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AN ALGORITHM FOR CALCULATING
BETTI NUMBERS OF MANAGEABLE MODULES

Shou-Te Chang

Abstract. In this paper we provide an algorithm for computing Betti
numbers and ranks of syzygy of manageable modules with respect to an
R-regular sequence of a Noetherian local ring R when certain conditions
are met. This method can be applied to many interesting cases and used
to verify Horrocks’ conjecture. The problem of calculating Betti numbers
is reduced to calculating ranks of certain matrices with a special form over
a field. Our approach is characteristic free.

1. Introduction

Throughout this paper the ring (R,m, k) is always a Noetherian local ring.
Write βRi (M), or βi(M) if R is not emphasized, for the ith Betti number

of the R-module M , and write rRi (M), or ri(M) if R is not emphasized, for
the rank of the ith syzygy of M . The Betti numbers of M may be defined
as the ranks of the free modules in a minimal free resolution; it follows easily
that βRi (M) can be simply calculated as dimk TorRi (M,k).

Let (R,m, k) be a regular local ring of dimension n and let M be a finite
length module over R. Horrocks’ question asks must βi(M), the ith Betti num-
ber of M , be at least

(n
i

)
, where i is an integer between 0 and n; these numbers

are achieved when M = k = R/m. In fact since βRi (M) = rRi (M) + rRi+1(M),
in [1] Buchsbaum and Eisenbud conjectured even more strongly that rRi (M)
is at least

(
n−1
i−1

)
. For a detailed account on the history, background and a

problem list please see the interesting and informative paper by Charalambous
and Evans [7].
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In the author’s previous papers [4, 5] we developed methods for calculating
βRi (M) and rRi (M) in various cases which confirms Horrocks’ question regard-
ingly. In [4] we dealt with modules of exponent two and in [5] we dealt with
modules of essentially monomial type. There we utilized the same method
of constructing (not minimal) free resolutions for modules with sufficiently
simple structure. If certain conditions are met these free resolutions can be
constructed with particular elegant form, and from there βi(M) and ri(M)
can be computed, and sometimes it is only a matter of pencil and paper (see
[4, 5] for some useful techniques). This method can be applied to a wider range
of modules. Furthermore it has the advantage of being characteristic free. We
will describe this method in general in §1 and we will give examples in §2.

§1

Throughout this paper we let our matrices act on the right so that the
cokernel of the map represented by a matrix is obtained by killing the row
space.

Lemma 1.1. Let (R,m, k) be a regular local ring of dimension n. Let
x1, . . . , xn be a minimal set of generators for m. Write x for the column
vector (x1, . . . , xn)tr. Let M be a finite length R-module and let ` be the length
of M . Then there exist column n-vectors rst for 1 ≤ s ≤ `− 1 and 2 ≤ t ≤ `
such that M is isomorphic to the cokernel of

x r12 r13 . . . r1`

x r23 . . . r2`
. . .

...
x

 .(1-1)

Proof. This lemma is trivial when ` = 1. In general find an element a in
M such that N = Ra ' k. Then by the induction hypothesis on the length of
M we may assume that the lemma holds for M/N as well. Now the lemma
follows from the following lemma.

Lemma 1.2 is very elementary but we include its proof here for reader’s
convenience.

Lemma 1.2. Let R be a ring (not necessarily regular local). Let M be
a finitely generated R-module and N be a submodule of M . Suppose M/N is
isomorphic to the cokernel of the matrix As′×s while N is isomorphic to the
cokernel of the matrix Bt′×t. Then there exists an s′ × t matrix C such that
M is isomorphic to the cokernel of

(
A C
0 B

)
.
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Proof. Find m1, . . . ,ms in M such that the sequence

Rs′ A→ Rs →M/N → 0,

where (a1, . . . , as) ∈ Rs is sent to
∑
j ajmj, is exact. Find as well n1, . . . , nt in

N such that the sequence

Rt′ B→ Rt → N → 0,

where (b1, . . . , bt) ∈ Rt is sent to
∑
k bknk, is exact. Let A = (aij). Since for

each i the sum
∑
j aijmj is in N , we can find cik ∈ R such that

∑
j aijmj +∑

k ciknk = 0. Let C = (cik). We claim that C is what we want.
Now map Rs+t to M by sending (aj, bk) j=1,...s

k=1,...,t
to
∑
j ajmj +

∑
k bknk. Ob-

viously the image of
(
A C
0 B

)
is a subset of the kernel of this map. If (aj, bk)j,k

is inside the kernel of this map, it suffices to check that it is also in the image
of
(
A C
0 B

