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LIE ISOMORPHISMS IN *-PRIME GPI RINGS
WITH INVOLUTION

Philip S. Blau and Wallace S. Martindale, 3rd

Abstract. Let R and S be *-prime GPI rings with involution, with
respective skew elements K and L, with respective extended centroids C
and D, and let α : [K, K]/[K, K]∩C → [L,L]∩D be a Lie isomorphism.
If both involutions are of the second kind it is shown that α is determined
by a related associative isomorphism and if the involutions are of different
kinds it is shown that such a map α cannot exist (modulo some low-
dimensional counterexamples).

1. Statements of the Main Results

Let R be an associative ring with involution *, i.e., an antiautomorphism
of period 1 or 2. An ideal I of R is a *-ideal if I∗ = I, and R is said to be
*-prime if the product of any two nonzero *-ideals of R is again nonzero. Let
K = {x ∈ R|x∗ = −x} denote the Lie ring of skew elements of R, and let C
be the extended centroid of R. An involution is induced on C as follows: for
c ∈ C, c∗u = (cu∗)∗, u ∈ U,U a nonzero *-ideal of R such that cU ⊆ R. The
involution * on R is said to be of the first kind if the involution induced on C
is the identity map; otherwise * is of the second kind. Accordingly, as in [10,
p.27], we shall say that R is of type 1 (resp. type 2) if the involution on R is
of the first kind (resp. second kind).

Clearly, a *-prime ring is either already a prime ring or contains a *-ideal
of the form T ⊕ T ∗, T an ideal of R which is itself a prime ring. We shall say
that a *-prime ring is GPI (= generalized polynomial identity) if R is GPI in
the usual sense in case R is prime or the component T (above) is GPI in case
R is not prime.
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Throughout this paper we make the blanket assumption that all rings
encountered are 2-torsion free, and we will not repeat this remark. We also
mention here that for any subset T of a ring the notation 〈T 〉 will indicate the
associative subring generated by T .

In this paper we are interested in characterizing Lie isomorphisms of Lie
rings of the form [K, K] = [K, K]/[K, K]∩C, K the skew elements of a *-prime
GPI ring.

In case R is a simple ring with involution, the earlier Herstein theory (see,
e.g., [4, Chapter 2]) shows that [K, K] is a simple Lie ring (modulo some low
dimensional cases). In the wider context of *-prime rings it has been shown
(see, e.g., [3, 4, 5]) that [K, K] is a prime Lie ring in the sense that the Lie
product of any two nonzero Lie ideals of [K, K] remains nonzero. Thus [K, K]
appears to be a natural Lie ring to study.

To make matters more specific, let R and S be *-prime rings with respective
extended centroids C and D, and with respective skew elements K and L. We
consider Lie isomorphisms

α : [K,K] → [L,L].(1)

If R and S are of the same type, the natural conjecture is as follows: there is
a ring monomorphism ψ : 〈[K, K]〉 −→ SD + D such that for x ∈ [K,K]

xψ = y + ρ, y ∈ [L,L], ρ ∈ D, y = xα.(2)

We note that in (2) y and ρ are unique up to elements of [L,L]∩D and in
this sense one may say that α is determined by ψ. We also remark that unless
R satisfies S4, 〈[K,K]〉 contains a nonzero *-ideal of R, so in this sense ψ acts
on a “large” piece of R.

For R and S both GPI of type 1, the conjecture (modulo some low dimen-
sion exceptions) has been earlier verified [9, Corollary 3.2]. For R and S not
GPI, each of type 2, and one of them containing three orthogonal symmetric
idempotents adding up to 1, the conjecture has been verified by M. Rosen [11,
Theorem 5.1]. Therein lies part of the motivation for this paper: to comple-
ment Rosen’s result when at least one of R and S is GPI and both are of type
2. As one of the main results of this paper we now state the following.

Theorem 1.1. Let R and S be *-prime rings of type 2, with respective
skew elements K and L and with respective extended centroids C and D. We
assume:

1. At least one of R and S is GPI.

2. At least one of R and S does not satisfy S4 (if char. 6= 3) or S6 (if char.
= 3).
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Let [K, K] = [K,K]/[K, K] ∩ C and [L,L] = [L,L]/[L,L] ∩D. Suppose there
is a Lie isomorphism

α : [K,K] → [L, L].

Then there exists a ring monomorphism

ψ : 〈[K, K]〉 → SD + D

such that for all x ∈ [K, K],

xψ = y + ρ, y ∈ [L,L], ρ ∈ D ∩ LD∗, y = xα.

Furthermore, letting T (2) denote [[T, T ], [T, T ]], we have
(i) (K(2))ψ = L(2) (whence 〈K(2)〉ψ = 〈L(2)〉).
(ii) For any nonzero *-ideal I of R in 〈K(2)〉 (such exist), Iψ contains a

nonzero *-ideal of S.

We remark that the question of settling the conjecture when neither R nor
S is GPI is being addressed in [2] (currently in preparation at this writing).

The other motivation for this paper is to investigate what happens when
R and S are of different types, a situation we shall sometimes refer to as the
“mixed” case. Roughly speaking, the result we obtain is: if R and S are GPI
but of different types, then, with two “low dimensional” exceptions, there does
not exist a Lie isomorphism α : [K, K] → [L,L]. An accurate statement of
this result will be given later in this section, after we proceed to review further
notions and basic results pertaining to *-prime rings.

Let R be a *-prime ring with extended centroid C. C∗ = {c ∈ C|c∗ = c} is
called the *-extended centroid of R and is easily seen to be a field. Clearly, R
is of type 1 (resp. type 2) if and only if C = C∗ (resp. C = C∗ + βC∗, β∗ =
−β 6= 0). A *-prime ring R is *-closed if it is already an algebra over C∗. For
example RC∗ is a *-closed *-prime algebra over C∗ and accordingly is called
the *-closure of R. We cite the following useful result which is instrumental
in transferring some problems about *-closed *-prime rings to closed prime
rings. Part (a) is a restatement of [10, Theorem 2.11(a)] and part (b) is a
straightforward exercise using part (a) in conjunction with well-known facts
about the socle.

Remark 1.2. Let R be a *-closed *-prime algebra over C∗ which is not
prime. Then:

(a) There exists a *-ideal J ⊕ J∗, where J is a closed prime algebra over
C∗.

(b) If R is GPI there exists a unique *-ideal H ⊕H∗, where H is its own
socle and is simple with centroid C∗ (H⊕H∗, which is *-simple, will be called
the *-socle of R).
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In the course of this paper various problems will be reduced to the case of
matrix rings Mn(E) over a field E. For instance, when studying the mixed
case, it is especially useful to let E be an algebraically closed field, since in this
case it is well-known that any involution of the first kind on Mn(E) is either
transpose or symplectic. A first step in the passage toward bringing Mn(E)
into play is to form what is called [1, p. 945] the super *-closure of a *-prime
ring R, namely,

A = RC∗ ⊗C∗ E,

where E is the algebraic closure of C∗. The involution * on R can be lifted
uniquely to an involution * on A via the rule

∑
xici ⊗ λi →

∑
x∗i ci ⊗ λi,

where xi ∈ R, ci ∈ C∗, λi ∈ E. Making tacit use of Remark 1.2 combined
with standard ring theory techniques, we proceed to state some useful facts
concerning A. First, the extended centroid C(A) = C⊗C∗ E. If β is a nonzero
skew element of C, then e = 1/2(1 ⊗ 1 + β ⊗ β−1) is an idempotent in C(A)
such that e⊕ e∗ = 1, where e∗ = 1/2(1⊕ 1− β ⊗ β−1). A is *-closed *-prime
over E ∼= C∗⊗C∗ E with skew elements M = KC∗⊗E. If R is of type 2, then
A contains a nonzero *-ideal of the form J ⊕ J∗, where J is a closed prime
algebra over E ∼= eE. In case R is GPI of type 2, J ⊕ J∗ may be taken to be
the *-socle G⊕G∗, where G is a centroid simple algebra over E ∼= eE which
is a dense ring of finite-rank linear transformations of a vector space over E.

We now state our second main result in more detail.

Theorem 1.3. Let R be a *-prime ring of type 1, with skew elements K
such that [K, K] 6= 0, and with super *-closure A = RC ⊗C E. Let S be a
*-prime ring of type 2, with skew elements L such that [L,L] 6= 0, and with
super *-closure B = SD∗⊗D∗ F . Assume that at least one of R and S is GPI.
Then there does not exist a Lie isomorphism α : [K, K] → [L,L] except in the
following two situations:

(i) A = M3(E) with * transpose; A = M2(E) with * symplectic; B =
H ⊕H∗, H = M2(F ).

(ii) A = M6(E) with * transpose; B = H ⊕H∗, H = M4(F ).

Lie isomorphisms illustrating (i) and (ii) in Theorem 1.3 do in fact occur
(see [7, p. 142]).

The remaining sections in this paper are all motivated toward proving The-
orems 1.1 and 1.3. In Section 2, making strong use of the intimate connection
between C∗ and the extended centroid of the prime Lie ring [K,K] proved
in [1], we show (Lemma 2.4) that α may be lifted to a Lie isomorphism of
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the derived skew elements (modulo the respective centers) of the respective
super *-closures. In Section 3, a pot pourri of useful results is established.
This includes how Lie isomorphisms act on square-zero elements (Lemmas 3.4
and 3.5) and also contains a statement of Howland’s Theorem (Theorem 3.7),
which is the noninvolution analogue of Theorem 1.1. The purpose of Section
4 is to show that if one of the two rings is GPI then both are GPI (Theorem
4.1), thereby projecting a useful symmetry into the situation. In Sections 5
and 6, the proof of Theorem 1.1 is given provided the rings are their own super
*-closures: in Section 5 when the rings are GPI but not PI (Theorem 5.2) and
in Section 6 when the rings are PI (Theorem 6.2). The proof of Theorem 1.1
is then completed in Section 7. Section 8 provides useful structural results
(Lemmas 8.1 and 8.2) which are then used in Section 9 to prove Theorem 1.3.

2. Extending Lie Isomorphisms

Let R be a *-prime ring with skew elements K, extended centroid C,
*-extended centroid C∗, and super *-closure A = RC∗ ⊗ E, where E is an
algebraic closure of C∗. We have noted in Section 1 that A is a *-closed
*-prime algebra over E with an involution extending *:

xc⊗ λ → x∗c⊗ λ, x ∈ R, c ∈ C∗, λ ∈ E.

We assume that [K, K] 6= 0 and that A 6= M4(E) under transpose, since with
these restrictions in place it is implicit from [1, Theorem 5.2] that [K, K] =
[K, K]/[K,K] ∩ C is a prime Lie ring. In a similar manner, we let S be a
*-prime ring with skew elements L, extended centroid D, *-extended centroid
D∗, and super *-closure B = SD∗⊗F , where F is a (suitably chosen) algebraic
closure of D∗. Again we assume [L,L] 6= 0 and B 6= M4(F ) under transpose.
We now suppose that we are given a Lie isomorphism

α : [K,K] → [L, L].

