m, such that
for any collection of m2 numbers cj

i , the degree of P (λ, µ) with respect
to λ, µ is at most m, where the expression P (λ, µ) of two variables λ, µ
is defined by

P (λ, µ) = det(λI − [µαiϑj
i c

j
i ]),

with I the m × m identity matrix and the degree is defined to be the
highest degree among all monomials in P (λ, µ).
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(H4) Fi(0, · · · , 0, x) is a continuous function of x, |x| < η, with values in Xi
s

for every s < 1 and satisfies

‖Fi(0, · · · , 0, x)‖s ≤ Ki

(1− s)αi
, 0 ≤ s < 1,

for some constants Ki, i = 1, · · · , m, with αi defined in (H3).

Then we have the following existence and uniqueness theorem for solutions
of (2.3)-(2.4).

Theorem 2.1 [6]. Under the preceding hypotheses (H1)–(H4), there is
a positive constant ρ such that the Cauchy problem (2.3)-(2.4) has a unique
solution {ui(x), i = 1, · · · , m}, which are continuously differentiable functions
of x, |x| < ρ(1 − s), with values in Xi

s such that ‖ui(x)‖s < Ri for every
s < 1/2.

Remark 2.1. The proof of Theorem 2.1 [6] gives the estimate of the
interval of existence. For m = 3, which is the case we will consider, the
constant ρ in Theorem 2.1 is any positive constant less than

1
2

min
{

1
108M

,
R1 −R1,0 − 24A

24S
,
R2 −R2,0 − 24A

24S
,

R3 −R3,0 − 192A

192S

}
,

(2.5)

where M = max{C1, C2, 2C3}, A = 2[R2,0 + C2(R1,0 + R2.0)], S = 4R2,0, with
constants Ci, Ri, Ri,0 in the assumptions (H1)-(H3), i = 1, 2, 3.

To apply Theorem 2.1 to solve the Cauchy problem (2.1)-(2.2), we choose
the following scale of Banach spaces.

Definition 2.2. Let K be a compact interval and let θ0 and θ1 be two
positive constants such that θ0 < θ1 < ∞. Given s ∈ [0, 1], we define the space
Bs(K) to be the set of all C∞(K) functions φ satisfying

‖φ‖s ≡ sup
n≥0

max
t∈K

ñ4θ(s)n

λ(2n)!
|φ(n)(t)| < ∞,

where 1/θ(s) = (1−s)/θ0+s/θ1, ñ = max(n, 1), and λ is any positive constant
satisfying

λ ≤ 1/

[
2 + 24

∞∑

k=1

(1/k)4
]

.
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It is easy to check that {Bs(K)}0≤s≤1 is a scale of Banach spaces.
The Gevrey class 2 functions which play an important role in this paper

are defined as follows.

Definition 2.3. Let Ω be a subset of Rn and δ > 0. A C∞ function f
in Ω is said to be of Gevrey class δ in Ω (in short, f ∈ γδ(Ω)) if there exist
positive constants C and H such that

|Dα
xf(x)| ≤ CH |α|(δ|α|)!

for all multi-indices α and for all x ∈ Ω, where α! = Γ(α + 1) and Γ is the
usual gamma function.

It is clear that any function which is of Gevrey class δ in Ω is bounded.
The following relationship between the spaces Bs(K) and the Gevrey class

2 functions can be found in [6, Proposition 4.4].

(a) The space Bs(K) is contained in γ2 for all s ∈ [0, 1].

(b) Suppose φ : R → R is an infinitely differentiable function defined in K
and there are positive constants C and H such that

|φ(j)(t)| ≤ CHj(2j)!

for all t and for all j = 1, 2, · · ·. If the constant θ1 in defining Bs(K)
satisfies θ1 < 1/H, then φ ∈ Bs(K) for all s ∈ [0, 1].

Similarly, the following two lemmas can be easily deduced.

Lemma 2.1. Let D = [a, b] × [c, d], f(x, t) ∈ γ2(D) and C, H be the
constants for the Gevrey class 2 functions for f(x, t). If the constant θ1 in
Definition 2.2 satisfies θ1 < 1/H, then

(1) f(x, ·) ∈ Bs([c, d]) for all x ∈ [a, b] and s ∈ [0, 1], and

(2) supx∈[a,b] ‖f(x, ·)‖1 < ∞, where ‖ · ‖1 is the norm of B1([c, d]).

