TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 3, pp. 323-338, September 1999

CONVERGENCE RESULTS FOR A FAST ITERATIVE METHOD IN LINEAR SPACES

Ioannis K. Argyros

Abstract

We provide convergence theorems for a fast iterative method to solve nonlinear operator equations in a Banach space. The same method under stronger conditions was found to be of order four, under standard Newton-Kantorovich type assumptions. The monotone convergence of this method in a partially ordered topological space is also examined here.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x^{*} of the nonlinear equation

$$
\begin{equation*}
F(x)=0 . \tag{1}
\end{equation*}
$$

In the first section, F is a nonlinear operator defined on some convex subset D of a Banach space E_{1} with values in a Banach space E_{2}. In the second section, E_{1} and E_{2} are assumed to be partially ordered topological spaces $[4,6,10,11]$.

We recently introduced the method given by

$$
\begin{equation*}
y_{n}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right), \tag{2}
\end{equation*}
$$

$$
H\left(x_{n}, y_{n}\right)=F^{\prime}\left(x_{n}\right)^{-1}\left(F^{\prime}\left(x_{n}+\frac{2}{3}\left(y_{n}-x_{n}\right)\right)-F^{\prime}\left(x_{n}\right)\right),
$$

Received November 22, 1997.
Communicated by F.-B. Yeh
1991 Mathematics Subject Classification: 47H17, 65H10, 65J15.
Key words and phrases: Newton's method, Banach space, Fréchet-derivative, majorant method, partially ordered topological space.

$$
\begin{equation*}
x_{n+1}=y_{n}-\frac{3}{4} H\left(x_{n}, y_{n}\right)\left(I-\frac{3}{2} H\left(x_{n} y_{n}\right)\right)\left(y_{n}-x_{n}\right) \tag{4}
\end{equation*}
$$

for all $n \geq 0$, and for some $x_{0} \in D$. Here $F^{\prime}\left(x_{n}\right)$ denotes a linear operator which is the Fréchet-derivative of the operator F evaluated at $x=x_{n}$. We showed that under standard Newton-Kantorovich hypotheses, the order of convergence of the iteration $\left\{x_{n}\right\}(n \geq 0)$ to a locally unique solution x^{*} of equation (1) is four $[5,6]$. We used Lipschitz-type hypotheses on the second Fréchet-derivative of F as well as a hypothesis on an upper bound of the same derivative. Despite the fact that these results can apply to solve multilinear operator equations [1], and in other special cases, in general, it is difficult to verify these conditions. That is why, here we relax these conditions in the first section using only Lipschitz-hypotheses on the first Fréchet-derivative only.

These results can easily be extended under weaker Hölder continuity assumptions or to include nondifferentiable operators (see for example [2] and [3] respectively for Newton's method).

In the second section we examine the monotone convergence of the same method in a partially ordered topological space setting [$4,6,10,11$].

For a background on two step iterative methods, we refer the reader to $[5,6]$, and the references there. Note that all previous methods mentioned above are slower than our method.

2. Convergence Analysis

We will need to introduce the constants

$$
\begin{align*}
& t_{0}=0, \quad s_{0} \geq\left\|y_{0}-x_{0}\right\|, \quad \beta \geq\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\| \text { for some } x_{0} \in D, \tag{1.1}\\
& \qquad a=1-\beta M R_{1}, \tag{1.2}\\
& a_{0}=1-\beta M\left(\frac{R_{1}+R}{2}\right) \text { for fixed } R_{1} \text { and } R \text { with } 0 \leq R_{1} \leq R, \tag{1.3}\\
& \quad \text { and some } M>0,
\end{align*}
$$

the sequences

$$
\begin{gather*}
\bar{a}_{n}=1-\beta M\left\|x_{n}-x_{0}\right\|, \tag{1.4}\\
a_{n}=1-\beta M t_{n}, \tag{1.5}
\end{gather*}
$$

$$
\begin{equation*}
\bar{h}_{n+1}=\frac{M}{2}\left[\left\|x_{n+1}-y_{n}\right\|^{2}+2\left\|x_{n}-y_{n}\right\|^{2}\left(1+\frac{2 \beta M\left\|y_{n}-x_{n}\right\|}{3\left(1-\beta M\left\|x_{n}-x_{0}\right\|\right.}\right)\right], \tag{1.6}
\end{equation*}
$$