Our first goal is to show that α may be extended to a Lie isomorphism of
[K, K]C∗ onto [L,L]D∗. The initial step in this regard is to show that C∗ ∼= D∗
in a way compatible with α. The idea is to make use of the fact [1, Theorem
5.2] that C∗ ∼= C([K, K]) (the extended centroid of the prime Lie ring [K,K])
and that C([K, K]) ∼= C([L, L]) in a natural way using α. This is made precise
in

Lemma 2.1. Given a Lie isomorphism α : [K,K] → [L,L], there exists
an isomorphism γ : C∗ → D∗ which is compatible with α in the following
sense:
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For c ∈ C∗, there exists a Lie ideal U of K, U ⊆ [K, K], U 6⊆ C, and a
Lie ideal V of L, V ⊆ [L,L], such that

V = U
α
, cU ⊆ [K,K]

and for all u ∈ U

cγv = w, v ∈ V,

where w ∈ [L,L], w = cuα, v = uα.

Sketch of proof. We define γ as the composite of the following three iso-
morphisms:

C∗
φ→ C([K, K]) σ→ C([L,L])

ρ→ D∗.

We shall indicate how φ, σ, and ρ are defined but will leave the details of proof
to the reader, whom we refer to [1, Theorem 5.2], where it is to be noted that
φ is in essence the composite φ1φ2φ3 and ρ is just φ4.

Writing c = [g : I → R] ∈ C∗, I a *-ideal, one defines cφ = [h : U →
[K,K]] ∈ C([K,K]), where U = [I ∩K, K] and h(u) = cu, u ∈ U .

For c = [h : U → [K, K]] ∈ C([K,K]) one defines cσ = [p : V → [L,L]] ∈
C([L,L]), where V is a Lie ideal of [L,L] such that V = U

α and p(uα) = h(u)α.

For c = [p : V → [L,L]] ∈ C([L,L]), one defines cρ = [f : S′TS′ →
S] ∈ C([L, L]), where T = [V, [L,L]] and f is given according to f([v, y]) =
[w, y], w ∈ [L,L], w = p(v). The main problem involved with ρ is showing
that it is well-defined; in fact, most of the paper [1] is devoted to this purpose.

A careful examination of the composite of these three isomorphisms results
in the statement of the lemma.

In case [K, K] and [L, L] have no nonzero central elements, the statement
of Lemma 2.1 becomes greatly simplified:

Corollary 2.2. If [K,K] ∩ C = 0 and [L,L] ∩D = 0 and α : [K, K] →
[L,L] is a Lie isomorphism, then there is an isomorphism γ : C∗ → D∗ such
that for all c ∈ C∗ there exists a nonzero Lie ideal U of K, U ⊆ [K, K], such
that for all u ∈ U, cγuα = (cu)α.

Lemma 2.3. Any Lie isomorphism α : [K,K] → [L,L] may be extended to
a γ -semilinear Lie isomorphism (again denoted by) α : [K, K]C∗ → [L, L]D∗
given by ∑

xici →
∑

yic
γ
i ,(3)

where xi ∈ [K,K], ci ∈ C∗, yi ∈ [L,L], yi = xi
α.



Lie Isomorphisms in *-Prime GPI Rings with Involution 221

(Note: It is to be understood that the bars in (3) refer to the moduli [K, K]C∗∩
C and [L,L]D∗ ∩D.)

Proof. We show that this extension is well-defined, leaving the remaining
straightforward details to the reader. To this end, suppose

∑
xici = 0, i.e.,∑

xici is central. By Lemma 2.1 (applied simultaneously to the finite number
of ci’s), there exists a Lie ideal U of K, U ⊆ [K,K], U 6⊆ C, and a Lie ideal V
of L, V ⊆ [L,L], such that V = U

α
, ciU ⊆ [K, K], where for all u ∈ U cγ

i v =
wi, wi ∈ [L,L], wi = ciu

α. For all u ∈ U, 0 = [
∑

xici, u] =
∑

[xi, ciu] and so∑
[xi, ciu] = 0. Applying α we have

0 =
∑

[xi
α, (ciu)α] =

∑
[yi, c

γ
i v] =

∑
[yi, c

γ
i v].

Therefore,
∑

[yi, c
γ
i v] ∈ [L,L]∩D whence [

∑
yic

γ
i , V D∗] ⊆ [L,L]D∗ ∩D. This

says that
∑

yic
γ
i ∈ D (by the primeness of [L,L]D∗) and so

∑
yic

γ
i = 0.

Finally, it will be useful (especially in Sections 4 and 9) to extend α to
a Lie isomorphism of the derived skew elements (modulo the center) of the
super *-closures of R and S. We let M = KC∗⊗E and N = LD∗⊗F denote
the respective skew elements of the super *-closures A and B.

Lemma 2.4. Any Lie isomorphism α : [K, K] → [L,L] may be extended
to a γ-semilinear Lie isomorphism (again denoted by) α : [M, M ] → [N, N ]
given by

∑
xici ⊗ λi →

∑
yic

γ
i ⊗ λγ

i ,(4)

where xi ∈ [K, K], ci ∈ C∗, yi ∈ [L,L], yi = xi
α and γ : E → F is an

extension of γ : C∗ → D∗.

(Note: The bars in (4) refer to the moduli [M, M ]∩ (C⊗E) and [N, N ]∩ (D⊗
F ).)

Proof. [M,M ] and [N,N ] may be identified respectively with [K,K]C∗⊗E
and [L,L]D∗ ⊗ F . By Lemma 2.3, α may first be extended to a γ-semilinear
Lie isomorphism α : [K,K]C∗ → [L, L]D∗ according to xc → ycγ , x ∈
[K, K], c ∈ C∗, y ∈ [L,L], y = xα. By usual tensor product considera-
tions, α may then be further extended to the required map α ⊗ γ (which we
again just denote as α).
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3. Useful Background Results

In this section, we present a variety of results which play a useful role in
the arguments appearing in the subsequent sections.

We begin with two (undoubtedly well-known) results concerning rings
which are their own socle. For the first two lemmas, H is assumed to be
a dense ring of finite-rank linear transformations of a vector space V over a
field F , i.e., H is a simple ring which is its own socle and the commuting ring
is the field F .

Lemma 3.1. If a ∈ H but a 6∈ [H,H], then H = [H, H] + Fa.

Proof. If (V : F ) is finite, we have H = Mn(F ), in which case the result is
obvious since dim[H, H] = n2 − 1. Thus we may suppose that (V : F ) = ∞.
Now let a 6∈ [H, H] be given and let x be an arbitrary element of H. By
Litoff’s Theorem [3, Theorem 4.3.11], there exists an idempotent e in H such
that both a and x belong to eHe ∼= Mk(F ). By the finite-dimensional case
above, we may write eHe = [eHe, eHe] + Fa. Thus x = exe ∈ [H, H] + Fa
and we are done.

Lemma 3.2. Let a ∈ [H, H] but not central. Then there exists x ∈ [H, H]
such that xa 6∈ [H, H].

Proof. We first assume that (V : F ) < ∞, i.e., H = Mn(F ). We write
a = b + c, where b =

∑n
i=1 αiieii and c =

∑
i6=j αijeij , αij ∈ F, {eij} the

usual matrix units. Suppose c 6= 0, say, α12 6= 0. Setting x = e21 , we have
e21a = α11e21 + α12e22 +

∑n
j=3 α1je2j . Therefore the trace of e21a = α12 6= 0

and so e21a 6∈ [H,H]. If c = 0, we may assume without loss of generality that
α11 6= α22 (otherwise a would be central). Setting x = e11 − e22 = [e12, e21] ∈
[H, H], we see that xa = α11e11− α22e22. Thus the trace of xa = α11−α22 6= 0,
whence xa 6∈ [H, H].

We next assume that (V : F ) = ∞. By Litoff’s Theorem, there ex-
ists an idempotent e ∈ H such that a ∈ eHe but a does not lie in the
center of eHe. By the finite-dimensional case just proved, we may pick
x ∈ [eHe, eHe] ⊆ [H,H] such that xa 6∈ [eHe, eHe]. Suppose, however,
that xa ∈ [H,H]. Then xa =

∑m
i=1[hi, gi], hi, gi ∈ H. By Litoff’s Theorem

again, there is an idempotent f ∈ H such that e, h1, g1, ..., hm, gm ∈ fHf .
Thus xa ∈ [fHf, fHf ]. Therefore the trace of xa in fHf is equal to the
trace of xa in eHe since xa ∈ eHe. This contradicts xa 6∈ [eHe, eHe], and the
lemma is proved.
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We turn our attention next to a useful general result on tensor products
of vector spaces.

Lemma 3.3. Let V be a vector space over a field F, and let r1, r2, ..., rm, s1, s2, ...,
sm ∈ V with r1, r2, ..., rm independent. Suppose, for some λ1, ..., λm ∈ F ,

m∑

i=1

ri ⊗ si +
m∑

i=1

λisi ⊗ ri = 0.(5)

Then, for all i = 1, 2, ..., m, si ∈ sp {r1, r2, ..., rm}.

Proof. By a suitable reordering, let r1, r2, ..., rm, s1, ..., sk be a maximal
independent subset of r1, ..., rm, s1, ..., sm. We may assume that k < m (oth-
erwise this would force s1 = s2 = ... = sm = 0). For l = k + 1, ..., m, we
write

sl =
m∑

i=1

αliri +
k∑

j=1

βljsj .(6)

Substituting (6) in (5), we have

m∑

i=1

ri ⊗ si +
k∑

j=1

sj ⊗ λjrj +
m∑

l=k+1

(
∑

αliri ⊗ λlrl) +
m∑

l=k+1

( k∑

j=1

βljsj ⊗ λlrl

)

=
m∑

i=1

ri ⊗
[
si +

m∑

l=k+1

αliλlrl

]
+

k∑

j=1

sj ⊗
[
λjrj +

m∑

l=k+1

βljλlrl

]
= 0.

In particular, this forces si = − ∑m
l=k+1 αliλlrl, i = 1, 2, ..., m, and the proof

is complete.

In several places in this paper it is important to know that (roughly speak-
ing) square-zero elements are mapped to square-zero elements under a Lie
isomorphism. In Lemmas 3.4 and 3.5, Lie compatible conditions are given
which assure that an element essentially has square zero. In Lemma 3.6, con-
ditions are given which assure that the product of two square-zero elements is
essentially zero.

For the next three lemmas, B will denote a closed prime algebra over a
field F . For a ∈ B, we denote by ar and al the respective right and left
multiplications of B determined by a.