Lemma 2.2. Let {Bi
s(K)}0≤s≤1 be two scales of Banach spaces as defined

in Definition 2.2 corresponding to constants θi
0, θi

1, i = 1, 2. If θ2
1 ≤ θ1

0 and
f(x, t) ∈ γ2(D), D = [a, b]× [c, d], then B1

0(K) ⊂ B2
1(K), and

sup
x∈[a,b]

‖f(x, ·)‖1
1 ≥ sup

x∈[a,b]
‖f(x, ·)‖2

1,

where ‖ · ‖i
1 is the norm of Bi

1([c, d]), i = 1, 2.
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Furthermore, by [6, Proposition 4.2], the partial differentiation ∂/∂t defines
a bounded linear operator from Bs(K) into Bs′(K) for 0 ≤ s′ < s ≤ 1 with
norm less than or equal to C/(s − s′)2, where C is a positive constant which
can be taken as (4/e)2θ0/(θ1−θ0)2. We note that the constant C can be made
as small as we wish by taking the constant θ0 sufficiently small while keeping
the constant θ1 fixed in the definition of Bs(K).

Now, we are ready to prove the main result of this section as follows.

Theorem 2.2. Suppose that g ∈ γ2([T0,∞)) with support [T0, T ], T > T0,
and a(x, t), b(x, t) ∈ γ2(Ω), c(x, t) ∈ C∞(Ω), where

Ω = {(x, t) | 0 ≤ x ≤ 2, T0 ≤ t < ∞}.
Then a classical solution u(x, t) of (2.1), (2.2) exists and the x-interval of
existence is greater than 1.

Proof. To apply Theorem 2.1, we convert the problem (2.1)–(2.2) to a
first-order system of differential equations by introducing the variables u1 = u,
u2 = ux, and u3 = ut. Then (2.1)–(2.2) can be rewritten as

du1

dx
(x, ·) = u2(x, ·),

du2

dx
(x, ·) = u3(x, ·)− a(x, ·)u2(x, ·)− b(x, ·)u1(x, ·)− c(x, ·),

du3

dx
(x, ·) =

∂

∂t
u2(x, ·),

with the Cauchy data

u1(0, ·) = 0, u2(0, ·) = g(·), u3(0, ·) = 0.

Let K = [T0, T + ε] and D = [0, 2] ×K, where ε is any finite number. Since
a(x, t), b(x, t) ∈ γ2(D) and g(t) ∈ γ2([T0,∞)), there exist positive constants
Mi, Hi, i = 1, 2, 3, such that

|∂α1
x ∂α2

t a(x, t)| ≤ M1H
α1+α2
1 (2(α1 + α2))!,

|∂α1
x ∂α2

t b(x, t)| ≤ M2H
α1+α2
2 (2(α1 + α2))!

for all (x, t) ∈ D and α1, α2 are any nonnegative integers and

|∂j
t g(t)| ≤ M3H

j
3(2j)!

for all t ∈ K and any nonnegative integer j. Let θ1
0, θ1

1 be two constants
satisfying 0 < θ1

0 < θ1
1 < min(1/H1, 1/H2, 1/H3) and (4/e)2θ1

0/(θ1
1 − θ1

0)
2 <



Exact Boundary Controllability 315

1/2. Let {B1
s}0≤s≤1 be the scale of Banach spaces as defined in Definition

2.2 with constants θ0 = θ1
0 and θ1 = θ1

1. Then it is easy to check that
all hypotheses (H1)-(H4) of Theorem 2.1 are satisfied with C1 = 1, C2 =
max(1, supx∈[0,2] ‖a(x, ·)‖1, supx∈[0,2] ‖b(x, ·)‖1) < ∞ and C3 = (4/e)2θ1

0/(θ1
1 −

θ1
0)

2 < 1/2. By Theorem 2.1, there exists a constant ρ1 > 0 such that (2.1)-
(2.2) has a solution u(x, ·) ∈ B1

0 for |x| < ρ1.
If ρ1 > 1, then the theorem is proved. If ρ1 < 1, then we will proceed

as above with new Cauchy data at x = ρ/2 and new scale of Banach spaces.
That is, we consider

wxx =wt − a(x, t)wx − b(x, t)w − c(x, t)

for x ∈ (ρ/2,∞), t ≥ T0,
(2.6)

w(ρ/2, ·) = u(ρ/2, ·) wx(ρ/2, ·) = ux(ρ/2, ·) for t ≥ T0,(2.7)

where u(x, t) is the solution obtained above.
Since u(x, ·) ∈ B1

0 , we have u(x, ·) ∈ γ2(K). We define a new scale of Ba-
nach spaces{B2

s}0≤s≤1 corresponding to constants θ2
0, θ2

1, where θ2
0, θ2

1 are two
constants satisfying 0 < θ2

0 < θ2
1 < θ1

0 such that the constant (4/e)2θ2
0/(θ2

1 −
θ2
0)

2 < 1/2 and θ2
1 is small enough so that u(ρ/2, ·), ux(ρ/2, ·), ut(ρ/2, ·),

a(ρ/2, ·), b(ρ/2, ·) ∈ B2
s for s ∈ [0, 1]. By Lemma 2.2, we have B1

0 ⊂ B2
1

and thus the Cauchy data of problem (2.6)-(2.7) and ut(ρ/2, ·) belong to B2
1 .