$$
\begin{gather*}
h_{n+1}=\frac{M}{2}\left[\left(t_{n+1}-s_{n}\right)^{2}+2\left(s_{n}-t_{n}\right)\left(1+\frac{2 \beta M\left(s_{n}-t_{n}\right)}{3\left(1-\beta M t_{n}\right)}\right)\right] \tag{1.7}\\
\bar{b}_{n}=\frac{\beta M\left\|y_{n}-x_{n}\right\|}{2\left(1-\beta M\left\|x_{n}-x_{0}\right\|\right)}\left(1+\frac{\beta M\left\|y_{n}-x_{n}\right\|}{1-\beta M\left\|x_{n}-x_{0}\right\|}\right)\left\|y_{n}-x_{n}\right\|, \tag{1.8}\\
b_{n}=\frac{\beta M\left(s_{n}-t_{n}\right)}{2\left(1-\beta M t_{n}\right)}\left(1+\frac{\beta M\left(s_{n}-t_{n}\right)}{1-\beta M t_{n}}\right)\left(s_{n}-t_{n}\right) \tag{1.9}\\
s_{n+1}=t_{n+1}+\frac{\beta h_{n+1}}{a_{n+1}} \tag{1.10}\\
t_{n+1}=s_{n}+b_{n} \tag{1.11}\\
e_{n+1}=\beta\left[1-\frac{\beta M}{2}\left(\left\|x^{*}-x_{0}\right\|+\left\|x_{n+1}-x_{0}\right\|\right)\right]^{-1} \tag{1.12}
\end{gather*}
$$

and the function

$$
\begin{equation*}
T(r)=s_{0}+\frac{M r}{2(1-\beta M r)}\left[r+2+\frac{4 \beta M r}{3(1-\beta M r)}+\frac{\beta M r^{2}}{1-\beta M r}\right] \tag{1.13}
\end{equation*}
$$ on $[0, R]$.

We can now state and prove the result:
Theorem 1.1. Let $F: D \subseteq E_{1} \rightarrow E_{2}$ be a nonlinear operator whose Fréchet-derivative satisfies the Lipschitz condition

$$
\begin{equation*}
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq M\|x-y\| \text { for all } x, y \in D \text { and some } M>0 . \tag{1.14}
\end{equation*}
$$

Moreover, assume:
(i) there exists a minimum nonnegative number R_{1} such that

$$
\begin{equation*}
T\left(R_{1}\right) \leq R_{1} \tag{1.15}
\end{equation*}
$$

(ii) the numbers R, R_{1}, with $R_{1} \leq R$, are such that the constants, a and a_{0}, given by (1.2) and (1.3) respectively, are positive and R is such that

$$
\begin{equation*}
U\left(x_{0}, R\right)=\left\{x \in E_{1} \mid\left\|x-x_{0}\right\| \leq R\right\} \subseteq D . \tag{1.16}
\end{equation*}
$$

Then
(a) the scalar sequences $\left\{t_{n}\right\}(n \geq 0)$ generated by (1.10) and (1.11) is monotonically increasing and bounded above by its limit, which is number R_{1};
(b) the sequence $\left\{x_{n}\right\}(n \geq 0)$ generated by (2)-(4) is well-defined, remains in $U\left(x_{0}, R_{1}\right)$ for all $n \geq 0$, and converges to a solution x^{*} of the equation $F(x)=0$, which is unique in $U\left(x_{0}, R\right)$.
Moreover, the following estimates are true for all $n \geq 0$,

$$
\begin{gather*}
\left\|y_{n}-x_{n}\right\| \leq s_{n}-t_{n} \tag{1.17}\\
\left\|x_{n+1}-y_{n}\right\| \leq t_{n+1}-s_{n}, \tag{1.18}\\
\left\|x^{*}-x_{n}\right\| \leq R_{1}-t_{n} \tag{1.19}\\
\left\|x^{*}-x_{n}\right\| \leq R_{1}-s_{n} \tag{1.20}\\
\left\|F\left(x_{n+1}\right)\right\| \leq \bar{h}_{n+1} \leq h_{n+1}, \tag{1.21}\\
\left\|x^{*}-x_{n+1}\right\| \leq e_{n+1} \bar{h}_{n+1} \leq R_{1}-t_{n+1} \tag{1.22}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|x^{*}-x_{n}\right\|+\frac{\beta M}{2 \bar{a}_{n}}\left\|x_{n}-x^{*}\right\|^{2} . \tag{1.23}
\end{equation*}
$$