Lemma 3.4. Suppose char. F 6= 3 and let a be a noncentral element
of B such that (ar − al)4 = 0. Then there exists a unique λ ∈ F for which
(a− λ)2 = 0.
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Proof. Using the well-known isomorphism BlBr
∼= Bo⊗F B, the condition

(ar − al)4 = 0 translates to

1⊗ a4 − 4a⊗ a3 + 6a2 ⊗ a2 − 4a3 ⊗ a + a4 ⊗ 1 = 0.(7)

By Lemma 3.3, we see in particular that

a3 = α + βa + γa2, α, β, γ ∈ F,(8)

and hence that

a4 = γα + (α + γβ)a + (β + γ2)a2.(9)

Suppose 1, a, a2 are F -independent. Substitution of (9) in (7) yields

1⊗ [γα + (α + γβ)a + (β + γ2)a2]
−4a⊗ [α + βa + γa2]

+6a2 ⊗ a2 − 4a3 ⊗ a + a4 ⊗ 1 = 0.
(10)

Rearrangement of the terms in (10) leads to

[ ]⊗ 1 + [ ]⊗ a + [(β + γ2)− 4γa + 6a2]⊗ a2 = 0.

This forces 6a2 = 4γa − (β + γ2), which, because char.F 6= 3, contradicts
1, a, a2 being independent. Therefore 1, a, a2 are dependent, and since 1, a
are independent, we may write

a2 = λ + µa, λ, µ ∈ F.(11)

From (11), we obtain

a3 = (µ2 + λ)a + µλ,(12)

a4 = (µ3 + 2λµ)a + µ2λ + λ2.(13)

Substitution of (11), (12) and (13) in (7) results in

1⊗ [(µ3 + 2λµ)a + µ2λ + λ2]
−4a⊗ [(µ2 + λ)a + µλ] + 6(µa + λ)⊗ (µa + λ)

−4[(µ2 + λ)a + µλ]⊗ a
+[(µ3 + 2λµ)a + µ2λ + λ2]⊗ 1 = 0.

(14)

Bearing in mind that 1, a are independent, one rearranges the terms of (14)
in a systematic way and, in particular, concludes that the “coefficient” of the
a⊗ a term must be zero, i.e.,

−4(µ2 + λ) + 6µ2 − 4(µ2 + λ) = 0,
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or, upon simplification,

µ2 + 4λ = 0.(15)

Using (11) and (15), we see that

(a− µ/2)2 = (a2 − µa) + µ2/4 = λ− 4λ/4 = 0.

Finally, if (a−λ1)2 = (a−λ2)2 we see that −2λ1a+λ2
1 = −2λ2a+λ2

2, whence
λ1 = λ2 since a is not central.

Lemma 3.5. Suppose char. F = 3 and a, b, c are noncentral elements of
B such that

(ar − al)2(br − bl) = 0,

(ar − al)4 = 0,

[a, b] = [a, c] = 0,

[b, c] 6= 0.

Then there exists a unique λ ∈ F such that (a− λ)2 = 0.

Proof. Because of char.F = 3, we note that (ar − al)3 = a3
r − a3

l and so
(ar − al)4 = (a3

r − a3
l )(ar − al) = 0, which translates under BlBr

∼= Bo×B to

1⊗ a4 − a⊗ a3 − a3 ⊗ a + a4 ⊗ 1 = 0.(16)

Since 1, a are independent, Lemma 3.3 applied to (16) says that

a3 = α + βa, a4 = γ + δa, α, β, γ, δ ∈ F.(17)

But a4 = αa + βa2 = γ + δa, that is,

βa2 + (α− δ)a− γ = 0.(18)

Suppose β 6= 0. From (ar − al)4 = 0 and (17), we see that for all y ∈ B,

0 = [[[[y, a], a], a], a] = [[y, a3], a] = β[[y, a], a].

Thus [[y, a], a] = 0, which implies a ∈ F by [4, p. 5 Sublemma]. Hence β = 0
and (17) becomes

a3 = α.(19)

The given conditions (ar − al)2(br − bl) = 0 and [a, b] = 0 translate to

(1⊗ a2 − 2a⊗ a + a2 ⊗ 1)(1⊗ b− b⊗ 1) = 0
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or, upon expansion, to

1⊗ a2b− 2a⊗ ab + a2 ⊗ b− b⊗ a2 + 2ab⊗ a− a2b⊗ 1 = 0.(20)

We claim that 1, a, b are independent. Indeed, if b = α + βa, we commute it
with c to obtain the contradiction [b, c] = 0. We can then invoke Lemma 3.3
to conclude in particular from (20) that

a2 = β + γa + δb.(21)

We commute (21) with c to get δ[b, c] = 0, whence δ = 0 and (21) becomes

a2 = β + γa.(22)

From (22), we deduce that

a3 = γβ + (β + γ2)a,(23)

a4 = (β2 + γ2β) + (2βγ + γ3)a.(24)

Substitution of (22), (23) and (24) in (16) and subsequent rearrangement of
terms result in

[2β(β + γ2) + γ(β + γ2)a]⊗ 1 + [ ]⊗ a = 0.

This forces

β(β + γ2) = 0, γ(β + γ2) = 0.(25)

If β = 0, we see from (25) that γ3 = 0 whence γ = 0 and (22) becomes a2 = 0.
Therefore, without loss of generality, we may assume β 6= 0 from which we
conclude

β + γ2 = 0.(26)

Finally, form (22), (26) and char.F = 3, we note that (a−γ/2)2 = (a2−γa)+
γ4/4 = β + γ2 = 0 and the proof is complete.

Lemma 3.6. Let a, b ∈ B such that

a2 = b2 = [a, b] = 0,(27)

(ar − al)2(br − bl)2 = 0.(28)

Then ab = 0.
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Proof. (28) translates to

[[[[y, a], a], b], b] = 0(29)

for all y ∈ B. Expansion of (29) using (27) leaves us with −4abyab = 0 for all
y ∈ B, whence by the primeness of B we conclude that ab = 0.

The main idea of the non-PI part of the proof of Theorem 1.1, which
occupies Section 5, is to reduce an involution (of the second kind) problem to
a noninvolution result. Accordingly, we now state a special case of Howland’s
Theorem [6, Theorem 3.1]:

Theorem 3.7. Let R and S be centroid simple GPI rings (of char. 6= 2)
which are not PI. Suppose α : [R, R] → [S, S] is a Lie isomorphism. Then α
can be extended to a map σ : R → S, where σ is either an isomorphism or the
negative of an antiisomorphism.

Some remarks are in order. The given conditions on R and S are equivalent
to saying that R (resp. S) is a dense ring of finite-rank linear transformations
of a vector space V (resp. W ) over a field E (resp. F ), with V and W infinite-
dimensional. The condition that there exist nonzero orthogonal idempotents
e1, e2 in R such that e1+e2 6= 1 is then easily met. Howland’s assumption that
1 ∈ R is not used in his proof. Rather, one can formally set e3 = 1− e1 − e2

and use the Pierce decomposition R = ⊕∑3
i,j=1 eiRej . It is also important

to acknowledge Howland’s assumption of char. 6= 3. However, this restriction
may be removed for the following reason. The assumption of char. 6= 3 is
only used to establish [6, Lemma 3.6]: if u ∈ eiRej , i 6= j, then (xα)2 = 0
(in fact, [6, Lemma 3.6] depends on [6, Lemma 3.3] and it is in the proof
of this latter lemma that char. 6= 3 is used). But the nature of R in our
case is such that given u ∈ eiRej , i 6= j, one can readily find v, w ∈ [R, R]
such that u2 = v2 = w2 = uv = vu = uw = wu = 0 but [v, w] 6= 0. From
these equations one easily establishes that (ur − ul)4 = (ur − ul)2(vr − vl) =
0, [u, v] = [u,w] = 0, but [v, w] 6= 0. Setting a = uα, b = vα, c = wα and
applying α to the preceding relations show us that the hypotheses of Lemma
3.5 are satisfied and accordingly (a− λ)2 = 0 for some λ ∈ F . This says that
λ2 = 2λa − a2 lies in S, which forces λ2 = 0 (and hence λ = 0) since in our
situation S ∩ F = 0.

4. Lie Isomorphisms and GPI’s

Let R and S be *-prime rings with respective skew elements K and L. Let
A = RC∗ ⊗ E and B = SD∗ ⊗ F be the respective super *-closures of R and
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S. We suppose there is a Lie isomorphism

α : [K,K] → [L,L],

where [K, K] = [K, K]/[K, K]∩C and [L,L] = [L,L]/[L,L]∩D. The purpose
of this section is to show that if R is GPI then S is GPI. We note that R
(resp. S) is GPI if and only if A (resp. B) is GPI. Also R (resp. S) is PI if
and only if A (resp. B) is PI. As a first step, by Lemma 2.4 we may extend α
to a γ-semilinear Lie isomorphism

α : [M,M ] → [N, N ],

where M and N are the respective skew elements of A and B.
We make the useful remark that R is PI if and only if S is PI. Indeed, if

R is PI then A is PI whence it is well-known that (M : E) < ∞ and hence
([M, M ] : F ) < ∞. Applying α to [M, M ] we see that ([N,N ] : F ) < ∞,
whence it is easy to show that N is PI over F . By [8, Theorem 8], B (and
hence S) is PI.

We shall now assume that R is GPI but S is not GPI, and aim at finding
a contradiction. As mentioned above, this means that A is GPI and B is not
GPI. We divide the argument into two cases.

Case (a): R is of type 2. Here we let G ⊕ G∗ denote the *-socle of A.
Setting V = {x − x∗|x ∈ [G,G]}, we note that V is the unique minimal
Lie ideal of [M,M ]. It follows that W ′ = V

α must be the unique minimal
Lie ideal of [N,N ]. Since G is not PI, we know that G ∩ E = 0 and so
we may identify V with V . Furthermore, there is a natural Lie isomorphism
ν : [G,G] → V given by x 7→ x−x∗, and so we shall replace α by the composite
να : [G,G] → W ′. If S is of type 1, then W ′ is the unique minimal Lie ideal
of [N, N ]. If S is of type 2, then B contains a nonzero *-ideal T ⊕ T ∗, and,
setting P = {t− t∗|t ∈ [T, T ]}, we note that P is a Lie ideal of [N, N ]. Since
W ′ is minimal, we see that W ′ ⊆ P . Letting U = {u ∈ [T, T ]|u− u∗ ∈ W ′},
we see that U is a Lie ideal of [T, T ] and that W ′ = {u − u∗|u ∈ U}. By [5,
Theorem 5], U ⊇ [H,H] for some nonzero ideal H of B which is contained
in T and which is itself a closed prime ring over F . By the minimality of
W ′, we see that W ′ = {h − h∗|h ∈ [H, H]}. Using the Lie isomorphism
µ : W ′ → [H, H] given by h− h∗ 7→ h, we may now replace να by the Lie
isomorphism ναµ : [G,G] → [H, H].