Again, by Theorem 2.1, there exists a constant ρ2 > 0 such that (2.6)-(2.7)
has a solution w(x, ·) ∈ B2

0 for |x − ρ1/2| < ρ2. The procedure can be pro-
ceeded if it is needed. For the x-interval of existence, we need to estimate ρi,
i = 1, 2, · · ·.

According to the proof of Theorem 2.1 in [6], for i = 1, 2, · · ·, ρi is any
positive constant less than

1
2

min

{
1

108Mi
,
Ri

1 −Ri
1,0 − 24Ai

24Si
,
Ri

2 −Ri
2,0 − 24Ai

24Si
,

Ri
3 −Ri

3,0 − 192Ai

192Si

}
,

(2.8)

where Mi = max{Ci
1, C

i
2, 2Ci

3}, Ai = 2[Ri
2,0 +Ci

2(R
i
1,0 +Ri

2.0)], Si = 4Ri
2,0 with

constants Ci
j in the assumption (H3) of Theorem 2.1, Ri

j,0 is the ‖ · ‖i
1-norm

of the jth Cauchy data in the ith procedure and Ri
j is any constant greater

than Ri
j,0 for j = 1, 2, 3.

Since Ci
1 = 1, Ci

2 = max{1, supx∈[0,2] ‖a(x, ·)‖i
1, supx∈[0,2] ‖b(x, ·)‖i

1} ≥ 1,
Ci

3 < 1/2 for i = 1, 2, · · ·, we have

Mi = Ci
2
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and thus the first term on the right-hand side of (2.8) is

1
108Mi

=
1

108Ci
2

.

Since Ri
j is any constant greater than Ri

j,0, j = 1, 2, 3, i = 1, 2, · · ·, Ri
j can

be chosen so that the minimum on the right-hand side of (2.8) is 1
108Ci

2
and

thus from (2.8) the interval of existence ρi is any positive constant satisfying

ρi <
1

216Ci
2

for i = 1, 2, · · ·

From Lemma 2.2 and the choice of θi
0, θi

1, we have

Ci
2 ≥ Ci+1

2 for all i,

and so
C1

2 ≥ Ci
2 for all i.

Thus the length of the interval of existence of the solution in each step is at
least 1/217C1

2 and hence by iterating the above procedure in finitely many
times, the total interval of existence can be greater than 1.

This proves the Theorem.

3. Existence of Null Boundary Controller

In this section, we shall prove the existence of the boundary controller
h(t) that steers a prescribed initial data w0 to zero for the problem (1.1)–
(1.4). The controller h(t) will be continuously differentiable on a finite time
duration 0 ≤ t ≤ T with T > 0.

First, we define a terminology.

Definition 3.1. Let Ω be a subset of Rn and 0 < α < 1. A function f
defined in Ω is uniformly Hölder continuous of order α in Ω if there exists a
positive constant M such that

|f(x)− f(y)| ≤ M |x− y|α

for all x, y ∈ Ω.

Now, we state the principal result of this section.

Theorem 3.1. Suppose a(x, t), b(x, t) and c(x, t) are functions defined in
Ω = {(x, t) : 0 ≤ x ≤ 1, 0 < t < ∞}, are uniformly Hölder continuous of order
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α in Ω, 0 < α < 1, are analytic in both arguments in a neighborhood of the
origin, a(x, t), b(x, t) belong to Gevrey class 2 in x, t in Ω, and c(x, t) ∈ C∞(Ω).
Let the initial data w0(x) be a continuous function in [0, 1] and vanish at 0.
Then for any finite time T > 0, there exists a controller h(t) ∈ C∞((0,∞)) ∩
C([0,∞)) such that the solution w(x, t) of (1.1)–(1.4) satisfies w(x, T ) ≡ 0 for
x ∈ [0, 1].

Proof. We organize the proof in a series of steps.

Step 1. Extend the domain of the initial data w0(x) to be [0, 2] so that
w0(x) is continuous and w0(x) ≡ 0 in a neighborhood of 2. We also extend
the domain of a(x, t), b(x, t) and c(x, t) to be {(x, t) : 0 ≤ x ≤ 2, 0 < t < ∞}
so that all properties of a(x, t), b(x, t) and c(x, t) are maintained.