)
. Since

∑
j ajmj = 0, we have (aj)j = αA for some α ∈ Rs′ . Let

αC = (ck)k. Then
∑
j ajmj +

∑
k bknk =

∑
k(−ck + bk)nk = 0. Thus we can

find β ∈ Rt′ such that −αC + (bk)k = (−ck + bk)k = βB. Note that

(α, β)
(
A C

0 B

)
= (αA,αC + βB) = (aj, bk)j,k.

Our claim is established.

We give a brief description of Koszul complexes; readers are referred to
[17] for further details. Let R be any ring. If x = x1, . . . , xn is any sequence of
elements of R, the Koszul complex K•(x; R) may be defined in the following
fashion. One may identify K1(x; R) with a free module G on n generators ui,
where the differential n maps ui to xi in K0(x; R) = R, and then the entire
complex may be identified with the exterior algebra ∧G, where the map d is
extended to ∧G in the unique way that makes it a derivation of degree −1 (so
that if v ∈ ∧iG and w ∈ ∧jG are homogeneous elements of ∧G of respective
degrees i and j, then d(u ∧ v) = (du) ∧ v + (−1)iu ∧ (dv)).

To be more specific, let Ti be the set of the i-element subsets t of { 1, . . . , n }.
Let 〈t〉 be the increasing sequence t1 < t2 < · · · < ti of elements of t. Write
u〈t〉 for ut1 ∧ · · · ∧ uti and if 1 ≤ j ≤ i we write 〈t〉 − j for this sequence with
its jth term omitted, a sequence of length i − 1. With these conventions we
have the explicit formula

di(u〈t〉) =
i∑

j=1

(−1)j−1xtju〈t〉−j.
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Write ut for u〈t〉 for short. Order Ti according to the lexicographical order of
〈t〉. Denote by An

i (x1, . . . , xn) the associated matrix of the differential map
from Ki(x; R) to Ki−1(x; R) with respect to these bases. For instance, we
have

A3
2(x1, x2, x3) =

 −x2 x1

−x3 x1

−x3 x2


In this fashion, it is easy to check that

An
i (x1, . . . , xn) =

(
−An−1

i−1 (x2, . . . , xn) x1I(n−1
i−1 )

0 An−1
i (x2, . . . , xn)

)
.

For the rest of the paper we will write x for the column n-vector (x1, . . . , xn)tr

and we will also write An
i (x) for the matrix An

i (x1, . . . , xn).
Let A be any commutative ring. Let a ∈ A and x,y ∈ An. The Koszul

matrices have the following nice properties:
An
i (ax) = aAn

i (x),
An
i (x + y) = An

i (x) + An
i (y),

An
i (x)An

i−1(x) = 0.
(1-2)

Now let’s come back to the original problem. Conversely, suppose M is
isomorphic to the cokernel of a matrix of the form in (1–1), where ` is not
necessarily the length of M . Sometimes the rjk’s can be carefully chosen so
that it satisfies the condition

AiAi−1 = 0 for 2 ≤ i ≤ n,(*)

where

Ai =


An
i (x) An

i (r12) An
i (r13) · · · An

i (r1`)
An
i (x) An

i (r23) · · · An
i (r2`)

. . .
...

An
i (x)

 .(1-3)

This condition may look scary, but thanks to Lemma 1.4 and the properties in
(1–2) it is often quite easy to check and holds in quite a few interesting cases,
for example, like the modules of exponent two or of essentially monomial
type. The following two lemmas can be used to ease the pain of checking the
condition (∗).

Lemma 1.3. Checking the condition (∗) is equivalent to checking∑
2≤r≤`−1
r 6=s,t

An
i (rsr)A

n
i−1(rrt) = 0
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for each s, t. Here we use the convention that rst = 0 for s > t.

Proof. We can think of the Ai’s as having block entries of the form An
i (x),

An
i (rst) or 0. When s 6= t, the (s, t)-th block entry of AiAi−1 is

An
i (x)An

i−1(rst) + An
i (rst)A

n
i−1(x) +

∑
2≤r≤`−1
r 6=s,t

An
i (rsr)A

n
i−1(rrt).