Summarizing, we now have a Lie isomorphism (which we continue to label
as α):

α : [G,G] → W,

where either W = W is a nonzero Lie ideal of [N, N ] if S is of type 1 or
W = [H, H], H an ideal of T , if S is of type 2.
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We now begin the construction of a GPI for B. Taking any rank-4 idempo-
tent e in G and forming eGe = M4(E), we set u = e12, v = e13, w = e32, with
uα = a, vα = b, wα = c, a, b, c ∈ W . We first claim [a, b] = 0. Indeed, writing
eα
14 = g, eα

43 = h, g, h ∈ W , we note that [a, g] and [a, h] are central and that
b = [g, h] + ω, ω ∈ F . Thus [a, b] = [[a, g], h] + [g, [a, h]] = 0 and similarly
[a, c] = 0. On the other hand, it is clear that [b, c] 6= 0 since [v, w] = u 6= 0.
For all x ∈ [G,G], one easily checks that

[[[x, u], u], u] = 0 = [[[x, u], u], v].(30)

Setting xα = y, y ∈ W , applying α to (30), and removing the bars, we find
that

[[[y, a], a], a] ∈ F, [[[y, a], a], b] ∈ F(31)

for all y ∈ W . Thus f(X,Y ) = [X, [[[Y, a], a], a]] ∈ BF 〈X, Y 〉 is a GPI on W
and by [3, Remark 9] f〈X, Y 〉 = 0. This implies that [[[Y, a], a], a] = 0 whence
(ar−al)3 = 0. Similarly one shows that (ar−al)2(br−bl) = 0. The conditions
of Lemmas 3.4 and 3.5 are now met and we thereby conclude that

(a− λ)2 = 0

for some λ ∈ F .
Now let r = e21 and set rα = d. The same argument as in the preceding

paragraph results in
(d− µ)2 = 0

for some µ ∈ F . We set a0 = a− λ and d0 = d− µ, noting that a2
0 = 0 = d2

0.
We claim that neither a0d0 = 0 nor d0a0 = 0. Indeed, suppose d0a0 = 0.

Applying α to
[[r, u], r] = 2r,

we see that [[d, a], d] = 2d + ρ, ρ ∈ F , i.e.,

[[d0, a0], d0] = 2d0 + σ, σ ∈ F.

But [[d0, a0], d0] = 2d0a0d0 = 0, whence the contradiction 2d0 + σ = 0.
For all x ∈ [G,G], one checks that

[[[u, x], u], [[r, y], r]] = βe11 + γe22, β, γ ∈ E.

It follows that

[[[[u, x], u], [[r, y], r]], [[[u, z], u], [[r, w], r]]] = 0(32)



230 Philip S. Blau and Wallace S. Martindale, 3rd

for all x, y, z, w ∈ [G,G]. In BF 〈X, Y, Z, P, Q〉 (if S is of type 1) or in
HF 〈X,Y, Z, P, Q〉 (if S is of type 2), we set

f(X, Y, Z, P ) = [[[[a0, X], a0], [[d0, Y ], d0]], [[[a0, Z], a0], [[d0, P ], d0]]],(33)

which (since a2
0 = 0 = d2

0) reduces to

f(X, Y, Z, P ) = a0Xa0d0Y d0a0Za0d0Pd0 + .........,

where all the terms indicated by the dots have X,Y, Z, P in a different order.
An application of α to (32) and removal of the bars show that [f(X, Y, Z, P ), Q]
is a nontrivial GPI on W , a contradiction by [3, Remark 9] since B is not GPI.

Case (b): R is of type 1. Let G denote the socle of A. Here the unique
minimal Lie ideal J of [M,M ] is J = [M ∩G,M ∩G]. Just as in the case (a),
we may reduce the problem to the situation where we have a Lie isomorphism
(again denoted by α)

α : J → W,

where W = W is a nonzero Lie ideal of [N, N ] if S is of type 1 or W = [H, H],
H an ideal of T , if S is of type 2.

Suppose first that the involution on G is of symplectic type. Pick a sym-
metric idempotent e of rank 6 and form eGe = M6(E) with the symplectic
involution induced on eGe given so that the skew elements of eGe are of the
form [

P Q
U −P t

]
, P,Q, U 3× 3 over E, Q, U symmetric.

We set u = e14, v = e25, w = e53 + e62 and set uα = a, vα = b, wα = c. We
proceed in a similar fashion to the case (a). Using e25 = [e23 − e65, e35 + e26]
one shows that [a, b] = 0, and using e14 = [e12 − e54, e24 + e15] one shows
that [a, c] = 0. Clearly, [b, c] 6= 0. For all x ∈ J , we have [[[x, u], u], u] = 0 =
[[[x, u], u], v]. The proof that (a − λ)2 = 0 for some λ ∈ F then goes through
as in the case (a). Likewise, setting r = e41 (which lies in J as well as does
e14) and rα = d, we must conclude that (d− µ)2 = 0 for some µ ∈ F . We set
a0 = a − λ, d0 = d − µ and construct the same GPI (33) as in the case (a),
thus contradicting the fact that B is not GPI.

We may therefore assume that the involution α on G is of transpose type.
We choose a symmetric idempotent e of rank 7 and form eGe = M7(E) so that
the involution on eGe is the usual transpose. For i 6= j, we set Eij = eij − eji,
where {eij} are the usual matrix units. We choose u = E12, v = E34, w = E56

and set uα = a, vα = b, wα = c. The familiar device of writing u = [E17, E72]
can be used to show that [a, b] = 0 and a similar approach shows that [a, c] =
[b, c] = 0. We next claim that 1, a, b, c are F -independent. Indeed, suppose

β + γa + δb + ρc = 0, β, γ, δ, ρ ∈ F.(34)
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If, say, γ 6= 0, we write Eα
27 = d. A familiar argument shows that [b, d] =

[c, d] = 0 and so commuting (34) with d leaves us with the contradiction
γ[a, d] = 0 since [a, d] 6= 0. Thus γ, and similarly δ and ρ, is 0 which then
forces β = 0 and establishes our claim. Applying α to

[[[x, u], v], w] = 0, x ∈ J,

we obtain
[[[y, a], b], c] ∈ F

for all y ∈ W . Again using the same argument as in the case (a), we see that
the fact that B is not GPI forces

f(X) = [[[X, a], b], c] = 0.(35)

In view of the fact that a, b, c commute with each other, (35) translates to the
tensor product equation

1⊗ abc− a⊗ bc− b⊗ ac− c⊗ ab+ ab⊗ c+ ac⊗ b+ bc⊗ a− abc⊗ 1 = 0.(36)

An application of Lemma 3.3 to (36) says in particular that

ab = β0 + γ0a + δ0b + µ0c, β0, γ0, δ0, µ0 ∈ F.(37)

Setting Eα
67 = r and Eα

57 = s, r, s ∈ W , we commute (37) with r to obtain

0 = µ0[c, r] = µ0(s + ρ), ρ ∈ F,

using the fact that [a, r] = 0 = [b, r]. Therefore µ0 = 0 and (37) becomes

ab = β0 + γ0a + δ0b.(38)

We now set Eα
15 = g and Eα

52 = h, g, h ∈ V , whence a = [g, h] + λ, λ ∈ V ∩F .
Likewise, setting Eα

36 = u and Eα
64 = v, u, v ∈ V , we have b = [u, v] + µ, µ ∈

V ∩ F . Analogous to (38), we have the equation

gu = β1 + γ1g + δ1u, β1, γ1, δ1 ∈ F.(39)

Commuting (39) with h yields

[g, h]u = γ1[g, h](40)

and then commuting (40) with v yields

[g, h][u, v] = 0,
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that is,
(a− λ)(b− µ) = 0 = (b− µ)(a− λ).(41)

Setting a0 = a− λ and b0 = b− µ, we see that (41) becomes

a0b0 = 0 = b0a0.

Since λ, µ ∈ V ∩F , we may rewrite uα as a0 and vα as b0, with a0b0 = 0 = b0a0.
We will need to know that a2

0 6= 0 and b2
0 6= 0. Suppose a2

0 = 0. We write
p = Eα

31. In J , we have

[[E31, E12], E12] = [E32, E12] = −E31.(42)

An application of α to (42) results in

[[p, a0], a0] = −p + θ, θ ∈ V ∩ F,

whence
−2a0pa0 = −p + θ.(43)

Multiplication of (43) on the left and right by a0 yields the contradiction
0 = −a0pa0. Therefore we may assume a2

0 6= 0 and b2
0 6= 0.

One now checks that

[[[E12, x], E34], [[E12, y], E34]] =
E12(xE2

34y − yE2
34x)E12 + E34(xE2

12y − yE2
12x)E34 =

βE12 + γE34

(44)

for some β, γ ∈ E. In either BF 〈X, Y, Z, P,Q〉 (if S is of type 1) or in
HF 〈X,Y, Z, P, Q〉 (if S is of type 2), we define

f(X, Y, Z, P ) = [[[[a0, X], b0], [[a0, Y ], b0]], [[[a0, Z], b0], [[a0, P ], b0]]].(45)

Using a0b0 = b0a0 = 0, we see that (45) reduces to

f(X, Y, Z, P ) = a0Xb2
0Y a2

0Zb2
0Pa0 + .....,

where all the terms represented in the dots have X, Y, Z, P in a different or-
der. Since a2

0 6= 0 and b2
0 6= 0, we see that f(X, Y, Z, P ) 6= 0 and hence

[f(X, Y, Z, P ), Q] 6= 0. By applying α to (44) we conclude that [f(X,Y, Z, P ), Q]
is a nontrivial GPI for V and, as we have seen earlier, this forces the contra-
diction that B is GPI.

Summarizing the results of this section, we have proved

Theorem 4.1. Let R and S be *-prime rings with respective skew elements
K and L, and suppose [K, K] is Lie isomorphic to [L,L]. Then, if either R
or S is GPI, both R and S are GPI.



Lie Isomorphisms in *-Prime GPI Rings with Involution 233

5. Involutions of the Second Kind: the non-PI Case.

We begin this section by proving a special case of Theorem 1.1.

Lemma 5.1. Let A = G⊕G∗ and B = H ⊕H∗ be *-simple algebras over
algebraically closed fields E and F respectively, with G and H GPI (but not
PI) centroid simple of E and F respectively and each equal to its own socle.
Let K = {x − x∗|x ∈ G} and L = {y − y∗|y ∈ H} denote the respective skew
elements of A and B and suppose that

α : [K, K] → [L,L]

is a γ-semilinear Lie isomorphism, where γ is an isomorphism of E onto F .
Then there is an isomorphism σ : A → B such that σ = a on [K, K] and such
that either Gσ = H or Gσ = H∗.

Proof. Let ν : [G,G] → [K, K] be given by x 7−→ x− x∗, x ∈ [G,G]. It is
easy to check that ν is an E-Lie isomorphism. Similarly, ω : [H, H] → [L,L] is
an F -Lie isomorphism. Then the composite δ = ναω−1 is a γ-semilinear Lie
isomorphism of [G,G] onto [H, H]. By Howland’s Theorem (Theorem 3.7),
there is a map ρ : G → H such that xρ = xδ for all x ∈ [G,G], where either

(a) ρ is an isomorphism
or

(b) ρ = −ψ, ψ an antiisomorphism.
We first consider case (a). We define σ : A → B according to the rule

(x + u∗)σ = xρ + (uρ)∗, x, u ∈ G,

noting that (xσ)∗ = (xρ)∗ = (x∗)ρ. Since

(x∗u∗)σ = (ux)∗σ = (ux)ρ∗ = (uρxρ)∗ = (xρ)∗(uρ)∗ = (x∗)σ(u∗)σ,

we see that σ is an isomorphism. Furthermore, for x ∈ [G, G], xρ = xδ =
xναω−1

and so xρ = y, where (x − x∗)α = y − y∗. Consequently, (x − x∗)σ =
xρ − (xρ)∗ = y − y∗ = (x− x∗)α, whence σ = α on [K, K].

