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SUPSETS ON PARTIALLY ORDERED TOPOLOGICAL
LINEAR SPACES

S. Koshi and N. Komuro

Abstract. We introduce supsets and infsets for subsets of a partially
ordered topological linear space. These notions generalize the usual no-
tions of supremum and infimum in Riesz spaces. We shall investigate
properties of supsets and infsets in this paper.

1. Partially Ordered Linear Space and the Supset of a Subset

Let E be a linear space over the real field. Let us consider a convex cone
P in E which is generating and proper. Namely, the following two conditions
are satisfied:
(a) E = P − P ,
(b) P ∩ (−P ) = {0}.

We say that x ≥ y (or, equivalently, y ≤ x) if x− y ∈ P . It is well-known
that conditions (a) and (b) are equivalent to the following five conditions for
a given subset P of E:
(1) x ≥ y and y ≥ x imply x = y.
(2) x ≥ y and y ≥ z imply x ≥ z.
(3) x ≥ y implies x + z ≥ y + z for all z in E.
(4) x ≥ 0 implies αx ≥ 0 for all positive scalars α.
(5) For every x in E, there exist x1 ≥ 0 and x2 ≥ 0 such that x = x1 + x2.
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E is called a partially ordered linear space and P is called an order of E
provided conditions (a) and (b) (or, equivalently, (1), (2), (3), (4) and (5)) are
satisfied. Elements of P are said to be positive in E.

Let A = {aλ : λ ∈ Λ} be a subset of a partially ordered linear space E
with order P . We define the supset of A (or sup A) to be

∨
A =

∨
λ∈Λ aλ =

{z ∈ E : z ≥ aλ for all λ in Λ and z = w whenever z ≥ w and w ≥ aλ for all
λ in Λ}. Sometimes, we use the notation sup A instead of

∨
A. Hence,

∨
A is

the set of all minimal elements of U{A} = {z ∈ E : z ≥ a ∀a ∈ A}. Elements
of U{A} are called upper bounds of A. Similarly, we define the infset

∧
A (or

inf A) of A to be
∧

A = {z ∈ E : z is a maximal element of L{A}}, where
L{A} = {z ∈ E : z ≤ a ∀a ∈ A} is the set of lower bounds of A. A is said to
be upper bounded (resp. lower bounded) if U{A} 6= ∅ (resp. L{A} 6= ∅). We
shall discuss when a upper bounded (resp. lower bounded) set has a nonvoid
supset (resp. infset).

A partially ordered linear space E is said to satisfy Condition (A) if for
every upper bound a of a subset A of E there exists a minimal element x in
U{A} such that x ≤ a. E satisfies Condition (A) if and only if supA + P =
U{A} for all upper bounded subsets A of E. Later, we shall show that every
finite-dimensional partially ordered linear space with a closed order always
satisfies Condition (A). From here to the end of this section, we state some
elementary observations, in which A = {aλ : λ ∈ Λ} is a subset of a partially
ordered linear space E satisfying Condition (A).

Proposition 1.1. If supA is a singleton {u}, then u is the least upper
bound of A. If inf A is a singleton {l}, then l is the greatest lower bound of A.

The least upper bound of A is called the supremum of A. The greatest
lower bound of A is called the infimum of A.

Proposition 1.2.

1. −∨
λ∈Λ aλ =

∧
λ∈Λ(−aλ); or, equivalently, − supA = inf(−A).

2. For every positive number α, α
∨

λ∈Λ aλ =
∨

λ∈Λ αaλ or, equivalently,
α supA = supαA.

3. For every positive number α, α
∧

λ∈Λ aλ =
∧

λ∈Λ αaλ; or, equivalently,
α inf A = inf αA.

Proposition 1.3. For every b in E, we have:

1.
∨

λ∈Λ aλ + b =
∨

λ∈Λ(aλ + b) or, equivalently, supA + b = sup{A + b}.
2.

∧
λ∈Λ aλ + b =

∧
λ∈Λ(aλ + b) or, equivalently, inf A + b = inf{A + b}.
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Proposition 1.4. supA = sup(coA), where coA is the convex hull of A.

