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SOME FRACTAL PROPERTIES OF BROWNIAN PATHS
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Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. In this paper, we survey some recent results concerning the
fractal structure of Brownian sample paths. The following aspects are
discussed: (1) average densities of Brownian trails and intersections;
(2) dimension spectra of Brownian zeroes; (3) multifractal properties
of Brownian substitutions.

1. Introduction

Brownian motion is referred to as a highly irregular motion proceeded
by a small particle in some medium, which was first observed by the British
botanist Robert Brown. The mathematical formulation is due to Norbert
Wiener, which we describe as follows. Let Bd = {Bd(t)} be a stochastic
process defined on some probability space (Ω, P ) and taking values in Rd. We
say that Bd is the standard d-dimensinal Brownian motion if it satisfies the
following:

(i) the sample path t → Bd(t, ω), ω ∈ Ω, is continuous;
(ii) the increments Bd(tj) − Bd(tj−1), 1 ≤ j ≤ k, t0 = 0, are stationary

and (stochastically) independent for all k ≥ 2;
(iii) the distribution of (Bd(t)−Bd(0))/

√
t is standard normal in Rd;

(iv) Bd(0) = 0.
The Browian motion process (also named Wiener process) described above is
(stochastically) self-similar of index 1/2 by which it means that, for any c > 0,
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the time-scaled process {Bd(ct)} and the space-scaled process {√cBd(t)} are
equivalent in the sense of finite-dimensionally distributional equivalence. This
self-similar property is central in our study, from which various dimension
formulae concerning Brownain paths can be figured out.

Brownian sample paths exhibit highly erratic patterns, despite the continu-
ity; we can appreciate such pictures from many books on stochastic processes.
Thus, this should be a rich source of fractal analysis/geometry and be one pre-
vailing topic in nonlinearity (even though the transition density of the process
is just heat kernel). We are concerned with the following fractals:

[Bd] = {x : x = Bd(t) some t},
Z = {t : B1(t) = 0},
Id = [Bd] ∩ [B′

d].

In the above, B′
d denotes an independent copy of Bd. Thus, the three sets

are simply the trail (range), the zero set, and the set of intersections of Brow-
nian paths. Note that the zero set is meaningful only for the 1-dimensinal
case, while the trail and the intersection are meaningful only for the multi-
dimensional case. These are due to the fact that the 1-dimensional Brownian
motion is point-recurrent while it is not so for the multi-dimensional case.
These sets are random, since they depend on a particular sample path real-
ization Bd(t, ω), and so we must interpret any statement about these sets and
their associated measures (random, too) as being true “with probability one”.
Let dim K denote the Hausdorff dimension of a Borel K. The following results
are well-known:

d = 1, dim Z = 1/2,
d ≥ 2, dim [Bd] = 2,
d = 2, 3, dim Id = d− 2(d− 2).

We refer to Taylor [16] for a convenient reference on the theory of random
fractals arising from the sample paths of stochastic processes, in which the
detailed definitions and properties of Hausdorff and other dimension indices
are described.

Nowadays the fractal analysis of measures rather than sets has been fo-
cused. In our concern, there are natural measures associated with the above
fractals Z, [Bd] and Id; they are respectively Brownian local time measure,
occupation measure and intersection measure. These measures are regarded
as fractal measures, since each of them is singularly continuous(non-atomic
and supported by a set of Lebesgue measure zero) and exhibits a certain self-
similarity which is inherited from the self-similarity of the process. The main
difference (and difficulty) from pure analysis is that the self-similarity is now
always in the stochastical sense rather than the strict (analytic) sense. There-
fore, even though the assertions of the theorems are formulated in almost sure
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statements, we cannot proceed the reasoning just in an analytic (pathwise)
way; instead we have to deliberate our arguments by combining both analysis
and probability.

The rest of this paper is divided into three sections; each one is devoted
to one aspect of Brownian fractal structures. The paper is concise; we merely
state the main results together with some explanations on the main idea behind
the proofs.

