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ON SUMMABILITY IN L - NORM ON
GENERAL VILENKIN GROUPS

Muharem Avdispahi¢ and Medo Pepié

Abstract. Sufficient conditions are given in order that a sequence of
linear operators L, (A, -) defined by

Lo(A ) i= 3 Af (6P (0 M), f(b)i= [ 7 (k€ o),
k=0 G

converges in L?- norm to identity, where f € L(G), q € [1,00], Apo =
1 (Vn € Np), Ak = 0 (VE > n,Yn € Ny) and G is a general Vilenkin
group. In case of bounded Vilenkin groups, our result coincides with an
earlier result of Blyumin.

1. INTRODUCTION

A Vilenkin group G is an infinite compact totally disconnected Abelian
group whose topology satisfies the second axiom of countability. Vilenkin [18]
has shown that topology in G can be given by a basic chain of neighbourhoods
of zero

(1.1)  G=GyDG1DG2---DG,D-->{0}, [)Gn={0},
n=0

consisting of open subgroups of the group G, such that the factor group
Gn/Gpn+1 is a cyclic group of a prime order p,i1, for every n € Ny. We
shall call the group G bounded if and only if the sequence (p,) is bounded.
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It is possible to supply G with the normalized Haar measure p such that
w(Grn) = m;t, where my, :=py - pa---pn (mg :=1).

For every p € [1,00), let LP(G) denote the LP space on G with respect
to the measure p. The class of continuous complex functions on G will be
denoted by C(G).

Remark 1. If 1 < p; < py < oo, then LP?(G) C LP'(G).

Let T' denote the group of characters of the group G, and let T',, = G-
denote the annihilator of G, in I'. The dual group I' is a discrete countable
Abelian group with torsion [6, (24.15) and (24.26)]. Vilenkin [18] has proved
that there exists Paley-type ordering of elements in I': Let us choose a X €
I'y+1\I'x and denote it by X,,,. Every nonnegative integer n has a unique
representation as

N

n=> am; a; €{0,1,2,...,pis1 —1} (i=0,1,2,...,N),
=0
ay #0, N = N(n).

(1.2)

Let X, be the character defined by

N
(1.3) Xn =[] X0k .
k=0
It is straightforward that
(1.4) Iy ={X;:0< 7 <my} (Vn € Np).

Sequence (Xp)nen, is called a Vilenkin system. We shall say that this system
is bounded if the group G is bounded. For every n € Ny, there exists g, €
Gn\Gp+1 such that

(1.5) X, (gn) = €2™/Pn+1,

Every g € G can be represented in a unique way as

(1.6) g = Z angn,
n=0

where a,, € {0,1,...,pp+1 — 1}. Then

(1.7) Gn:{geG:g:Zaigi,ai:0,0§i<n}.
i=0
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A Vilenkin series Y 77 ¢, Xy is a Fourier series if there is a function f €
LY(G) such that

(1.9 en = fn)i= [ [X0 (Y€ No),
G

where Z denotes the complex conjugate of z. In that case, the nth partial sum
of the series is given by

n—1
(1.9) Su(f) =D f(k)Xe = f * D,
k=0
where D,,, defined by
n—1
(1.10) Dy =Y Xg,
k=0

is the Dirichlet kernel of index n on G, and
(1.11) £ro@) = [ o= tedut)
G
is the convolution of functions f and ¢ on G. Let us state here some properties
of the kernel (Dy,)nen, that will be used in the sequel ([18] and [9]).
(1.12) For every n € Ny and x € G, |D,(x)| < n.

(1.13) Dy, (z) = my, - Ig, (z), where I4 denotes the characteristic function
of
a set A.

(1.14) If n € Ny is given by (1.2), then:

N 1—-xa N
a) Do =3 D7 o II .,
i=0 MG g—it
1— X% ()
where 1= X, (2) = XJ (x) = 0 whenever a; = 0 (even if X,,, ()
1— X, (2) s ¢
=1), and

N X%jjlen]jv for every 1 € {0,1,...,N — 1}
- Xo, fori=N (Xo(x) =1, Yz € G).
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s—1
b) If z € G\Gs; and k = Zaimi (1<s<N), then D,(x)=
i=0

Dy(z) - X% (z) - Xl ().