Proof. (a) By (1.1), (1.10) and (1.11), we deduce that the sequence $\left\{t_{n}\right\}$ ($n \geq 0$) is monotonically increasing and nonnegative. By the same relations, we can easily get $t_{0} \leq s_{0} \leq t_{1} \leq s_{1} \leq R_{1}$. Let us assume that $t_{k} \leq s_{k} \leq$ $t_{k+1} \leq s_{k+1} \leq R_{1}$ for $k=0,1,2, \ldots, n$. Then by relations (1.10) and (1.11), we can have in turn

$$
\begin{aligned}
t_{k+2}= & t_{k+1}+\frac{M \beta}{2\left(1-\beta M t_{k+1}\right)}\left[\left(t_{k+1}-s_{n}\right)^{2}+2\left(s_{k}-t_{k}\right)\left(1+\frac{2 \beta M\left(s_{k}-t_{k}\right)}{3\left(1-\beta M t_{k}\right)}\right)\right] \\
+ & \frac{\beta M\left(s_{k+1}-t_{k+1}\right)}{2\left(1-\beta M t_{k+1}\right)}\left(1+\frac{\beta M\left(s_{k+1}-t_{k+1}\right)}{1-\beta M t_{k+1}}\right)\left(s_{k+1}-t_{k+1}\right) \\
\leq & t_{k+1}+\frac{M \beta}{2\left(1-\beta M R_{1}\right)}\left[\left(t_{k+1}-s_{k}\right)^{2}+2\left(s_{k}-t_{k}\right)+\frac{4 \beta M\left(s_{k}-t_{k}\right)^{2}}{3\left(1-\beta M R_{1}\right)}\right. \\
& \left.+\left(s_{k+1}-t_{k+1}\right)^{2}+\frac{\beta M\left(s_{k+1}-t_{k+1}\right) 3}{1-\beta M R_{1}}\right] \\
\leq & \cdots \leq s_{0}+\frac{M \beta}{2\left(1-\beta M R_{1}\right)}\left[R_{1}^{2}+2 R_{1}+\frac{4 \beta M R_{1}^{2}}{3\left(1-\beta M R_{1}\right)}+\frac{\beta M R_{1}^{3}}{1-\beta M R_{1}}\right] \\
= & T\left(R_{1}\right) \leq R_{1},
\end{aligned}
$$

by (1.15) (we have used the fact that $\left(t_{k+1}-s_{k}\right)^{2}+\left(s_{k+1}-t_{k+1}\right)^{2} \leq r\left(s_{s+1}-\right.$ $\left.s_{k}\right)$).

Hence, the scalar sequences $\left\{x_{n}\right\}(n \geq 0)$ is bounded above by R_{1}.
By hypothesis (1.15), R_{1} is the minimum positive zero of the equation $T(r)-r=0$ in $\left[0, R_{1}\right]$ and from the above $R_{1}=\lim _{n \rightarrow \infty} t_{n}$.
(b) Using (2), (3), (4) and (1.1), we get $x_{1}, y_{0} \in U\left(x_{0}, R_{1}\right)$, and that estimates (1.17) and (1.18) are true for $n=0$. Let us assume that they are true for $k=0,1,2, \ldots, n-1$. In fact, by the induction hypothesis