We look next at case (b), i.e., ρ = −ψ, ψ an antiisomorphism. Defining
χ : A → B according to

(x + u∗)χ = xψ + (uψ)∗, x, u ∈ G,

we see from
(xu)χ = (xu)ψ = uψxψ = uχxχ
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and
(x∗u∗)χ = (ux)∗χ = (ux)ψ∗ = (xψuψ)∗ = uψ∗xψ∗ = uχxχ

that χ is an antiisomorphism. We define σ = ∗ψ and see immediately that σ
is an isomorphism of A onto B. Since xρ = y, x ∈ [G,G], where (x− x∗)α =
y − y∗, we conclude from

(x− x∗)σ = (x− x∗)∗χ = −(x− x∗)χ = −xχ + (xχ)∗ = xρ − (xρ)∗ = y − y∗

that σ = α on [K, K]. The proof of the lemma is now complete.

We next generalize Lemma 5.1 to

Theorem 5.2. Let A and B be *-closed *-prime algebras with involutions
of the second kind over algebraically closed fields E and F respectively, and
assume that A and B are GPI but not PI. Let K and L denote the respective
skew elements of A and B and suppose that

α : [K, K] → [L,L]

is a γ-semilinear Lie isomorphism, where γ : E → F is an isomorphism. Then
there is a γ-semilinear ring monomorphism

ψ : 〈[K, K]〉 → 〈[L,L]〉CB + CB

such that

xψ = y + ρ, x ∈ [K, K], y ∈ [L,L], y = xα, ρ ∈ L ∩ CB,

where CB is the extended centroid of B.

Proof. With reference to the discussion in Section 1, we let A0 = G⊕G∗

and B0 = H ⊕ H∗ be the respective *-socles of A and B. Setting V =
{x − x∗|x ∈ [G,G]} and W = {y − y∗|y ∈ [H, H]}, we know that V and W
are the unique minimal Lie ideals of [K,K] and [L,L] respectively. Therefore
α induces a γ-semilinear Lie isomorphism of V onto W . Furthermore, since
neither G nor H is PI, we know that neither V nor W contains nonzero
central elements, that is, we may write V = V and W = W . The conditions
of Lemma 5.1 (applied to A0 and B0) are now fulfilled and accordingly there is
an isomorphism σ : A0 → B0 such that σ = α on V where (by interchanging H
and H∗ if necessary) we may assume that Gσ = H and (G∗)σ = H∗. We now
embark upon a series of claims in order to complete the proof of the theorem.

For Claims 1 through 6, we fix x ∈ [K, K] and y ∈ [L,L] such that y = xα.
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Claim 1. For u ∈ V, [x, u]σ = [y, uσ].

Proof. [x, u]σ = [x, u]σ = [x, u]
α

= [xα, uα] = [y, uσ] = [y, uσ] = [y, uσ].

Claim 2. For u ∈ V, [(xu)σ − [yuσ, uσ] = 0

Proof. [(xu)σ − yuσ, uσ] = [xu, u]σ − yuσ, uσ] = ([x, u]u)σ − [y, uσ]uσ =
([x, u]σ − [y, uσ])uσ = 0 by Claim 1.

A linearization of Claim 2 yields

Claim 3. For u, v ∈ V, [(xu)σ − yuσ, vσ] + [(xv)σ − yvσ, uσ] = 0.

Claim 4. Let u, v ∈ V, a = uσ, and b = (xu)σ − yuσ. Then arb = bra for
all r ∈ W .

Proof. Since ([x, v]u)σ = [x, v]σuσ, we have

0 = [([x, v]u)σ − [x, v]σuσ, uσ]
[(xvu− vxu)σ − [y, vσ]uσ, uσ] (Claim 1)
[((xv)σ − yvσ)uσ − vσ((xu)σ − yuσ), uσ]
[(xv)σ − yvσ, uσ]uσ − [vσ, uσ]((xu)σ − yuσ) (Claim 2)
−[(xu)σ − yuσ, vσ]uσ − [vσ, uσ]((xu)σ − yuσ) (Claim 3).

(46)

Since σ = α on ν and α : V → W is surjective, we set r = vσ and see that
(46) becomes

−[b, r]a− [r, a]b = 0(47)

for all r ∈ W . In turn, (47) reduces to arb = bra, r ∈ W , and the claim is
established.

At this point we recall that CB = Fe ⊕ Fe∗, with CH = Fe, e + e∗ =
1, ee∗ = 0.

Claim 5. Let a and b be as in Claim 4. Then b is a symmetric element
and b = ρa, where ρ = ρx,y,u is a skew element of CB.

Proof. Since * commutes with σ, it is easy to check that b∗ = (ux)σ −uσy
and so by Claim 1 we see that b = b∗. We now write a = a1 − a∗1, a1 ∈ H
(since a ∈ W ), b = b1 + b∗1, b1 ∈ H, and r = h− h∗, h ∈ [H, H]. Then Claim
4 yields

a1hb1 = b1ha1, h ∈ [H, H].

By [3, Theorem 4.3.11], we may pick an idempotent g ∈ H such that a1, b1 ∈
gHg and g 6∈ [H,H]. By Theorem 3.1, H = [H, H] + Fg and thus b1 =
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αea1, λ ∈ F . Thus b∗1 = λe∗a∗1 whence b = λea1 +λe∗a∗1 = λ(e− e∗)(a1− a∗1).
Hence b = ρa, where ρ = λ(e− e∗) is a skew element of CB.

Claim 6. The element ρ = ρx,y,u is independent of the choice of u ∈ V ,
that is, ρ = ρx,y.

Proof. Let u1, u2 ∈ V . Making repeated use of Claim 5, we may write

(xu1)σ − yuσ
1 = ρ1u

σ
1 ,

(xu2)σ − yuσ
2 = ρ2u

σ
2 ,

(x(u1 + u2))σ − y(u1 + u2)σ = ρ3(u1 + u2)σ,
(48)

where ρ1, ρ2, ρ3 are skew elements in CB. Expanding and simplifying the
equations (48), we are left with

(ρ1 − ρ3)uσ
1 + (ρ2 − ρ3)uσ

2 = 0.(49)

We set uσ
1 = a1− a∗1, uσ

2 = a2− a∗2, a1, a2 ∈ H, ρ1− ρ3 = λ1(e− e∗), ρ2−
ρ3 = λ2(e− e∗), λ1, λ2 ∈ F . Then (49) becomes

λ1(e− e∗)(a1 − a∗1) + λ2(e− e∗)(a2 − a∗2) = 0,

whence in particular

(λ1e)a1 + (λ2e)a2 = 0.(50)

If a1, a2 are Fe-independent, we see from (50) that

λ1e = 0 = λ2e.(51)

An application of * to (51) results in ρ1− ρ3 = 0 = ρ2− ρ3, i.e., ρ1 = ρ3 = ρ2.
If a1, a2 are Fe-dependent, then one may choose u3 ∈ V such that a1, a2 are
Fe-independent, where uσ

3 = a3 − a∗3.. Writing (xu3)σ − yuσ
3 = λ3u

σ
3 , we see

from the preceding argument that ρ1 = λ3 = ρ2 and the proof is complete.
In view of Claim 6, we may now write

(xu)σ − yuσ = ρx,yu
σ(52)

for all x ∈ [K, K], y ∈ [L,L] such that y = xα, u ∈ V . We rewrite (52) as

(xu)σ = tx,yu
σ, tx,y = y + ρx,y.

Claim 7. tx,y is independent of y, i.e., tx,y = tx.
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Proof. If (xu)σ = tx,y1u
σ = tx,y2u

σ, then (tx,y1 − tx,y2)W = 0 whence
(tx,y1 − tx,y2)〈W 〉 = 0. But 〈W 〉 contains a nonzero *-ideal I of B, which
forces tx,y1 = tx,y2 .

In view of Claim 7, we define φ : [K,K] → [L, L]CB + CB according to
xφ = tx, noting that

(xu)σ = xφuσ, x ∈ [K,K], u ∈ V.

Claim 8. (xu)σ = uσxφ, x ∈ [K, K], u ∈ V .

Proof. Analogous to equation (52), one has

(ux)σ − uσy = µx,yu
σ, µx,y skew in CB,(53)

for u ∈ V , x ∈ [K,K], y ∈ [L,L] such that y = xα. Using Claim 1, we subtract
(53) from (52) to obtain

0 = [x, u]σ − [y, uσ] = (ρx,y − µx,y)uσ.

Since nonzero skew elements in CB are invertible, we must conclude that
µx,y = ρx,y, and the claim is proved.

Claim 9. Let x1, x2, ..., xk ∈ [K,K] and u, v ∈ V . Then uσxφ
1xφ

2 . . . xφ
kvσ =

(ux1x2 . . . xkv)σ.

Proof. The proof is by induction on k. For k = 1, we have uσxφ
1vσ =

(ux1)σvσ = (ux1v)σ. Next, assuming the result is true for k − 1, we have

uσxφ
1 ...xφ

kvσ =

(ux1)σxφ
2 ...xφ

kvσ =

[u, x1]σxφ
2 ...xφ

kvσ + (x1u)σxφ
2 ...xφ

kvσ =

([u, x1]x2...xkv)σ + xφ
1uσxφ

2 ...xφ
kvσ =

(ux1x2...xkv)σ − (x1ux2...xkv)σ + xφ
1 (ux2...xkv)σ =

(ux1x2...xkv)σ − (x1ux2...xkv)σ + xφ
1uσ(x2...xkv)σ =

(ux1...xkv)σ − (x1ux2...xkv)σ + (x1u)σ(x2...xkv)σ =

(ux1...xkv)σ − (x1ux2...xkv)σ + (x1ux2...xkv)σ =

(ux1...xkv)σ.
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We now define ψ : 〈[K, K]〉 → 〈[L,L]〉CB + CB via
∑

x1x2...xk 7−→
∑

xφ
1xφ

2 ...xφ
k , xi ∈ [K, K].

To show ψ is well-defined, suppose
∑

x1x2...xk = 0. Then by Claim 9,
uσ(

∑
xφ

1 ...xφ
k)vσ = (

∑
ux1...xkv)σ = {u(

∑
x1x2...xk)v}σ = 0 for all u, v ∈ V ,

whence
∑

xφ
1xφ

2 ...xφ
k = 0. Clearly, ψ is a γ-semilinear ring homomorphism by

the nature of its definition. To show ψ is injective, suppose J = ker ψ 6= 0.
Since J is a nonzero *-ideal of A, J ∩ V = V (since V = V is the unique
minimal Lie ideal of [K, K]). To reach a contradiction, it suffices to show
that ψ = α on V since α is an injection. Indeed, for u, v ∈ V , we note that
uσvσ = (uv)σ = uφvσ. Thus (uσ − uφ)W = 0, whence uσ = uφ. But then
uψ = uφ = uσ = uα. Finally, from xψ = xφ = tx we have

xψ = y + ρx,y, y ∈ [L,L], y = xα, ρx,y skew in CB,

and the proof of Theorem 5.2 is thereby complete.