N .
Dy, 1 X3,

D =X - — .
c) n(x) n<§% T

Combining (1.13), (1.14) and Lemma 2 from [10], one obtains

(1.15) / |Dp| = O(log n) (uniformly in n € Np).
GS\G.S+1

Let

(1.16) A=Pi] (n,k € N)

be a matrix of numbers with the following properties: A0 = 1 (Vn € Np) and
Ak =0 (Vk > n, Yn € Ny). The matrix (1.16) defines in a natural way a
sequence of linear operators L, (A,-) on L'(G) by:

(1.17) Lp(A, f) == f: Ak f ()X (n € Ng), where f(k) := /m (k € No).
k=0 G

For every ¢ € [1, 00| and every function f € LY(G), let us consider the value

(1.18) If = La(A, £)llg,

that represents the distance between L, (A, f) and the function f in the cor-
responding metric. We are mainly interested in the following problem: What
conditions on matriz (1.16) are sufficient to ensure that

(1.19)  ||f = La(A, f)llg — 0 as n— oo, (Vfe LYG), VYqe[l,00])?

In [1, pp. 132 — 134], it has been proved (for all Vilenkin systems) that condi-
tions

(1.20) Ank — 1 (n — o0) for every k € Ny, and

(1.21) <C < o forevery ne Ny

1

n
> Ak X
k=0
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are sufficient in order that (1.19) holds.
A natural question to be raised is of a condition involving only matrix
entries in place of (1.21). For bounded Vilenkin systems, an answer to that

question is given by the following theorem.

Theorem A [1, p. 134, Theorem 4.21]. If for some p € (1,2] and every
n € Ny, matriz (1.16) satisfies condition

n 1/p
nt/v (Z |A)\nk|p> < C < o0, where
k=0

(1.22) Ak — k1, 0k <n
AN = Anms k=mn (n € Np),
0, k>n

%—l— 1% =1, then for bounded Vilenkin systems conditions (1.20) and (1.21) are
fulfilled, so that (1.19) holds.

Our main result is the following theorem.

Theorem. Let G be a Vilenkin group and I' = (Xp)nen, the dual group
of the group G. If for some p € (1,2] and every n € Ny the matriz (1.16)
satisfies the condition

n

N n 1/p
(1.23) Zm}/p log p; (Z \A)\nk|p> +10g pra1 Y | A | = O(1),

i=1 k=1 k=1
where
Ak — Ank+1, 0<k<n
Alpg = Ann, k=mn, % + % =1 (n and N are related by (1.2)),

0, k> n,
then || f — Ln(A, f)llg = 0 as n — oo (Vf € LI(G),Vq € [1,x]).

Remark 1. For a bounded Vilenkin system, conditions (1.22) and (1.23)
are equivalent. Indeed, if the sequence (p,,) is bounded by some constant M,
then from m, < n < pyy -my < M - my immediately follows that the
condition (1.23) implies condition (1.22).
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Conversely, if (py,) is bounded and (1.22) is satisfied, then from

n n 1/13
log pn+1 Y |Ak| < (log M)nt/? (Z |AAnk|p>
k=1 k=1

and

N
Zmil/p log p; < (log M)m]l\{p
i=1

1\ /7 1 1/p'
1+ () P ()
PN PN -..DP2

< C’m}\{p, < Cnl/p/,
where C'is an absolute constant, one obtains that (1.22) implies (1.23).

Remark 2. Behavior of the value (1.18), depending upon constructive
or structural properties of function f, has been studied (for bounded Vilenkin
systems) by S. L. Blyumin in [2] and [3]. In the trigonometric case, appropriate
analogues had earlier been given by S. B. Stechkin [12], G. A. Fomin [5] and
M. F. Timan [16]. (C,1)-summability of series over multiplicative systems of
functions has been studied by N. Ya. Vilenkin [18], H. E. Chrestenson [4] and
R. Zh. Nurpeisov [8]. Summability over arbitrary systems of characters of
0-dimensional groups satisfying condition lim p, < oo has been studied by A.
M. Zubakin and G. S. Survilo. Zubakin [19] has proved that Jim a,(la)( f,x) =

tli)r(r)lo(f(x—l—t) + f(x—t)/2 for f € L'([0,1]), where a&a)(f, x) are (C, a)-means.