$$
\begin{aligned}
\left\|x_{k+1}-x_{0}\right\| & \leq\left\|x_{k+1}-y_{0}\right\|+\left\|y_{0}-x_{0}\right\| \leq\left\|x_{k+1}-y_{k}\right\|+\left\|y_{k}-y_{0}\right\|+\left\|y_{0}-x_{0}\right\| \\
& \leq \cdots \leq\left(t_{k+1}-s_{k}\right)+\left(s_{k}-s_{0}\right)+s_{0} \leq t_{k+1} \leq R_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|y_{k+1}-x_{0}\right\| & \leq\left\|y_{k+1}-y_{0}\right\|+\left\|y_{0}-x_{0}\right\| \\
& \leq\left\|y_{k+1}-x_{k+1}\right\|+\left\|x_{k+1}-y_{k}\right\|+\left\|y_{k}-y_{0}\right\|+\left\|y_{0}-x_{0}\right\| \\
& \leq \cdots \leq\left(s_{k+1}-t_{k+1}\right)+\left(t_{k+1}-s_{k}\right)+\left(s_{k}-s_{0}\right)+s_{0} \leq s_{k+1} \leq R_{1} .
\end{aligned}
$$

That is, $x_{n}, y_{n} \in U\left(x_{0}, R_{1}\right)$ for all $n \geq 0$.
Using hypothesis (1.14), we have

$$
\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\|\left\|F^{\prime}\left(x_{k}\right)-F^{\prime}\left(x_{0}\right)\right\| \leq \beta M\left\|x_{k}-x_{0}\right\| \leq \beta M t_{k} \leq \beta M R_{1}<1
$$

since $a>0$. It now follows from the Banach lemma on invertible operators that $F^{\prime}\left(x_{k}\right)$ is invertible, and

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{n}\right)^{-1}\right\| \leq \frac{\beta}{\bar{a}_{n}} \leq \frac{\beta}{a_{n}} . \tag{1.24}
\end{equation*}
$$

By (2)-(4), we can easily obtain the approximation

$$
\begin{align*}
F\left(x_{n+1}\right) & =\int_{0}^{1}\left[F^{\prime}\left(y_{n}+t\left(x_{n+1}-y_{n}\right)\right)-F^{\prime}\left(y_{n}\right)\right]\left(x_{n+1}-x_{n}\right) d t \\
& +\int_{0}^{1}\left[F^{\prime}\left(x_{n}+t\left(y_{n}-x_{n}\right)\right)-F^{\prime}\left(x_{n}\right)\right]\left(y_{n}-x_{n}\right) d t \\
& -\frac{3}{4}\left(F^{\prime}\left(\frac{x_{n}+2 y_{n}}{3}\right)-F^{\prime}\left(x_{n}\right)\right)\left(y_{n}-x_{n}\right) \tag{1.25}\\
& -\frac{1}{2}\left\{\left(F^{\prime}\left(y_{n}\right)-F^{\prime}\left(x_{n}\right)\right)\right. \\
& \left.-\frac{3}{2}\left(F^{\prime}\left(\frac{x_{n}+2 y_{n}}{3}\right)-F^{\prime}\left(x_{n}\right)\right)\right\} H\left(x_{n}, y_{n}\right)\left(y_{n}-x_{n}\right) .
\end{align*}
$$

By the induction hypotheses, (1.14) and (1.25), we can have in turn

$$
\begin{aligned}
\left\|F\left(x_{n+1}\right)\right\| & \leq \frac{M}{2}\left\|x_{n+1}-y_{n}\right\|^{2}+\frac{M}{2}\left\|x_{n}-y_{n}\right\|^{2}+\frac{M}{2}\left\|y_{n}-x_{n}\right\|^{2} \\
& +\frac{M}{2}\left\|y_{n}-x_{n}\right\|^{2} \frac{2 \beta M\left\|y_{n}-x_{n}\right\|}{1-\beta M\left\|x_{n}-x_{0}\right\|} \\
& +\frac{M}{2}\left\|y_{n}-x_{n}\right\|^{2} \frac{2 \beta M\left\|y_{n}-x_{n}\right\|}{1-\beta M\left\|x_{n}-x_{0}\right\|} \\
& =\bar{h}_{n+1} \leq h_{n+1},
\end{aligned}
$$

by (1.6) and (1.7).
By relations (2), (1.6), (1.7) and (1.24), we get

$$
\left\|y_{n+1}-x_{n+1}\right\| \leq\left\|F^{\prime}\left(x_{n+1}\right)^{-1}\right\| \cdot\left\|F\left(x_{n+1}\right)\right\| \leq \frac{\beta \bar{h}_{n+1}}{\bar{a}_{n+1}} \leq \frac{\beta h_{n+1}}{a_{n+1}}=s_{n+1}-x_{n+1}
$$