When s = t, the (s, t)-th block entry of AiAi−1 is

An
i (x)An

i−1(x) +
∑

2≤r≤`−1
r 6=s,t

An
i (rsr)A

n
i−1(rrt).

Now the assertion follows from the next lemma.

Lemma 1.4. Let X = X1, . . . , Xn and Y = Y1, . . . , Yn be two sets of
indeterminates. Then

An
i+1(X)An

i (Y) + An
i+1(Y)An

i (X) = 0.

In particular, when X and Y are specialized by elements in a given ring this
equation still holds.

Proof. See [5, Lemma 2.2].

Once the condition (∗) holds it makes

K• = (· · · → R(ni )` Ai→ R( n
i−1)` → · · ·)(1-4)

into a complex. It can be shown using Buchsbaum-Eisenbud’s acyclicity cri-
terion that K• is a free resolution for the module M when R is a regular local
ring and x1, . . . , xn form a minimal generating set for m. In fact we don’t need
such a strong condition, thanks to Proposition 1.5.

Proposition 1.5. Let (R,m, k) be a local ring and let x1, . . . , xn form an
R-regular sequence. Let M be the cokernel of the matrix in (1 − 1). (We do
not require ` to be the length of M.) Let S be the subring of R generated by
the entries of the rst’s. Suppose that S is a domain and that the condition (∗)
holds for this matrix. Then the complex K• in (1− 4) is a free resolution for
M .

Proof. We need to show that K• is acyclic. Remember that the rank

of An
i (x) is

(
n−1
i−1

)
and the rank ideal of An

i (x) contains x(n−1
i−1 )

k for each k.
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Observe the position of An
i (x) in the matrix (1−3). We can see that the rank

of Ai is at least
(
n−1
i−1

)
` and the ideal generated by its

(
n−1
i−1

)
`-minors contains

x
(n−1
i−1 )`

k for each k. Now replace the xk’s by distinct indeterminates. Then the
Ai’s have entries inside S[x1, . . . , xn], which is a domain. Since in this case we
still have AiAi−1 = 0 by Lemma 1.3, we should have rkAi+ rkAi−1 ≤

(
n
i−1

)
`.

Since the rank of Ai cannot increase if x are specialized by any sequence of
elements in R, we have

rkAi =
(
n− 1
i− 1

)
`

even if we drop the condition that x are distinct indeterminates. It is now

obvious that the rank ideal of Ai contains x(n−1
i−1 )`

k for each k. Thus the depth
of the rank ideal of Ai = n ≥ i for 1 ≤ i ≤ n. By Eisenbud-Buchsbaum
acyclicity criterion, the complex K• is acyclic.

Remark. The condition of S being a domain can be loosened slightly.
Examining the proof one can see that all we need is that rkAi ≤

(
n−1
i−1

)
`, or

equivalently that rkAi + rkAi−1 ≤
(

n
i−1

)
`.

It follows that
rRi (M) =

(
n− 1
i− 1

)
`− rkAi,

where Ai is the image of Ai modulo m. Thus the problem of finding rRi (M) is
reduced to computing the rank of Ai.

§2

As we have said, the method here can be applied to situations other than
what we have studied as long as it satisfies the condition (∗). We will supply
an example here. The reader is encouraged to try out the method case-by-case
since our method applies in a larger context.

Definition 2.1. Let u1, u2, . . . be distinct indeterminates and let Λ be the
set of monomials in these indeterminates. Let u = u1, . . . , un. Let f , g ∈ Λ.
We say f u-divides g, denoted f |ug, if g/f is a monomial solely in elements
of u. We use f |ug|uh to denote the situation f u-divides g and g u-divides
h. A finite subset T of Λ is called a u-segment if every g ∈ Λ with f |ug|uf ′
for some f , f ′ ∈ T is in T . We say an element g is related to f if g = ukf for
some k = 1, . . . , n. We say an element g is secondly related to f if g = ukulf
for some k, l = 1, . . . , n.
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Let x = x1, . . . , xn be an R-regular sequence and let u = u1, . . . , un. Let
T be a u-segment and T0 be the subset of elements f in T such that ukf 6∈ T
for all k = 1, . . . , n. Suppose we are given a subset S of T and αfg ∈ R with
f ∈ S and g ∈ T0. If M is isomorphic to the quotient module of the free
module on the generators {wf}f∈T modulo the submodule N generated by