Moreover, Zubakin has given sufficient conditions for uniform summability of

series of continuous functions by some triangular summability methods [20].

For systems satisfying condition sup p, = p < oo, methods of summing series
n

using triangular matrices have been studied by G. S. Survilo ([14] and [15]). He
[13] has transferred theorems of D. E. Men’shov [7] about (C, a)-summability
(0 < a < 1) to this setting.

It is well-known that (C, 1)-summability of Vilenkin-Fourier series depends
a lot upon the nature of the sequence (p,,) which defines the structure of G.
For example, if Vilenkin system (X,) is bounded, then the Vilenkin-Fourier
series

(1.24) i f(n)Xn(x)
n=0

of every function f € C(G) is uniformly (C, 1)-summable towards f. However,
J. J. Price [10] has proved that in the case of an unbounded Vilenkin system

there exists a function f € C(G) such that ‘ lim o, (f, O)‘ = oo. P. Simon
n—oo
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[11] has proved even more: If (p,) grows sufficiently fast, then it is possible to
construct a function f € L!(G) that satisfies the smoothness condition

e (f, T;) — O((log my)"Y) (k — o)

(w}f”(f) = sup ITnf = fIP, p € [1,00], Thf () := f(x + h))
and such that (S, (f,z)) is divergent a.e.

N. I. Tsutserova [17] has established the following relation between the
modulus of continuity w,(f) and the (C,1)-summability of its Fourier series:
If f e C(G) and wy—1(f)log pp, = o(1) (n — o0), then o,(f) — f uniformly
on G. On the other hand, if (X,,) is an unbounded Vilenkin system, then there
exists a f € C(G) that satisfies condition wy,_1log p, = O(1) (n — o0) and
whose Vilenkin-Fourier series is not (C,1)-summable anywhere on G. R. Zh.
Nurpeisov [8] has proved that this situation cannot be improved even if we pass
to a subsequence of the sequence (0, (f)). More precisely, he has proved that if
(Xy) is an unbounded Vilenkin system, there exists f € C'(G) that satisfies the
condition wy_1log p, = O(1)(n — o0) such that oy, (f, ) does not converge
uniformly on G. In the same paper, he has given the following characterization
of uniform convergence of (C, 1)-means of index m,, for the class H*(G) := {f :
wn(f) < Cwy}, where w = (wy,) is an arbitrary nonincreasing zero sequence:
If f € HY(G), then oy, (f,x) converges uniformly on G towards f if and only
if

wn—1log pn, = o(1) (n — o0).

Nurpeisov has also proved [8, Theorem 4] that the Vilenkin-Fourier series of

a function f € C(G) that satisfies condition wy,_2(f)log <1<m<ax+l{pj}) =
<j<n

o(1) (n — o0) is uniformly (C, 1)-summable towards f on G.

2. PROOF OF THE THEOREM

It is sufficient to prove that under assumptions of our theorem relations
(1.20) and (1.21) hold. From results of G. A. Fomin [5, (13), (14) and (15)]
immediately follows that (1.23) implies (1.20). What we need to prove is that
(1.23) implies (1.21). For n = mpy4; — 1, one obtains:

> AXg—1Dy,
k=1

> ANk Disa
k=0

S ‘)\TLTZ‘ +

n
> Ak X
k=0

1 1 1
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For my <n < Mpy4+1 — 1, one obtains

n/

> AXng—1Dy
k=1

> AXk Dy
k=0

nkXk

)

1

1 1

where n’ =n+1<myy1 — 1.
Therefore, it is sufficient to prove that under assumptions of the theorem,
the relation

(1.25) = O(1) holds,

n
Z Dy,
k=1 1

where we put ¢ instead of A),,_; for every k € {1,2,...,n}.
In general, we have

(1.26) = / + chDk =11+ I+ Is.
Gn+1 GN\Gni1  G\GN k=1

We will estimate integrals I; (j = 1,2,3). Now

(1.27) / chDk Zka (Gn11) < Zyck\,

GNy1

because Dg(z) = k for every k < n, every x € Gy41 and my < n < my41.