Step 2. We solve the initial-boundary value problem with the new mod-
ified initial condition:

wt − wxx = a(x, t)wx + b(x, t)w + c(x, t) on (0, 2)× (0,∞),(3.1)

w(0, t) = 0 for t ≥ 0,(3.2)

w(2, t) = 0 for t ≥ 0,(3.3)

w(x, 0) = w0(x) for x ∈ (0, 2).(3.4)

It is well-known that the solution w(x, t) exists [8]. Let T > 0 be any given
finite time and ε < T be any small positive number. Then it is clear that the
solution w(x, t) is a C∞ function for 0 ≤ x ≤ 2ε and ε ≤ t ≤ T .

Step 3. We claim that the solution w(x, t) obtained in Step 2 belongs to
Gevrey class 2 in t for t ≤ T . Let u0(x) = w(x, ε), where ε < T is any small
positive number as in Step 2. Since w(x, t) is a C∞([0, 2ε]× [ε, T ]) solution of
the problem

wt − wxx = a(x, t)w + b(x, t)wx + c(x, t) on (0, 2ε)× (ε, T ],

w(0, t) = 0 for ε ≤ t ≤ T,

w(x, ε) = u0(x) for x ∈ (0, 2ε),

it follows from a theorem of D. Kinderlehrer and L. Nirenberg [7] that w(x, t)
is real analytic in x and is of Gevrey class 2 in t for 0 ≤ x ≤ ε and ε ≤ t ≤ T .
Thus wx(0, t) belongs to the Gevrey class 2 in t for ε ≤ t ≤ T .
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Step 4. Next, we modify wx(0, t) to be a function wx(0, t)ψ(t) with sup-
port in [0, T ]. Here ψ(t) ∈ γ2[0,∞) satisfies

0 ≤ ψ(t) ≤ 1,

ψ(t) = 0 for t ≥ T,

ψ(t) = 1 for 0 ≤ t ≤ (T + ε)/2.

Let

g(t) =

{
wx(0, t)ψ(t) for ε ≤ t ≤ T ,
0 for t ≥ T .

Since the Gevrey class of functions forms an algebra which is closed under
multiplication, g(t) ∈ γ2 in t for t ≥ ε and vanishes for t ≥ T .

Step 5. In this step, we solve the Cauchy problem:

uxx = ut − a(x, t)ux − b(x, t)u− c(x, t) on (0, 2)× (ε,∞),(3.5)

u(0, t) = 0, ux(0, t) = g(t) for t ≥ ε.(3.6)

It follows from Theorem 2.2 that there exist a constant ρ > 1 and a classical
solution u(x, t) of (3.5)–(3.6) which is twice continuously differentiable in x, t,
bounded for 0 < x < ρ, t ≥ ε and vanishes for t ≥ T .

Step 6. By L. Nirenberg’s Theorem [9], it is easy to derive that w(x, t)
and u(x, t) are identical on [0, 1]× [ε, (T + ε)/2]. Now, we read off the required
boundary controller h(t) through w(x, t) and u(x, t) by defining h(t) = w(1, t)
for 0 ≤ t ≤ ε and h(t) = u(1, t) for t ≥ ε.

This proves the theorem.

4. Exact Boundary Controllability

In this section, we use the result of the null boundary controllability of
problem (1.1)-(1.4) in Section 3 to obtain the exact boundary controllability
of the same problem, i.e., given a finite time T > 0 and any final data wf (x) in
an appropriate space, to find a controller h(t) so that the solution of problem
(1.1)-(1.4) satisfies

w(x, T ) = wf (x)

for all x ∈ [0, 1] for any initial data w0(x) in another appropriate space.
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By defining v(x, t) = w(x, t) − wf (x), the exact boundary controllability
of problem (1.1)-(1.4) is transferred to the null boundary controllability of the
following problem

vt − vxx = a(x, t)vx + b(x, t)v(x, t) + c̃(x, t) on (0, 1)× (0,∞),(4.1)

v(0, t) = 0 for t ≥ 0,(4.2)

v(x, 0) = w0(x)− wf (x) for x ∈ (0, 1),(4.3)

v(1, t) = h̃(t) for t ≥ 0,(4.4)

where c̃(x, t) = c(x, t)+ b(x, t)wf (x)+a(x, t)wf
′(x)+w

′′
f (x) and h̃(t) = h(t)−

wf (1).
From Theorem 3.1, we can easily derive the following theorem.

Theorem 4.1. Suppose a(x, t), b(x, t), c(x, t) and w0(x) satisfy the same
conditions in Theorem 3.1. Given any finite time T > 0, if wf (x) ∈ C∞([0, 1]),
analytic in a neighborhood of the origin and wf (0) = 0, then there exists a
boundary controller h(t) ∈ C∞((0,∞)) ∩ C([0,∞)) such that the solution of
(1.1)-(1.4) satisfies

w(x, T ) = wf (x)

for all x ∈ [0, 1].
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