6. Involutions of the Second Kind: the PI Case

The aim of this section is to prove Theorem 1.1 for the special case (The-
orem 6.2) where R and S are their own super *-closures and furthermore are
PI. The proof of Theorem 6.2 rests heavily upon the following noninvolution
result on Lie isomorphisms.

Theorem 6.1. Let G = Mn(E), H = Mn(F ), E and F fields with an
isomorphism γ : E → F . Assume n > 2 if char.E 6= 3 and n > 3 if char.E = 3.
Suppose there is a γ-semilinear Lie isomorphism

α : [G,G] → [H, H],

where [G,G] = [G, G]/[G,G] ∩ E and [H,H] = [H,H]/[H, H] ∩ F . Then
n = m and there exists a γ-semilinear map σ : G → H such that σ is either
an isomorphism or the negative of an antiisomorphism and such that xσ = xα

for all x ∈ [G,G].

Proof. The fact that dimE [G,G] = dimF [H, H] says not only that n = m
but that [G,G] ∩ E = 0 if and only if [H, H] ∩ F = 0. If [G,G] ∩ E = 0, then
our result is a direct consequence of Howland’s Theorem since the condition
n > 2 assures the presence of three orthogonal idempotents. Therefore, for the
remainder of the proof, we assume [G,G]∩E 6= 0 (and hence [H,H]∩F 6= 0),
which forces E to have characteristic p with p dividing n. If p 6= 3, we have
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p ≥ 5 which forces n ≥ 5. If p = 3, then the given condition n > 3 forces
n ≥ 6. Let {eij |i, j = 1, 2, ..., n} denote the usual matrix units for G. The
proof will largely involve establishing a series of claims.

Claim 1. If [eij , ekl] = 0, i 6= j, k 6= l, and eij
α = a, ekl

α = b, a, b ∈
[H,H], then [a, b] = 0.

Proof. Without loss of generality the two cases to consider are (a) e12, e13

and (b) e12, e34. In (a), write e14
α = c and e43

α = d. From [e12, e13] =
[e12, e14] = [e12, e43] = 0 and e13 = [e14, e43], we obtain [a, c], [a, d], b− [c, d] are
central, whence it is easy to see that [a, b] = 0. Similarly for (b), since n ≥ 5,
we write e34 = [e35, e54] to arrive at [a, b] = 0.

Claim 2. For i 6= j, eij
α = aij , aij is unique such that aij ∈ [H, H] and

a2
ij = 0.

Proof. Without loss of generality we may consider u = e12, and, setting v =
e13 and w = e32, we write uα = a, vα = b, wα = c, a, b, c ∈ [H,H]. By Claim
1, [a, b] = 0 = [a, c], but clearly [b, c] 6= 0. From [[[x, u], u], u] = 0 for all x ∈
[G,G], it is easy to see that [[[y, a], a], a] = λ ∈ F for all y ∈ [H, H]. By Lemma
3.2, pick s ∈ [H,H] such that sa 6∈ [H, H]. One checks that [[[sa, a], a], a] =
[[[s, a], a], a]a = µa for some µ ∈ F and so we have [[[y, a], a], a] ∈ F + Fa for
all y ∈ H. Commuting with a then yields [[[[y, a], a], a], a] = 0 for all y ∈ H,
i.e.,

(ar − al)4 = 0.

From [[[x, u], u], v] = 0 for all x ∈ [G,G], we conclude that [[[y, a], a], b] ∈ F for
all y ∈ [H,H]. By Lemma 3.2, pick s ∈ [H, H] such that as 6∈ [H, H] which, as
we have seen earlier, leads to [[[y, a], a], b] ∈ F+Fb. Since a and b are clearly F -
independent modulo F , we must have [[[y, a], a], b] ∈ F for all y ∈ H. Suppose
for some y, [[[y, a], a], b] = λ 6= 0. Then [[[ya, a], a], b] = [[[y, a], a], b]a = λa =
µ, whence the contradiction a ∈ F . Thus [[[y, a], a], b] = 0 for all y ∈ H, i.e.,

(ar − al)2(br − bl) = 0.

The conditions of Lemma 3.5 (and hence of Lemma 3.4) are now fulfilled, so
we conclude that (a− λ)2 = 0, where λ ∈ F is unique. But F ⊆ [H,H], so a
may be replaced by a12 = a− λ ∈ [H, H] with a2

12 = 0.

Claim 3. Let i, j, k be distinct. Then either
(a) aijajk = aik, ajkaij = 0 or
(b) aik = −ajkaij , aijajk = 0.
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Proof. For simplicity, we let i = 1, j = 2, k = 3, set u = e12, v = e23, w =
e13, and write a = a12, b = a23, c = a13. By Claim 2, a2 = b2 = c2 = 0.
From [[[x, u], u], w] = 0 for all x ∈ [G,G], we are led by a familiar argument
to [[[[y, a], a], c], c] = 0 for all y ∈ H, i.e., (ar − al)2(cr − cl)2 = 0. By Lemma
3.6, ac = 0 = ca, and, in a similar fashion, we have bc = 0 = cb. From
[[[[x, u], u], v], v] = 0 for all x ∈ [G, G], we obtain

[[[[y, a], a], b], b] = λ ∈ F, y ∈ [H, H].(54)

Since a2 = b2 = 0, (54) reduces to

bayab = λ ∈ F, y ∈ [H, H].(55)

Since bc = 0, multiplication of (55) by c leaves us with λc = 0, whence λ = 0
and (55) becomes

bayab = 0, y ∈ [H, H].(56)

By Lemma 3.2, there exists s ∈ [H, H] such that sa 6∈ [H, H]. Now ba(sa)ab =
0 since a2 = 0, and so (55) becomes

bayab = 0, y ∈ H.

Since H is prime, either ab = 0 or ba = 0. From [u, v] = w we conclude that

[a, b] = c + µ, µ ∈ F.(57)

Multiplication of (57) by c results in µc = 0 which forces µ = 0, that is,
ab− ba = c. If ba = 0 then ab = c, and if ab = 0, then c = −ba.

Claim 4. For i, j, k, l distinct, aij = aikakj if and only if aij = ailalj .

Proof. Suppose aij = aikakj but (see Claim 3) aij = −aljail. By Claim
3, either (i) akj = akiaij or (ii) akj = −aijaki. In case (i), akj = akiaij =
−akialjail = 0 since akialj = 0 by Claim 3. In case (ii), akj = −aijaki =
−aikakjaki = 0 since akjaki = 0. In either case, a contradiction is reached.

For temporary purposes, we shall say that aij , i 6= j, is good if there exists
k 6= i, j such that aij = aikakj . In view of Claim 4, we know that aij , i 6= j,
is good if and only if aij = aikakj for all k 6= i, j.

Claim 5. If aij is good for some i 6= j, then akl is good for all k 6= l.

Proof. We may suppose that a12 is good. We first show that a1j is good
for j 6= 1, 2. If a12 is not good, then by Claim 3, a1j = −akja1k for some
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k 6= 1, j. We then have the contradiction a12 = a1jaj2 = −akja1kaj2 = 0 since
a1kaj2 = 0. By a symmetric argument applied to a1j , j 6= 1, we conclude
that aij is good for all i 6= j where j 6= 1. It only remains to show that ai1 is
good for all i 6= 1. Pick k 6= 1, j and note that aik is good. Then a symmetric
argument to the above one shows that ai1 is good and the claim is established.

At this point we assume that some aij , i 6= j, is good. In view of Claim
4, this says that all aij , i 6= j, are good. From this it follows that, for i, k, l
distinct, aikaki = aik(aklali) = (aikakl)ali = ailali. This enables us to define
aii = aikaki, where k is any subscript distinct from i.

Claim 6. {aij |i, j = 1, 2, ..., n} is a set of matrix units for H.

Proof. One simply examines all possible cases as follows (parentheses will
indicate products which are zero by Claim 3):

a12a23 = a13,

a12a21 = a11,

a12a22 = a12a23a32 = a13a32 = a12,

a12a33 = (a12a31)a13 = 0,

a12a34 = a14(a42a34) = 0,

(a12a31) = 0,

a12a32 = (a12a31)a12 = 0,

a11a11 = a12a21a13a31 = a12a23a31 = a12a21 = a11,

a11a22 = a13(a31a23)a32 = 0.

All essentially distinct cases having been considered, the proof of Claim 6 is
complete.

We may now complete the proof of Theorem 6.1 in the case that all the aij ’s
are good. One simply defines σ : G → H according to eσ

ij = aij , i, j = 1, 2, ..., n

and its extension by γ-semilinearity. Clearly, eσ
ij = aij = eij

α for i 6= j, and, in
view of (eii − ejj)σ = [eij , eji]σ = [aij , aji], we have (eii − ejj)σ = [aij , aji] =
[eij

α, eji
α] = eii − ejj

α. Thus xσ = xα for all x ∈ [G,G].
It remains now to consider the situation where none of the aij , i 6= j, are

good, i.e., for all i, j, k distinct,

aijajk = 0, aik = −ajkaij .

Let ∗ be the transpose map in G. Clearly, ∗ is an E-linear antiautomorphism
of G such that −∗ induces an E-linear Lie automorphism of [G,G]. Then
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β = − ∗ α is a γ-semilinear Lie isomorphism of [G,G] onto [H, H]. From
the definition of β, it is straightforward to verify that the unique element
bij ∈ [H, H], b2

ij = 0 such that eij
β = bij , i 6= j, is bij = −aji. Furthermore,

for i, j, k distinct, we see from

bijbjk = (−aji)(−akj) = ajiakj = −aki = bik

that all bij , i 6= j, are good (relative to β). By the first part of the proof we
then know that there is an isomorphism χ : G → H such that xχ = xβ = −x∗α

for all x ∈ [G,G]. Then σ = − ∗ χ, being the negative of the antiisomorphism
∗χ, is the required map, and the proof of Theorem 6.1 is now complete.

Theorem 6.2. Let A and B be *-closed *-prime algebras of type 2 over
respective algebraically closed fields E and F, let C and D be the respective ex-
tended centroids of A and B, and let K and L be the respective skew elements
of A and B. Assume that A is PI and that A does not satisfy S4 (if char. 6= 3)
or S6 (if char. = 3). We set [K, K] = [K, K]/[K, K] ∩ C, [L,L] = [L,L] ∩D,
and suppose there is a γ-semilinear Lie isomorphism α : [K, K] → [L, L],
where γ : E → F is an isomorphism. Then there exists a γ-semilinear iso-
morphism ψ : A → B such that for all x ∈ [K,K], xψ = y + ρ, y ∈ [L, L],
y = xα, ρ ∈ [L,L] ∩D.