Proposition 1.5. If x is a positive element of E (i.e., x ∈ P ), then
x ∨ 0 = {x} and x ∧ 0 = {0}.

Proposition 1.6. If a∨ b 6= ∅ for some a and b in E, then a∧ b 6= ∅ and

a + b− (a ∧ b) = a ∨ b.

Proof. Since a∧ b = −{(−a)∨ (−b)}, we have by Propositions 1.2 and 1.3
that

a + b− (a ∧ b) = a + b + {(−a) ∨ (−b)} = b ∨ a = a ∨ b.

The following example shows that sup{supA} 6= supA in general.

Example 1.7. Let E be the 3-dimensional Euclidean space R3 with order
P generated by four points (1, 0, 0), (1, 1, 0), (1, 0, 1) and (1, 1, 1). Let z =
(0, 0, 1) and 0 = (0, 0, 0). Let A = {z, 0}. Then supA = {a ∈ R3 : a =
(1, α, 0), 0 ≤ α ≤ 1} and sup{supA} = {a ∈ R3 : a = (2, 2, β), 1 ≤ β ≤ 2}.
Hence, supA 6= sup{supA} in this case.

It may also happen that inf{inf A} 6= inf A. However, we have the following

Theorem 1.8.

1. sup inf supA = supA.

2. inf sup inf A = inf A.

2. Monotone Complete Order and Dual Order

Let E be a partially ordered linear space. If E satisfies Condition (A), it
is easy to see that the supset supA of an upper bounded set A is not empty.
Similarly, the infset inf A of a lower bounded subset A of E is not empty as
well. In this section, we shall consider a sufficient condition to ensure that
E satisfies Condition (A). To this end, we recall the notion of a monotone
complete order.

A subset A of E is a linear set if every two elements x and y of A is
comparable, i.e., x ≤ y or y ≤ x. We say that E is monotone complete (in
an order P ) if every upper bounded linear subset A of E has the least upper
bound, i.e., supA 6= ∅ consisting of a single element.
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Let E be a topological linear space with a linear topology τ . An order of E
determined by a convex cone P is called a topologically continuous order (or,
equivalently, τ is called an order continuous topology) if every directed linear
subset {aλ} with inf aλ = 0 converges to 0 in τ .

Theorem 2.1. Let E be a partially ordered linear space with order con-
tinuous topology and ordered by a closed convex cone P . If E is monotone
complete, then the supset supA of every nonempty upper bounded subset A of
E is not empty. Moreover, E has Condition (A). (However, supA does not
necessarily consist of a single element in this case.)

Proof. Let A be a nonempty upper bounded subset of E. Hence U{A} is
not empty. Let a ∈ U{A}. Then we can find a maximal linear subset B of E
which contains a and is contained in U{A} by Zorn’s maximal theorem. By
monotone completeness of the order P , inf B = {b} is a singleton. Since the
linear topology τ of E is order continuous and P is closed, we have b ∈ U{A}
and b ≤ a. Hence b is a minimal element of U{A} and thus supA is not
empty.

In the following, E∗ denotes the dual of a partially ordered normed space
E. Let P ∗ be the positive cone dual to P in E∗, i.e., P ∗ = {f ∈ E∗ : f(x) ≥
0 ∀x ∈ P}. By definition, P ∗ ∩ {−P ∗} = {0}. But P ∗ might not necessarily
be an order in E∗ in general. In fact, P ∗ − P ∗ is not necessarily the whole of
E∗. When E is a Banach space with closed order P , T. Ando [2] gave several
equivalent conditions to ensure that P ∗ is an order in E∗, i.e., P ∗−P ∗ = E∗.

Theorem 2.2. Let E be a Banach space with closed order P . If P ∗−P ∗ =
E∗, then E∗ is monotone complete in the order determined by P ∗. Moreover,
the weak* topology of E∗ is order continuous with respect to P ∗. Hence, supA∗

is nonempty for every nonempty upper bounded subset A∗ of E∗. In this case,
E∗ satisfies Condition (A) in the order P ∗.