{xkwf} k=1,...,n
f∈T
ukf 6∈T

∪ {xkwf − wukf} k=1,...,n
f∈T
ukf∈T

∪{wf +
∑
g∈T0

αfgwg}f∈S\T0 ∪ {wf +
∑

g∈T0\S

αfgwg}f∈T0∩S,

we say M is manageable with respect to x.
We may replace the generator wf +

∑
g∈T0

αfgwg for f ∈ S\T0 by wf +∑
g∈T0

αfgwg −
∑
h∈T0∩S αfh(wh +

∑
g∈T0\S αhgwg). Thus by using the new set

of generators we may assume that N is generated by a set of the form

{xkwf} k=1,...,n
f∈T
ukf 6∈T

∪ {xkwf − wukf} k=1,...,n
f∈T
ukf∈T

∪ {wf +
∑

g∈T0\S

αfgwg}f∈S.

Let f ∈ S. Suppose ukf ∈ T for some k. Then wukf = (wukf − xkwf ) +
xk(wf +

∑
g∈T0

αfgwg) −
∑
g∈T0

αfgxkwg ∈ N . Thus we may drop all such
generators (it won’t affect T being a u-segment) and rephrase the manageable
module M with respect to x as follows. Let T be a u-segment and let T0 be
the subset of elements f in T such that ukf 6∈ T for all k = 1, . . . , n. Let
S and Tsocle be disjoint subsets of T0 where Tsocle is nonempty. Then M is
manageable with respect to x if it is isomorphic to the quotient module of the
free module on the free generators {wf}f∈T modulo the submodule generated
by

{xkwf} k=1,...,n
f∈T
ukf 6∈T

∪ {xkwf − wukf} k=1,...,n
f∈T
ukf∈T

∪ {wf +
∑

g∈Tsocle

αfgwg}f∈S

for some αfg ∈ R where f ∈ S and g ∈ Tsocle. Now replace the generators
{wf}f∈T of F by the new set of generators

{wf}f∈T\S ∪ {w′f = wf +
∑

g∈Tsocle

αfgwg}f∈S.

The module M becomes the quotient module of F on the aforementioned set
of generators modulo the submodule N generated by

{xkwf} k=1,...,n
f∈T
ukf 6∈T

∪ {xkwf − wukf} k=1,...,n
f∈T

ukf∈T\S

∪{xkwf − w′ukf +
∑

g∈Tsocle

αukf,gwg} k=1,...,n
f∈T
ukf∈S

∪ {w′f}f∈S.
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Again, dropping the generators w′f for f ∈ S we can rephrase M in the fol-
lowing manner.

Suppose we are given a u-segment T . Let T and S be disjoint finite subsets
of Λ such that the set Tsocle of f ∈ T with ukf 6∈ T ∪ S for all k = 1, . . . , n
is not empty. Then M is manageable with respect to x if M is isomorphic
to the quotient module of the free module on the generators {wf}f∈T modulo
the submodule generated by

{xkwf} k=1,...,n
f∈T

ukf 6∈T∪S

∪ {xkwf − wukf} k=1,...,n
f∈T
ukf∈T

∪ {xkwf +
∑

g∈Tsocle

ϑukf, gwg} k=1,...,n
f∈T
ukf∈S

.

Order the elements of T so that the elements of T \ Tsocle and Tsocle are
ordered lexicographically and that the elements of T \ Tsocle precede those of
Tsocle. With respect to this order we can write M as the cokernel of a certain
matrix of the form (1–1).

We claim that the condition (∗) holds if |S| = 1.
Think of the matrix as having its column and row blocks indexed by the

elements of T in the given order. Let S = {f}. Let f, g ∈ T . Then

rfg =



−ek, if g = ukf ∈ T and either f is unrelated to f
or g 6∈ Tsocle,

−el + αfgek, if f = ukf and g = ulf ∈ Tsocle,
αfgek, if f = ukf, g ∈ Tsocle and g is unrelated to f,
0, otherwise.