Iy= / < zn:|ck! / | D

(1.28) GN\GN+1 =1 G \Gni1
< Cy log pn41 Y lew|  (by (1.15)).
k=1
/ Z Cka = (Z sz 1— sz X > Xk
a\ay k=1 a\Gy k=

N-1 S 1 _

-3 [ e (zmzl_ o )xk
SZOGS\G5+1

(by (1.13) and (1.14) c¢)). Therefore

ms s .
I3< sz:(:) / Z CkMsg =%, Xgs. Xk
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Recall that gs € Gs\Gs+1 was chosen such that X, (gs) = e2mi/Ps+1 et us
put
1- X%i: (V-gs)——

e SN (1 g )X (v - g
T, (v gp) e VL)

Bk,l/,s = Cing
Obviously,

. e27r1/asi/ps+1

| Brow.s| < lexlms | T

Now applying the Holder and then F'. Riesz inequality, one obtains

I(l) _ Z cpm mS Xas Xk: szrzl:l Z com Xa Ms Xas Xk
’ k=1 sl_Xms =1 k=1 Sl_Xm@
G:\Gsq1 Y= uge+Gag
ps+1—1 a
1— X5 (vgs)——
= 5 [ e el )
v=1 4 = X, (vgs) ™
s+1
1 /
ps+1 1 Ps+1 1 Y P’ /P
=S [ [Ewnm|s 2ol Xal)
v=1 Gs+1 ) Gs+1 ]C:l
Ps+1—1 Y n P\ VP pe— Y n 1/p
S it ([ o] ]SS (S )
v= G k=1 v=1 k=1
pSJrl*l 27rl/as7:/ps+l n 1/p
—1/p 1—e
< Y memg T i (Z |ck|P>
v=1 k=1
ps+1—1 gin [ mvas 1/p
—1 s
= > mgmy 1 : (p H) <Z \Ck|p>
v=1 s (P +1)

MsPsit 1 Ps+1 1 n
sPs —1/p
< (U5 (S ar)
k=1

n 1/p
< szs+1 log ps+1 (Z Ckp>

where we used inequality (pSH) < £ 18, (2.4)]. Hence,
s1n<p:+1)
, n 1/p
(1.30) Iél) < C’gmiipl log ps+1 (Z \ck|p> :
k=1
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n s—1
(2) m;
I3 kz_:lck <Zmll—Xm1X )X
GS\G~ +1 -
n s—1
= Z CL <Z aimz) Xk (l’)
G\Gsi1 k=1 =0

because X,,, € Gt (Vi < s—1). Set By == cp ZZ o @im; and notice that
|Bi,s| < ms|cg|. Applying the Hélder inequality for integrals and then F.
Riesz inequality, one obtains

I:)(,2) = > Bi o Xi(x)
Gs\Gs+l k=1
1/ 4 v
1 1 p “
< ( - ) / Z By Xk (x)
ms Ms+1 k=1
S\Gs+1 /
N 1/p’
(1.31) 1 1 \'/7 " P
< < - > / > BrsXi(x)
ms Mgt & k=1 y
1 1 \YP[& P
(st (S
ms Ms+1 =1
, n 1/p
< ml/P (Z |Ck|p>
k=1
Relations (1.31), (1.30) and (1.29) yield
N / n 1/p
(1.32) I3 <20, Zm;/p log ps <Z ]ck|p> .
s=1 k=1

From (1.32), (1.28), (1.27) and (1.26) follows

<C

n N n 1/p
log pn41 Y lex| + Y mi/? log ps (Z Ck|p> ] ;
k=1

k=1 s=1
(1.33)
where C'is an absolute constant (instead of C' one can take 1+ 3/log 2, which
can be proved by a simple calculation). From (1.33) and assumption (1.23) of
the theorem, (1.25) follows.

This proves the theorem.
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