Proof. By the definition of P ∗ and the theorem of Banach-Steinhaus, we
see that E∗ is monotone complete. Since the weak* topology of E∗ is order
continuous, the assertion follows from Theorem 2.1.

It is shown in [2] that for a closed order P in a Banach space E, E∗ =
P ∗ − P ∗ if and only if every order interval [x, y] = {z ∈ E : x ≤ z ≤ y} in E
is norm-bounded.

Corollary 2.3. Every finite-dimensional Euclidean space E with a closed
order P always satisfies Condition (A).
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3. Norm and Order

Let E be a partially ordered normed space. A norm ‖ · ‖ of E is called an
ordered norm if 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖. We shall investigate when a
norm is equivalent to an ordered norm.

For a symmetric absorbing convex subset V of E, we shall define the P -
envelop of V by

EP (V ) = (V − P ) ∩ (V + P ).

Lemma 3.1.
EP (EP (V )) = EP (V ).

Proof. Let U = (V +P )∩(V−P ). Then, V ⊂ U . Since U+P ⊂ V +P+P =
V + P and U − P ⊂ V − P − P = V − P , we have (U + P ) ∩ (U − P ) ⊂
(V + P ) ∩ (V − P ) = U . But, we always have U ⊂ EP (U). The assertion
follows.

Theorem 3.2. If U = EP (V ) is the unit ball of E in a norm ‖ · ‖U , then
this norm is an ordered norm.

Proof. We shall show that if x1 ∈ U and x1 ≥ x2 ≥ 0 then ‖x1‖U ≥ ‖x2‖U .
In fact, the norm ‖ · ‖U is the Minkowski functional of E defined by U . It
thus suffices to show that αx1 ∈ U for some α ≥ 1 implies αx2 ∈ U . Since
x1 = x2 + p for some p in P , αx2 = αx1 − αp ∈ U − P . On the other hand,
αx2 = x2 +(α−1)x2 ∈ U +P . This means that αx2 ∈ EP (U) = U by Lemma
3.1. Therefore, ‖x1‖U ≥ ‖x2‖U as asserted.

Theorem 3.3. Let E be a partially ordered normed linear space with
an order P . The norm of E is equivalent to an ordered norm if and only if
(V + P ) ∩ (V − P ) ⊂ αV for some α > 0, where V is the unit ball of E.

Proof. Suppose, without loss of generality, that the norm ‖ · ‖ of E with
unit ball V is an ordered norm. Let U = (V +P )∩ (V −P ). Since U =

⋃{z ∈
E : x1 ≤ z ≤ x2 for some x1, x2 in V with x1 ≤ x2}, by the order interval
relation [x1, x2] = x1 + [0, x2 − x1], we have

‖z‖ ≤ ‖x1‖+ ‖x2 − x1‖ ≤ 3 ∀z ∈ U.

Hence U ⊂ 3V .

Conversely, if U = (V +P )∩ (V −P ) ⊂ αV for some α > 0, then the norm
‖ · ‖U of E with unit ball U = (V + P ) ∩ (V − P ) is equivalent to the original
norm of E with unit ball V . Moreover, ‖ · ‖U is an ordered norm by Theorem
3.2.
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4. Riesz Spaces and Distributive Law

In this section, we shall consider the distributive law in a partially ordered
linear space E. If E is a Riesz space, it is known that the distributive law
holds in E. We shall consider when a partially ordered linear space E becomes
a Riesz space. The following provide some criteria.

Proposition 4.1. Let E be an n-dimensional Euclidean space with a
closed order P . If P is generated by a set of n linearly independent elements
of E, then E is a Riesz space.

Corollary 4.2. Let E be a 2-dimensional Euclidean space with a closed
order P . Then E is a Riesz space.

Theorem 4.3. Let E be a Hausdorff topological linear space. Let P be an
order in E such that P \ {0} is open in E. If E has dimension greater than
2, then E cannot be a Riesz space in the order P .