Proof. From the given conditions we see that E = C∗, F = D∗, and B is
also PI. We have A = G⊕G∗, B = H ⊕H∗, with G = Mn(E), H = Mm(F ).
Clearly, K = {x − x∗|x ∈ G} and L = {y − y∗|y ∈ H}. The composite
δ : [G,G] → [H, H] given by

x
ν7−→ x− x∗ α7−→ y − y∗ ω−17−→ y(58)

is a γ-semilinear Lie isomorphism. By Theorem 6.1, n = m and there exists
a γ-semilinear map σ : G → H such that xσ = xδ for all x ∈ [G,G], where
either (a) σ is an isomorphism or (b) σ = −θ, θ an antiisomorphism. We
sketch the remainder of the proof, following almost verbatim the relevant
part of the proof of Theorem 5.1. In case (a), we define ψ : A → B via
(x+u∗)ψ = xσ +(uσ)∗, x, u ∈ G. In case (b), we define an antiautomorphism
χ : A → B via (x + u∗)χ = xθ + (uθ)∗, x, u ∈ G, and set ψ = ∗χ. In either
case ψ is an isomorphism such that xψ = xα for all x ∈ [K, K].

7. Proof of Theorem 1.1

Sections 5 and 6 were devoted to the proof of Theorem 1.1 in the special
situation where R and S were their own super *-closures (Theorem 5.2 in the
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non-PI case and Theorem 6.2 in the PI case). In this section, we complete the
proof of Theorem 1.1. We refer the reader to its statement in Section 1.

Proof of Theorem 1.1. Let α : [K,K] → [L,L] be the given Lie isomor-
phism. We designate the super *-closures of R and S by A = RC∗ ⊗C∗ E and
B = SD∗⊗D∗F respectively, noting that the respective skew elements of A and
B are M = KC∗ ⊗E and N = LD∗ ⊗ F . By Lemma 2.4, α may be extended
to a γ-semilinear Lie isomorphism (again denoted by) α : [M, M ] → [N, N ]
given by

∑
xici ⊗ λi 7−→

∑
yic

γ
i ⊗ λγ

i ,(59)

where xi ∈ [K,K], ci ∈ C∗, yi ∈ [L,L], yi = xi
α, and γ : E → F is an

extension of γ : C∗ → D∗. We note that the bars in (59) refer to the moduli
[M,M ]∩ (C⊗E) and [N, N ]∩ (D⊗F ). By Theorems 5.2 and 6.2, there exists
a ring monomorphism ψ : 〈[M,M ]〉 → 〈[N, N ]〉CB + CB such that

(
∑

xici ⊗ λi)ψ =
∑

yic
γ
i ⊗ λγ

i + µ,

where xi ∈ [K, K], ci ∈ C∗, yi ∈ [L,L], yi = xi
α, and µ ∈ CB ∩ N . In

particular, for x ∈ [K, K] we have

xψ = y + ρx,y,(60)

where y ∈ [L,L], y = xα, ρx,y ∈ N ∩ CB. From (60), it is easy to see
that [[K,K], [K, K]]ψ = [[L,L], [L,L]] and therefore ψ : 〈[[K,K], [K, K]]〉 →
〈[[L,L], [L,L]]〉 is an isomorphism. By [10, Theorem 3.4], 〈[[K, K], [K,K]]〉
and 〈[[L,L], [L, L]]〉 contain nonzero *-ideals I and J of R and S respectively.
Clearly, Iψ ⊇ JIψJ , thus proving the last part of Theorem 1.1.

We now return to (60) with the aim of showing that ρx,y ∈ LD∗ ∩ D.
We begin by choosing a D∗-basis {µi} for F . Since N =

∑
i LD∗ ⊗ µi and

CB =
∑

i D ⊗ µi, and since ρx,y ∈ N ∩ CB, we may write

ρx,y =
∑

i

di ⊗ µi, di ∈ LD∗ ∩D.(61)

Suppose that we can also write

xψ = y0 + ρs,y0 ,(62)

where

ρx,y0 =
∑

i

d
′
i ⊗ µi, d

′
i ∈ LD∗ ∩D.(63)
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Since y = xα = y0, we see that y = y0 + δ, where δ ∈ [L,L] ∩D. Subtraction
of (62) from (60) yields

ρx,y + δ = ρx,y0(64)

and (since δ really means δ ⊗ 1) we conclude, comparing (61) and (63), that
∑

i6=1

di ⊗ µi =
∑

i 6=1

d′i ⊗ µi,

whence di = d
′
i for i 6= 1. Thus xτ =

∑
i 6=1 di⊗µi is independent of the choice

of y in (61) and so we may write for all x ∈ [K,K],

xψ = xθ + xτ ,(65)

where xθ = y + d, y ∈ [L,L], y = xα, d ∈ LD∗ ∩ D. We have already
noted that ψ maps 〈[[K, K], [K,K]]〉 onto 〈[[L,L], [L,L]]〉 ⊆ S ⊗ 1 and that
〈[[K,K], [K, K]]〉 contains a nonzero *-ideal I. Let x ∈ [K,K] and let r ∈ I,
noting that both rψ and (xr)ψ lie in S ⊗ 1 and that xθ ∈ D ⊗ 1. Therefore,
from (xr)ψ = xψrψ = xθrψ + xτrψ, we conclude that xτIψ ⊆ (SD + D) ⊗ 1.
On the other hand, since xτ =

∑
i6=1 di⊗µi and rψ ∈ S⊗1, we see that xτrψ ∈∑

i6=1(SD+D)⊗µi. As a result we have xτIψ = 0. But (as we have previously
noted), letting J0 be a nonzero *-ideal of S contained in 〈[[L,L], [L, L]]〉, we
know that J = J0I

ψJ0 is a nonzero *-ideal of S contained in Iψ. Hence
xτJ = 0, which forces xτ = 0. Thus we may rewrite (65) as

xψ = y + ρ, x ∈ [K, K],

where y ∈ [L,L], y = xα, ρ ∈ LD∗ ∩D. This completes the proof of Theorem
1.1.

8. The Pierce Decomposition

In this section, we shall discuss how Lie isomorphisms behave relative to a
Pierce decomposition in a rather special situation. The results we obtain will
prove useful when we analyze the “mixed” case in Section 9, i.e., when R has
an involution of the first kind and S has an involution of the second kind.

Let G be a simple GPI ring whose centroid is an algebraically closed field
E of char. 6= 2 (thus G is a dense ring of linear transformations of finite rank
of a vector space V over E). Furthermore, we assume G has an involution
∗ of the first kind, with (V : E) ≥ 9 (respectively (V : E) ≥ 6) if ∗ is of
transpose type (respectively, of symplectic type) (see [3, p. 157]). In case ∗ is
of transpose type, we may pick orthogonal symmetric idempotents e1, e2 ∈ G



Lie Isomorphisms in *-Prime GPI Rings with Involution 245

(with e3 formally defined to be 1− e1 − e2) such that rank ei ≥ 3, i = 1, 2, 3.
In case ∗ is of symplectic type, e1, e2, e3 are similarly chosen but with rank
ei ≥ 2, i = 1, 2, 3. In either case we may write G in its Pierce decompostion
relative to e1, e2, e3:

G = ⊕
3∑

i,j=1

Gij , Gij = eiGej (Gi = Gii).

We let M denote the skew elements of G, noting in our situation that it is
well-known that M = [M,M ]. For i = 1, 2, 3, we set Mi = M ∩Gi, also noting
that Mi = [Mi, Mi]. For i 6= j, we set Mij = {xij − xij |xij ∈ Gij , xji = x∗ij}.
Clearly then

M = M1 ⊕M2 ⊕M3 ⊕M12 ⊕M13 ⊕M23.(66)

It is well-known that M, M1,M2,M3 are each simple Lie algebras over F [4,
Theorem 2.15] and, using this fact, it is easy to prove that

Mij = [Mij ,Mj ] = [Mi, [Mij ,Mj ]], i 6= j.(67)

Let H be a simple GPI ring whose centroid is an algebraically closed field
F of char. 6= 2 such that [H,H]∩F = 0. By [4, Theorem 1.12], we know that
[H,H] is a simple Lie algebra over F .

We now suppose there is an isomorphism γ : E → F and that we have a
γ-semilinear Lie isomorphism α : M → [H, H]. For i = 1, 2, 3, we set Ni =
Mα

i , and for i 6= j, we set Nij = Mα
ij . Applying α to (66), we obtain the

decomposition

[H, H] = N1 ⊕N2 ⊕N3 ⊕N12 ⊕N13 ⊕N23(68)

and applying α to Mi = [Mi,Mi] and to (67), we obtain

Ni = [Ni, Ni], Nij = [Nij , Nj ] = [Ni, [Nij , Nj ]], i 6= j.(69)

Also it is clear that [Ni, Nj ] = 0 for i 6= j. We come now to the main result
of this section.

Lemma 8.1. NiNj = 0 for i 6= j.

Proof. We may assume i = 1, j = 2. Choose mi 6= 0 ∈ Mi, i = 1, 2, 3, and
set a = mα

1 , b = mα
2 , c = mα

3 , noting that 1, a, b, c are F -independent. For
all x ∈ M , we see that

[[[x,m1],m2],m3] = 0(70)
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and, applying α to (70) and setting y = xα, we obtain

[[[y, a], b], c] = 0

for all y ∈ [H, H]. By Lemma 3.2, there exists v ∈ [H, H] such that va 6∈ [H, H]
and by Lemma 3.1 we know that H = [H, H] + Fva. Since

[[[va, a], b], c] = [[[v, a], b], c]a = 0,

we then conclude that

[[[y, a], b], c] = 0(71)

for all y ∈ H. As is well known, (71) translates to the following tensor product
relation

1⊗ abc− a⊗ bc− b⊗ ac− c⊗ ab + ab⊗ c + ac⊗ b + bc⊗ a− abc⊗ 1 = 0.

By Lemma 3.3, we see in particular that

ab = β + δa + λb + µc, β, δ, λ, µ ∈ F.(72)

We pick x ∈ M3 such that [m3, x] 6= 0 and, setting y = xα and applying α,
we see that [c, y] 6= 0. We commute y with (72) to obtain 0 = µ[c, y], whence
µ = 0 and (72) becomes

ab = β + δa + λb.(73)

Now pick y ∈ N2 and commute y with (73) to obtain

(a− λ)[b, y] = 0.(74)

Next we pick w ∈ N1 and commute w with (74) to obtain

[a,w][b, y] = 0.

We have thus proved that [N1, N1][N2, N2] = 0, but, since Ni = [Ni, Ni], we
finally have shown that N1N2 = 0

Corollary 8.2. NiNjk = 0 for i, j, k distinct.