By Lemma 1.3, to check the condition (∗) it suffices to check that whether∑
h6=f,g

An
i (rfh)An

i−1(rhg)(2-1)

is 0. Let f, g ∈ T . We divide the problem into the following cases.
Case 1. Suppose f is not related or secondly related to f . Then the summation
in (2–1) becomes ∑

ukf∈T
An
i (rf,ukf )An

i−1(rukf,g)

=
∑
ukf∈T

An
i (−ek)An

i−1(rukf,g).

Note that rukf,g = 0 unless g = ukulf for some l = 1, . . . , n. Thus to check the
summation in (2–1) equals zero we only need to check the case when g = ukulf
for some k, l, and in which case it becomes

An
i (rf,ukf )An

i−1(rukf,ukulf ) + An
i (rf,ulf )An

i−1(rulf,ukulf )

=An
i (−ej)A

n
i−1(−ek) + An

i (−ek)A
n
i−1(−ej) = 0
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by Lemma 1.4.

Case 2. suppose ukf = f . Note that rhg = 0 for all h ∈ Tsocle. Note as well
that f is unrelated to ujf for all j. Thus the summation in (2–1) becomes∑

ujf∈T
An
i (rf,ujf )An

i−1(rujf,g) +
∑

h∈Tsocle

An
i (rfh)An

i−1(rhg)

=
∑
ujf∈T

An
i (−ej)A

n
i−1(rujf,g) = 0

by the same argument as in Case 1.

Case 3. Suppose f = ukulf . In this case the summation in (2–1) equals∑
ujf∈T

An
i (rf,ujf )An

i−1(rujf,g)

=
∑
ujf∈T

An
i (−ej)A

n
i−1(rujf,g).

This summation is 0 if g 6∈ Tsocle using the same argument as in Case 1. Now
assume g ∈ Tsocle. If g is not secondly related to f , then the summation in
(2–1) equals

An
i (rf,ukf )An

i−1(rukf,g) + An
i (rf,ulf )An

i−1(rulf,g)
=An

i (−ek)A
n
i−1(αf,gel) + An

i (−el)A
n
i−1(αf,gek) = 0

if k 6= l, or
An
i (rf,ukf )An

i−1(rukf,g)
=An

i (−ek)A
n
i−1(αfgek) = 0

if k = l.
Now assume that g = uk′ul′f . Note that k 6= k′ or l 6= l′. There are

actually many combinations to verify, but they are all straightforward and
routine. We will demonstrate by a couple of examples and leave the rest for
readers to check. When k = k′ but k, l, l′ are distinct, the summation becomes

An
i (rf,ukf )An

i−1(rukf,g) + An
i (rf,ulf )An

i−1(rulf,g) + An
i (rf,ul′f )An

i−1(rul′f,g)
=An

i (−ek)A
n
i−1(−el′ + αfgel) + An

i (−el)A
n
i−1(αfgek) + An

i (−el′)A
n
i−1(−ek)

=0.

When k = l but k, k′ and l′ are distinct, the summation equals

An
i (rf,ukf )An

i−1(rukf,g) + An
i (rf,uk′f )An

i−1(ruk′f,g) + An
i (rf,ul′f )An

i−1(rul′f,g)
=An

i (−ek)A
n
i−1(αfgek) + An

i (−ek′)A
n
i−1(−el′) + An

i (−el′)A
n
i−1(−ek′)

=0.
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Observe that our argument is independent of the choice of the αfg’s. If we
replace the αfg’s and the xk’s by distinct indeterminates, the condition (∗)
will continue to hold. Since in this case Ai is a matrix over the domain
Z[αfg, xk] f,g∈T

1≤k≤n
, we have that rkAi+rkAi−1 ≤

(
n
i−1

)
|T |. This remains true for

our original choice of αfg’s and xk’s since the rank of the Ai’s cannot increase.
By the remark to Proposition 1.5, the complex K• is a free resolution of M .

We will use the discussion above to compute an actual example.

Example 2.2. Let x = x1, . . . , xn be a minimal set of generators for the
maximal ideal m of the regular local ring R. Let M = R/mN+1 + (

∑n
1 x

N
k ).

We want to use the discussion above to make a rough estimation for ri(M) to
verify Horrocks’ conjecture.

When N = 1, by a change of generators for m the module M becomes
R/m2 + (x1), which is taken care of in [5]. We may assume N ≥ 2. We
will also assume that n ≥ 5 and i ≥ 2 since Horrocks’ conjecture is fairly
well-known up to n = 4 and i = 1.