We shall make a remark here that if E is one-dimensional then E is a Riesz
space in any order P and P \ {0} is open in this case.

Proof. Suppose on the contrary that E is a Riesz space in P . At first we
shall notice that the topological boundary of P relative to P \ {0} is equal to
P− \ P . Since E has dimension greater than 2 and so E \ {0} is connected,
we can conclude that P− \ P 6= ∅. So, there exists 0 6= x ∈ P− \ P .

Let y = x ∨ 0 ∈ P . Then x < y and 0 < y. Since P \ {0} is open and
y ∈ P \ {0}, there is a positive number α with 0 < α < 1 such that

z = αx + (1− α)y ∈ P.

It is easy to see that 0 < z, x < z and z = αx + (1 − α)y < y. But this
is a contradiction to the fact that y = least upper bound for x and 0. This
establishes our assertion.

We shall present an example of a closed order P in which a 3-dimensional
Euclidean space is not a Riesz space.

Example 4.4. Let E be a 3-dimensional Euclidean space R3. Let P be
a generating proper convex cone in E generated by the 4 elements (1, 0, 0),
(1, 0, 1), (1, 1, 0) and (1, 1, 1). Then, there is no least upper bound for the two
elements 0 = (0, 0, 0) and z = (0, 0, 1) of E. For example, both a = (1, 0, 1)
and b = (1, 1, 1) are greater than 0 and z in the order P . But a and b are not
comparable. This says that E is not a Riesz space in the order P .
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We now consider the distributive law in partially ordered linear spaces.

Proposition 4.5. Let E be a Riesz space. Then for all x1, x2 and y in
E, we have

(x1 ∨ x2) ∧ y = (x1 ∧ y) ∨ (x2 ∧ y).

Similarly, we also have

(x1 ∧ x2) ∨ y = (x1 ∨ y) ∧ (x2 ∨ y).

However, the distributive law does not hold, in general, in a partially
ordered linear space E. For every pair of subsets A and B of E, we define

A ∨B = sup(A ∪B).

There are many possible ways to define A∨B other than the one stated above.
In this paper, though, we consider only the above condition.

Proposition 4.6.

1. A ∪B = C ∪D implies A ∨B = C ∨D.
2. A ∨B = B ∨A.
3. (A ∨B) ∨ C = A ∨ (B ∨ C).

We can also define A ∧ B = inf(A ∪ B). With these definitions, we shall
provide an example of a partially ordered linear space in which the distributive
law holds for some elements x1, x2 and y.

Proposition 4.7. Let E be a partially ordered space and z ∈ E. Then,
y ∈ z ∨ (−z) implies y ≥ 0.

Proof. Let y ∈ z∨ (−z) = (2z∨ 0)− z. Then, we can find an a from 2z∨ 0
such that y = a − z = (1/2)a − z + (1/2)a. Since (1/2)a ≥ z and a ≥ 0, we
conclude that y ≥ 0.

Example 4.8. Let E be a 3-dimensional Euclidean space with an order
as in Examples 1.7 and 4.4. We shall show that the distributive law is true
for some elements and false for others in E. Let z = (0, 0, 1). Then

(z ∧ 0) ∨ (−z ∧ 0) = (z ∨ −z) ∧ 0 = 0.

But, if we take z, (1/2)z = (0, 0, 1/2) and 0, then the distributive law fails to
hold for these three elements.

In the following, we shall verify the converse of Proposition 4.5.
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Theorem 4.9. If the distributive law

(x1 ∨ x2) ∧ y = (x1 ∧ y) ∨ (x2 ∧ y)

holds for all elements x1, x2 and y in a partially ordered linear space E, then
E is a Riesz space.

Proof. Suppose that x∧0 is a subset consisting of more than two elements
and y ≤ x and y 6= x. We shall show that

((x ∨ y) ∧ 0) ∩ ((x ∧ 0) ∨ (y ∧ 0)) = ∅.

In particular,
(x ∨ y) ∧ 0 6= (x ∧ 0) ∨ (y ∧ 0).