2. Average Densities

Let µ be a locally finite regular Borel measure in Rd, which is fractal in
the sense described in the previous section. Let φ(r) be a suitable gauge
function. Bedford-Fisher [1] introduced the concept of average density of µ as
an analogue of Lebesgue density. The latter one fails to exist for many µ, in
view of a famous result of J. M. Marstrand. The average density of order two
and order three of µ at x, w.r.t. φ, are defined respectively as

AD2(µ, x) = lim
ε↓0

1
log(1/ε)

∫ 1

ε

µ(B(x, r))
φ(r)

dr

r
,

AD3(µ, x) = lim
ε↓0

1
log log(1/ε)

∫ 1/e

ε

µ(B(x, r))
φ(r)

dr

r log(1/r)
,

where B(x, r) denotes the closed ball with center x and radius r. Bedford-
Fisher introduced and discussed the above definition via the classical summa-
tion techniques of Hardy and Riesz. They also discussed some specific cases
of the measures associated with the middle-third Cantor set, cookie-cutter
Cantor set, and Brownian zeroes. Falconer-Xiao [3] adapted the arguments to
prove, among other things, the AD2 for the occupation measure of Bd, d ≥ 3,
which is the measure µ = µ(ω) defined by

µ(A) = Leb {t : Bd(t) ∈ A}, A ⊂ Rd;

note that µ is supported by [Bd].

Theorem 2.1. For Brownian occupation measure µ in Rd, d ≥ 3, the
AD2 of µ w.r.t. φ(r) = r2 exists at µ − a.e. x, and its value is a constant
(depending only on the dimension d) multiple of the mean sojourn time of the
path in the unit ball.

Note that the value in the above theorem is non-random (macroscopic, in
physical terminology) while the measure is random (microscopic). We also
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remark that the sojourn time in the above theorem is infinite for the pla-
nar Brownian motion, since B2 is neighborhood-recurrent. Then Mörters [7]
proved that the AD2 of B2 does not exist while the AD3 does exist.

Theorem 2.2. For planar Brownian occupation measure, the AD3 of µ
w.r.t. φ(r) = r2 log(1/r) exists at µ−a.e. x, and its value is 2. Moreover, the
AD2 of µ now fails to exist.

Shieh [11] considered the average density problem of the intersection of
two spatial Brownian motions and proved a partial result. The problem is
completely solved, both for the planar and the spatial cases, in Mörters-Shieh
[8]. Let Bd, B

′
d be two independent Brownian motions in Rd, d = 2, 3. Then

the intersection measure is a canonical (random) Borel measure supported by
Id = [Bd] ∩ [B′

d] which is expressed heuristically as

µ(A) =
∫

A

∫

t

∫

t′
δx(Bd(t))δx(B′

d(t
′))dtdt′dx.

We remark that the rigorous definition of the above measure is somewhat
involved; see [8] for details (note that we have used a shorter term here rather
than a longer one in [8] for the terminology). The next theorem is proved in
[8].

Theorem 2.3. Let µ be the intetsection measure mentioned above. For
the spatial case the AD2 of µ w.r.t. φ(r) = r exists at µ− a.e. x, and for the
planar case the AD3 of µ w.r.t. φ(r) = r2 log2(1/r) esists at µ− a.e. x. The
value in both cases is 4/π. Moreover, the AD2 in the planar case again fails
to exist.

The proofs of these results break into two parts: to prove the existence
of the density and evaluate its value for a typical point, say x = 0, and then
prove the results for generic x. To prove the reduction from the generic to
the typical, in the case of Theorems 2.1 and 2.2 we can proceed with some
standard application of the Markov property. However, it is not so easy for
the intersection case in Theorem 2.3, since the t, t′ for which Bd(t) = B′

d(t
′)

cannot be realised as stopping times. This difficulty is overcome by either
using a device of Le Gall on “Brownian loops” or by a more analytic approach
based on Palm distributions. To prove the order two case for x = 0, we apply
Birkoff’s ergodic theorem to some suitable scaling flow defined on the space
of continuous functions, which is naturally associated with Brownian motions.
However this scaling approach does not work for the order three case, since
the gauge function φ now has a slow varying term involved; the difficulty is
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overcome by using a certain crossing-number argument for the path oscillating
between the annulus with suitablly chosen small radii. In the planar case we
can consider the multiple intersections rather than just the double intersections
shown in the above theorem.