Let u = u1, . . . , un and let T = {f : f is a monomial in u and degf ≤ N}.
According to the results in [5], the module R/mN+1 is isomorphic to the
quotient module of the free module on the free generators {wf}f∈T modulo
the submodule generated by

{xkwf} f∈T
deg f=N

∪ {xkwf − wukf} f∈T
deg f<N

.

In fact, the equivalence class of wf is identified with the class of f(x) in
R/mN+1. Thus M is isomorphic to the quotient module of the free module on
the free generators {wf}f∈T modulo the submodule generated by

{xkwf} f∈T
degf=N

∪ {xkwf − wukf} f∈T
degf<N

∪ {
n∑
k=1

wuN
k
}.

Let T = T \{uN1 }. From the discussion above we have that M is isomorphic to
the quotient module of the free module on the free generators {wf}f∈T modulo
the submodule generated by

{xkwf} f∈T
deg f=N

∪ {xkwf − wukf} f∈T
deg f<N

∪ {x1wuN−1
1

+
n∑
2

wuN
k
}.

Thus M is isomorphic to the cokernel of the matrix of the form (1–1) with

rfg =


−ek, if g = ukf ∈ T,
e1, if f = uN−1

1 and g = uNk for some k 6= 1,
0, otherwise.
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Let Ai = (An
i (rfg))f,g∈T . For f, g ∈ T , let

r′fg =

{
ek, if g = ukf ∈ T,
0, otherwise,

and let A′i = (An
i (r′fg))f,g∈T . Let L = R/mN+1 + (xN1 ). By the results in [5],

we have

ri(L) =
(
n− 1
i− 1

)
|T | − rkA

′
i.

Note that

Ai = A
′
i +

 · · · · · · · · · 0 · · · · · · · · · · · · · · · · · ·
0 · · · 0 An

i (e1) · · · An
i (e1) · · ·

· · · · · · · · · 0 · · · · · · · · · · · · · · · · · ·

 .
Hence rkAi ≤ rkA

′
i +

(
n−1
i−1

)
. Thus

ri(M)=
(
n− 1
i− 1

)
|T | − rkAi

≥
(
n− 1
i− 1

)
|T | − rkA

′
i −

(
n− 1
i− 1

)
= ri(L)−

(
n− 1
i− 1

)
.

Using the method in [5] we may find ri(L). Let T ′ = {f ∈ T : deg f =
N} ∪ {uN−1

1 } and T ′′ = {f ∈ T : deg f ≤ N, u1 - f}. Let x̄ = x2, . . . , xn
and let ū = u2, . . . , un. Let L′ and L′′ be the modules associated with T ′

and T ′′ with respect to (ū, x̄). The Main Theorem [5, Theorem 0.2] tells us
that ri(L) = ri−1(L′) + ri(L′′). Let J = (x2, . . . , xn). Note that L′ is actually
R/J2 ⊕

((
N+n−1

N

)
− n

)
copies of R/J while L′′ ' R/JN+1. Hence

ri−1(L′)= ri−1(R/J2) +
((

N + n− 1
N

)
− n

)(
n− 2
i− 2

)
≥
(
n− 2
i− 2

)
+
((

n+ 1
2

)
− n

)(
n− 2
i− 2

)
≥ 2

(
n− 2
i− 2

)

for N ≥ 2 and n ≥ 2. We claim that we have ri(L′′) ≥ 2
(
n−2
i−1

)
as well. Accord-

ing to [5, Example 1.2], we have that ri(R/(xn−i+1, . . . , xn)N+1) =
(
i+N−1
N

)
≥

2 = 2
(
i−1
i−1

)
for i ≥ 2. Let K = (x3, . . . , xn). According to [5, Example 1.2],

377
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we have

ri(L′′)=
(
n+N − 2

N

)
ri−1(R/K) + ri(R/KN+1)

≥ 2
(
n− 3
i− 2

)
+ 2

(
n− 3
i− 1

)
, by the induction hypothesis,

= 2
(
n− 2
i− 1

)

for N ≥ 1 and n ≥ 3. Thus ri(L) ≥ 2
(
n−1
i−1

)
and ri(M) ≥

(
n−1
i−1

)
.
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