Let z ∈ ((x∨y)∧0)∩((x∧0)∨(y∧0)). Since y ≤ x, we have (x∨y)∧0 = x∧0.
On the other hand, z ∈ (x∧0)∨(y∧0). It follows that z ≥ w for all w in x∧0.
Hence, z is the maximum of the subset x ∧ 0. It says that x ∧ 0 = {z}. This
conflicts with the assumption that x ∧ 0 contains more than two elements.

5. Supsets for Two Non-comparable Elements

In this section, we shall consider a ∨ b for any non-comparable pair a
and b of elements of a partially ordered Hausdorff topological linear space E.
It is not easy to determine the exact form for a ∨ b. In some cases, we can
present a ∨ b in terms of boundary sets. To this end, we need to introduce
some definitions.

Throughout this section, E is always an Euclidean space in a closed order
P . A subset F of the order P is called a face if there exists a supporting
hyperplane H of P such that F = P ∩H. We shall use the notation dimF as
the dimension of the affine hull of F for a convex subset F of P .

Theorem 5.1. Let a and b be any non-comparable pair of elements of
a partially ordered Hausdorff topological linear space E in the order P . If
dimF ≤ 1 for all faces F of P, then we have

a ∨ b = ∂(a + P ) ∩ ∂(b + P ),

where ∂ means boundary, i.e., ∂C is the topological boundary of a subset C of
E.

We prepare the proof with the following

Lemma 5.2. If x ∈ ∂P and 0 ≤ y ≤ x, then y ∈ ∂P .
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Proof. If y belongs to the interior P ◦ of P , then x+(x−y) ∈ P . It follows
that [y, x+x−y) ⊂ P ◦ since P is convex. Hence x = (1/2)(y+x+x−y) ∈ P ◦,
a contradiction.

Proof of Theorem 5.1. Assume that x0 ∈ a∨b and x0 ∈ (a+P )◦, the interior
of a + P . Since the affine hull of a + P equals E, there exists a number λ > 0
such that z = (1−λ)b+λx0 ∈ a+P . Hence, z < x0 and z ∈ (a+P )∩ (b+P ).
As a result, x0 is not a minimal element. This contradiction establishes that
x0 ∈ ∂(a + P ) ∩ ∂(b + P ).

Conversely, let x0 ∈ ∂(a + P ) ∩ ∂(b + P ) and suppose y0 ≤ x0 for some
y0 ∈ U{a, b}, the set of upper bounds of {a, b}. By virtue of the fact that
a ≤ y0 ≤ x0 and Lemma 5.2, we have y0 ∈ [a, x0] ⊂ ∂(a + P ). Similarly,
we have y0 ∈ [b, x0] ⊂ ∂(b + P ). Hence, we have [a, x0] ∩ (a + P )◦ = ∅ =
[b, x0] ∩ (a + P )◦. By the separation theorem, there exist a closed hyperplane
H1 such that [y0, x0] ⊂ H1 separating a + P , and another closed hyperplane
H2 such that [y0, x0] ⊂ H2 separating b + P . By assumption, H1 ∩ (a + P ) is
a half line which contains a and x0. Also, H2 ∩ (b + P ) is a half line which
contains b and x0. Since a and b are not comparable in the order P , these
two half lines have different directions. This means that y0 = x0 and so
x0 ∈ a ∨ b.

To illustrate Theorem 5.1, we consider the following

Example 5.3. Let E be the set of all Hermitian operators on a 2-
dimensional Euclidean space. Let P be the set of all positive semi-definite
operators. More precisely, E is considered as a 3-dimensional space in the or-
der P = {(a, b, c) : a ≥ 0, b ≥ 0, ab ≥ c2}. It is easy to see that the dimension
of every face of P is less than or equal to 1 and so the assumption of Theorem
5.1 is satisfied. For any p = (a, b, c) in E with real coordinates a, b and c, we
have

p ∨ 0= {(x, y, z) : x ≥ 0, y ≥ 0, x− a ≥ 0, y − b ≥ 0, xy

= z2, (x− a)(y − b) = (z − c)2}.
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