3. Dimension Spectra

Study on the dimension spectra associated with various fractal measures
is now the main concern in fractal analysis/geometry. We refer to Falconer
[2, Chapter 11] for a convenient reference of such multifractal analysis, in
which some physical background and some detailed notions and properties are
described. In particular, the upper local dimension, the lower local dimension
and the local dimension for a locally finite Borel measure µ at a point x are
defined. We denote them by d(µ, x), d(µ, x), and d(µ, x), respectively. The
definitions are

d(µ, x) = lim supr↓0
log µ(B(x, r))

log r
;

d(µ, x) = lim infr↓0
log µ(B(x, r))

log r
;

d(µ, x) = d(µ, x) = d(µ, x).

The above definition is a mathematical view of the physical concern of
non-uniform local mass concentrations which appears in the case of oil de-
posits on a specific region. By (fine) multifractal analysis of µ, we seek for an
f(α) curve describing the Hausdorff dimension of the “level set” d(µ, ·) = α
(or that for d, d), where α is in some range [αmin, αmax]. For Brownian occu-
pation measure, its dimension spectrum, that is f(α) curve, is trivial, in view
of a uniform dimension theorem of Perkins–Taylor. However, recent works
of Dembo-Peres-Rosen-Zeitouni show that it does have non-trivial spectrum
for “thick” occupations. For Brownian local time, the situation is completely
different. We recall that local time is a canonical measure supported by the
Brownian zero set Z (the 1-dimensional case only) which is expressed heuris-
tically as

µ(A) =
∫

A
δ0(B(t))dt, A ⊂ R.

Hu-Taylor [5] proved that there exists a nontrivial spectrum for the upper
d(µ), yet the lower d(µ) has only trivial spectrum. Then Shieh-Taylor [13]
continued the study to show that, in the latter case, we do have a nontrivial
spectrum in which logarithmic order of magnitude plays a crucial role. Since
Brownian local time can be viewed as the occupation measure for a 1/2-stable
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subordinator, they proved the results in terms of any stable subordinator. We
state their results only for the Brownian local time.

Theorem 3.1. Let µ be the Brownian local time measure. For α ≥ 1/2,
put

Aα = {t : d(µ, t) = α}.
Then

dim Aα = 1/2α− 1/2, 1/2 ≤ α ≤ 1,

while Aα = ∅ if α is outside [1/2, 1]. Moreover, the spectrum for the d(µ) is
trivial; there is only one value 1/2 happened at α = 1/2.

Theorem 3.2. Let µ be the Brownian local time measure. For α ≥ 0, put

Bα =

{
t : lim sup

r↓0
µ(t− r, t + r)
c
√

r log(1/r)
= α

}
,

where the specified constant c = 2. Then

dim Bα = (1/2)(1− α2), 0 ≤ α ≤ 1,

while Bα = ∅ if α is outside [0, 1].

The proofs of these results again break into two parts. The easier part is
the upper bound estimate for the dimension, in which we apply some Markov
property to a certain particular cover of the concerned set. The difficult part is
the lower bound estimate; we need to construct a certain Cantor-like random
set contained in Aα, Bα on which there is some measure ν supported. More-
over, we need to estimate the energy integral of this ν with respect to some
potential kernel. It was pointed out that there is a computational error in the
lower bound proof; the corrections and addenda are taken up in Shieh-Taylor
[14]. Furthermore, it is studied in Shieh-Taylor [15] that the same scenario
can hold for the branching measure on a Galton-Watson tree.