Proof. We know from (69) that Njk = [Njk, Nk]. Now pick mi ∈ Mi, mk ∈
Mk, and xjk ∈ Gjk. Repeated use of Lemma 8.1 then shows that

mα
i [(xjk − xkj)α,mα

k ] = mα
i (xjk − xkj)αmα

k

= [mα
i , (xjk − xkj)α]mα

k

= [mi, xjk − xkj ]αmα
k

= 0.
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9. Proof of Theorem 1.3

This entire section is devoted to the proof of Theorem 1.3. We shall not
repeat its statement here but simply refer the reader to Section 1. We are
therefore assuming that R is a *-prime ring of type 1 with skew elements K,
that S is a *-prime ring of type 2 with skew elements L, and that one of R
and S is GPI. By Theorem 4.1, both R and S are GPI. We are given a Lie
isomorphism

α : [K,K] → [L, L],

where [K,K] and [L,L] are each assumed to be nonzero (and hence are prime
Lie rings). Our aim in this section is to show that such a Lie isomorphism can-
not exist except in a couple of low-dimensional situations. Let A = RC∗⊗C∗E
and B = SD∗ ⊗D∗ F be the respective super *-closures of R and S. Then
P = KC∗ ⊗C∗ E and Q = LD∗ ⊗D∗ F are the respective skew elements of A
and B. We know by Theorem 2.4 that α may be extended to a γ-semilinear
Lie isomorphism (again denoted by α)

α : [P, P ] → [Q,Q],

where γ : E → F is a suitable isomorphism. Let G be the socle of A and let
H ⊕H∗ be the *-socle of B. Let M denote the skew elements of G (we note
here that M = [M, M ]), and let N = {y−y∗|y ∈ H} denote the skew elements
of H ⊕ H∗. It is straightforward to show that M is the unique minimal Lie
ideal of P and that [N, N ] is the unique minimal Lie ideal of [Q,Q]. Therefore,
α must induce a Lie isomorphism

α : M → [N, N ],

where we shall write

xα = y − y∗, x ∈ M, y ∈ [H, H].(75)

Furthermore, there is a natural Lie isomorphism

ν : [N, N ] → [H, H]

given by
y − y∗ 7−→ y, y ∈ [H, H].

Then the composite β = αν is a γ-semilinear Lie isomorphism

β : M → [H, H]

given by
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xβ = y, x ∈ M,(76)

where xα = y − y∗.
We first dispose of the situation in which [H, H]∩F 6= 0. As we have seen

earlier, this forces H to be PI (and hence H = Mk(F )), char.F = p ≥ 3, p
divides k, and [H, H] ⊇ F1. Since H is PI, we know that G must be PI (and
hence G = Mn(E)). The dimension of [H, H] over F is clearly k2 − 2. The
involution in G is either of transpose type or of symplectic type.

If * is of transpose type in G, then dimM = (n2 − n)/2. Equating dimM
with dim [H, H], we have (n2 − n)/2 = k2 − 2, which results in the quadratic
equation in n:

n2 − n− 2(k − 2) = 0.(77)

For n to be an integral solution of (77), the discriminant 1 + 8(k2 − 2) equals
q2 for some integer q, whence 8k2 − 15 = q2.

If * is of symplectic type, n = 2m and dim P = 2m2 +m. For the equation

2m2 + m = k2 − 2

to have an integral solution for m, one is again led to 1 + 8(k2 − 2) = q2 for
some integer q whence as before

8k2 − 15 = q2.

But we now claim that the equation 8k2 − 15 = q2 has no integral solutions.
Indeed, if it did, there would also be a solution mod 9 of

y2 − 3 = −x2.

The squares mod 9 are 0, 1, 4, 7 and so the values of y2− 3 mod 9 are 1, 4, 6, 7.
However, the values of −x2 mod 9 are 0, 2, 5, 8, which leaves us with the desired
contradiction.

We may therefore assume for the remainder of this section that [H, H]∩F =
0, i.e., [H, H] = [H,H]. We note that (75) becomes

xα = y − y∗, x ∈ P, y ∈ [H, H],(78)

and that (76) becomes

xβ = y, x ∈ M, y ∈ [H, H], β = αν.(79)

We first consider the situation when G (and hence H) is PI and the dimension
(G : E) (and hence (H : F )) is low. We know that G = Mn(E) and H =
Mk(F ). Clearly, ([H, H] : F ) = k2 − 1, in which case the values of ([H, H] :
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F ) = k2−1 are 3, 8, 15, 24 for k = 2, 3, 4, 5 respectively. If * in G is of transpose
type, then (P : E) = (n2−n)/2 and the values of (M : E) are 3, 6, 10, 15, 21, 28
for n = 3, 4, 5, 6, 7, 8 respectively. If * in G is of symplectic type then n = 2m,
(P : E) = 2m2 + m, and so the values of (P : E) are 3, 10 for m = 1, 2
respectively. Equating (P : E) and ([H, H] : F ), we find that only two cases
occur in which P and [H, H] could possibly be Lie isomorphic:

1. m = 1, n = 3, k = 2,

2. n = 6, k = 4.

These possibilites do in fact occur [7, p. 142].
In view of the preceding discussion we may assume without loss of gener-

ality that (G : E) ≥ 81 if * is of transpose type and that (G : E) ≥ 36 if * is
of symplectic type.

We now continue with our analysis of the Lie isomorphism β : M → [H,H]
under these dimension restrictions. The conditions on M and [H, H] are now
precisely those assumed in Section 8 (with β now playing the role of α). With
reference to the terminology of Section 8, we have Mi = M ∩ Gi, Mij =
{xij − xji|xij ∈ Gij} for i 6= j, i, j = 1, 2, 3, Ni = Mβ

i , Nij = Mβ
ij , i 6= j.

By Lemma 8.1, we have NiNj = 0 for i 6= j, and by Corollary 8.2, we have
NiNjk = 0 for i, j, k distinct.

Our immediate aim now is to construct an isomorphim of G into H and
then to show that this leads to a contradiction. In preparation for this, we
need the following two lemmas (essentially [9, Lemmas 7.2 and 7.3]).

Lemma 9.1. Let x1, x2, . . . xn ∈ M1, mj ∈ Mj , x1j ∈ G1j , j 6= 1. Then

xβ
1xβ

2 · · · (x1j − xj1)βmβ
j = (x1x2 · · ·xnx1j + (−1)n+1xj1xn · · ·x1)βmβ

j .

Proof. The proof is by induction on n. For n = 1,

xβ
1 (x1j − xj1)βmβ

j = [xβ
1 , (x1j − xj1)β] =

[x1, x1j − xj1]βmβ
j = (x1x1j + xj1x1)βmβ

j = (x1x1j + (−1)2xj1x1)βmβ
j .

Assuming the lemma is true for n, we see that

xβ
1xβ

2 · · · (x1j − xj1)βmβ
j

= [xβ
1 , (x2 · · ·xn+1x1j + (−1)2xj1xn+1 · · ·x2)β]mj

= (x1x2 · · ·xn+1x1j + (−1)n+2xj1xn+1 · · ·x1)βmβ
j .
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Lemma 9.2. If
∑

x1x2 · · ·xn = 0, xI ∈ Mi, then b =
∑

xβ
1xβ

2 · · ·xβ
n = 0.

Proof. We first note that 0 = 0∗ =
∑

(−1)nxn · · ·x2x1 = 0. In view of
(8.3), (8.4) and Corollary 8.2, it is clear that the Lie subring generated by
N12 ∪N13 ∪N23 is a Lie ideal of [H, H] and hence equal to [H,H]. Therefore,
in order to show that b = 0, it suffices to show that bNij = 0, i 6= j. By
Corollary 8.2, without loss of generality we need only show that bN12 = 0.
Furthermore, since N12 = [N12, N2] by (8.4), we see in light of Corollary 8.2
that it suffices to show that b(x12 − x21)βmβ

2 = 0, x12 ∈ G12, m2 ∈ M2. But
by Lemma 9.1,

b(x12 − x21)βmβ
2 =

∑
(x1x2 · · ·xnx12 + (−1)n+1x21xn · · ·x1)βmβ

2

= {(
∑

x1x2 · · ·xn)x12 − x21(
∑

(−1)nxn · · ·x1)}βmβ
2 = 0

and the proof is complete.

Lemma 9.2. enables us to define a ring hommorphism σ of G1 = 〈M1〉
onto N1 and, since G1 is simple, σ must in fact be an isomorphism.

We now return to the Lie isomorphism α, recalling in particular that for
all x ∈ M1,

xα = y − y∗, y = xβ ∈ N1.

We have just seen that 〈N1〉 = Gσ is a simple ring contained in H. We denote
by W the skew elements of the *-simple ring 〈N1〉 ⊕ 〈N1〉∗.

Lemma 9.3. Mα
1 = W .

Proof. Clearly, Mα
1 ⊆ W. Now let w ∈ W . On the one hand,

w =
∑

(y1y2 · · · yn − y∗n · · · y∗1), yi ∈ N1.(80)

On the other hand, we see from (68) that

w = z1 − z∗1 + z2 − z∗2 + z3 − z∗3 + z12 − z∗12 + z13 − z∗13 + z23 − z∗23,

where zi ∈ Ni and zij ∈ Nij . It follows that

∑
y1y2 · · · yn = z1 + z2 + z3 + z12 + z23,

which we rewrite as
∑

y1y2 · · · yn = z1 + mβ
2 + mβ

3 + xβ
12 + xβ

13 + xβ
23.(81)
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Let u ∈ M2 and commute (81) with uβ. This leaves us with

0 = 0 = [m2, u]β + [x12, u]β = [x23, u]β,

whence [m2, u] = [x12, u] = [x23, u]β = 0 for all u ∈ M2. Since 〈M1〉 = G1, it
follows easily that m2 = x12 = x23 = 0. Similarly, by commuting (81) with
vβ, v ∈ M3, we find that m3 = x13 = 0. Therefore, w = z1− z∗1 ∈ Mα

1 and the
proof is complete.

We now define a map ψ : G1 → 〈N1 ⊕N∗
1 〉 according to the rule

∑
x1x2 · · ·xn 7−→

∑
(y1 − y∗1) · · · (yn − y∗n),

where x ∈ M1, xα
i = yi − y∗i . We remark that yi = xβ

i = xσ
i , where σ is the

isomorphism of G1 onto 〈N1〉 previously defined. To show ψ is well-defined,
suppose

∑
x1x2 · · ·xn = 0.(82)

Applying σ to (82), we see that
∑

y1y2 · · · yn = 0. Applying * to (82), we have
∑

(−1)nxn · · ·x2x1 = 0.(83)

Applying Lemma 9.1 to (83), we have
∑

(−1)nyn · · · y2y1 = 0,

which becomes, after an application of ∗,
∑

(−1)ny∗1y
∗
2 · · · y∗n = 0.

We conclude that
∑

(y1 − y∗1) · · · (yn − y∗n) = 0 and therefore ψ is a well-
defined ring homomorphism, which extends the restriction of α to M1. It is
clear that Gψ

1 = 〈M1〉ψ = 〈Mα〉. But by Lemma 9.3, Mα
1 = W, the skew

elements of 〈N1〉 ⊕ 〈N1〉∗, and since 〈N1〉 ⊕ 〈N1〉∗ is *-simple, we know that
〈Mα

1 〉 = 〈N1〉⊕〈N1〉∗. Hence ψ is an isomorphism of G onto 〈N1〉⊕〈N1〉∗. This
is an obvious contradiction, and we can only conclude that in this situation,
where [H, H] ∩ F = 0, M cannot be Lie isomorphic to [H, H].

The proof of Theorem 1.3 is now complete.
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