We should remark that Theorems 3.1 and 3.2 are very different from “stan-
dard” theory of multifractal analysis. The latter one is mainly based on a cer-
tain thermodynamical formalism. Whenever the formalism is indeed true, as
it is the case of some self-similar measure associated with an interated function
system, there is no distinction for the upper and the lower local dimensions,
that is the assertion is true for d(µ, x), and there is usually no logarithmic
factor involved. Thus, it seems that Theorems 3.1 and 3.2 are specific to the
effect of random fluctuations.
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4. Brownian Multifractals

Brownian paths have rich fractal structures, as we have seen from the pre-
vious two sections. However, the path is usually qualified as a monofractal, in
view that the Hölder exponent of the path is everywhere 1/2 (the variations
of the regularity are only of a logarithmic order of magnitude). Thus, it is not
perfect to use Brownian path as a curve fitting to those data exhibiting the
intermittence. The latter one is very important for the study of, say, turbu-
lences. Mandelbrot introduced the concept of Brownian multifractals in his
works on finance theory, and a proposed mathematical theory is proceeded
recently by Riedi [10]. Let B(t) be a real-valued Brownian motion (or a frac-
tional Brownian motion, if one likes to count the long range dependence), and
let M(t) be an increasing process (that is, a process which is pathwise increas-
ing in t). Assume that B and M are totally independent (quite rough from the
viewpoint of practical applications). The composite t → B(M(t)) is termed
Brownian motion in multifractal time. The path of the new process indeed
has some multifractal (=imtermittent) structure and some dimension spec-
trum can be computed. In case that M is a subordinator, then the resulting
process is a Lévy process. This case is also known in probability as Brown-
ian (time) substitution. We recall that a Lévy process is a stochastic process
(real-valued or vector-valued) with stationary and independent increments,
and that a subordinator is a real-valued Lévy process with increasing paths.
Jaffard [6] proved that the paths of “most” Lévy processes are multifractals
and he also determined their spectrum of Hölder exponents.

We specify the general works of Riedi and Jaffard as follows. Let Bd(t) =
(B1(t), · · · , Bd(t)) be a d-dimensional Brownian motion and let θj(t), 1 ≤ j ≤
d, be d stable subordinators with stability index βj , 0 < βj < 1, that is, the
process θj(t) is such that it is βj-stable distributed for all t. Then we have the
composed process X(t) = (B1(θ1(t)), · · · , Bd(θd(t)). It is Lévy whenever θj ,
1 ≤ j ≤ d, are totally independent on Bd. We have the following three cases
to consider.

1◦ That βj = β for all j, and (θ1, · · · , θd) is a d-dimensional β-stable
process. Then X is a d-dimensional 2β-stable Lévy process (note that β is
necessarily < 1).

2◦ That θj among themselves are independent. Then X is of indepen-
dent components. Such processes have been termed as processes with stable
components in Pruitt-Taylor [9].

3◦ That we go beyond the first two cases by only assuming that X is a
d-dimensional self-similar process with a vector ss index H = (H1, · · · ,Hd).
See Shieh [12] for the precise definition, where the term dilation-stable Lévy
process is used. Let γt be a diagonal transformation in Rd whose diagonal
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entries are tH1 , · · · , tHd . Then the stochastic structure of a dilation-stable
Lévy porcess is determined by the following theorem, which can be seen in
Hudson-Mason [4].

Theorem 4.1. The characteristic function of X(1) of the above dilation-
stable Lévy process X is determined by

E exp(i(z,X(1))) = exp
[ ∫ ∞

0

∫

S
(exp(i(z, γrx))−1−i(z, γrx)1D(γrx))

λ(dx)dr

r2

]
,

where λ(dx) is a finite Borel measure on S = {x : |x| = 1} and D = {x : |x| ≤
1}. Moreover, X is of independent components if and only if the mesaure λ(dx)
is concentrated on the coordinate axes.

Multi-dimensional stable Lévy processes are the non-Gaussian counterpart
of the Gaussian, that is Brownian, case and have been well studied. Processes
with stable components arise from the study of the collisions of two inde-
pendent stable processes and they are also good examples for showing some
significant gaps between the stable and the general Lévy processes. Dilation-
stable Lévy processes arise from the study of stochastic flows in which the
independent-components assumption is too strong for the purpose. Shieh [12]
proved a dimension formula for the multiple points of dilation-stable Lévy pro-
cesses; the work shows that for such processes we need to proceed with some
considerations more complicated than the Brownian and the stable cases.
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