by (1.10), which shows (1.17) for all $n \geq 0$.
Similarly from (3), (4) and the above

$$
\begin{aligned}
\left\|x_{n+1}-y_{n}\right\| & \leq \frac{3}{4}\left\|H\left(x_{n}, y_{n}\right)\right\|\left(1+\frac{3}{2}\left\|H\left(x_{n}, y_{n}\right)\right\|\right)\left\|y_{n}-x_{n}\right\| \\
& \leq \bar{b}_{n} \leq b_{n}=t_{n+1}-s_{n}
\end{aligned}
$$

which shows (1.18) for all $n \geq 0$.
It now follows from estimates (1.17) and (1.18) that the sequence $\left\{x_{n}\right\}$ ($n \geq 0$) is Cauchy in a Banach space E_{1} and as such, it converges to some $x^{*} \in U\left(x_{0}, R_{1}\right)$ with $F\left(x^{*}\right)=0$ (by (2)).

To show uniqueness, we assume that there exists another solution y^{*} of equation (1) in $U\left(x_{0}, R\right)$.

Then from hypothesis (1.14), we get

$$
\begin{aligned}
\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\| & \int_{0}^{1}\left\|F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right)-F^{\prime}\left(x_{0}\right)\right\| d t \\
& \leq \beta M \int_{0}^{1}\left\|x^{*}+t\left(y^{*}-x^{*}\right)-x_{0}\right\| d t \\
& \leq \beta M \int_{0}^{1}\left[(1-t)\left\|x^{*}-x_{0}\right\|+t\left\|y^{*}-x_{0}\right\|\right] d t \\
& \leq \beta M\left(\frac{R_{1}+R_{2}}{2}\right)<1, \text { since } a_{0}>0
\end{aligned}
$$

It now follows that the linear operator $\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right) d t$ is invertible, and from the approximation

$$
F\left(y^{*}\right)-F\left(x^{*}\right)=\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right) d t\left(y^{*}-x^{*}\right),
$$

it follows that $x^{*}=y^{*}$.
Estimates (1.19) and (1.20) follow easily from estimates (1.17) and (1.18).
Finally using the triangle inequality, and the approximations

$$
\begin{aligned}
x_{n+1}-x^{*} & =B_{n+1}^{-1} F\left(x_{n+1}\right) \\
B_{n+1} & =\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right) d t \\
y_{n}-x_{n} & =x^{*}-x_{n}+F^{\prime}\left(x_{n}\right)^{-1}\left\{\int_{0}^{1}\left[F^{\prime}\left(x_{n}+t\left(x^{*}-x_{n}\right)\right)-F^{\prime}\left(x_{n}\right)\right] \cdot\left(x^{*}-x_{n}\right)\right\} d t
\end{aligned}
$$

and the estimate

$$
\begin{aligned}
\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\| & \int_{0}^{1}\left\|F^{\prime}\left(x^{*}+t\left(x_{n+1}-x^{*}\right)\right)-F^{\prime}\left(x_{0}\right)\right\| d t \\
& \leq \beta M \int_{0}^{1}\left\|x^{*}+t\left(x_{n+1}-x^{*}\right)-x_{0}\right\| d t \\
& \leq \beta M \int_{0}^{1}\left[(1-t)\left\|x^{*}-x_{0}\right\|+t\left\|x_{n+1}-x_{0}\right\|\right] d t \\
& \leq \beta M R_{1}<1 \text { since } a>0
\end{aligned}
$$

and

$$
\left\|B_{n+1}^{-1}\right\| \leq e_{n+1}
$$

where e_{n+1} is given by (1.12), we can immediately obtain estimates (1.22) and (1.23).

That completes the proof of the theorem.
Note that estimates (1.22) and (1.23) can be solved for $\left\|x_{n}-x^{*}\right\|$ for all $n \geq 0$.

We can show that under the hypotheses $a>0, a_{0}>0$ in the above theorem the sequences $\left\{s_{n}\right\},\left\{t_{n}\right\}(n \geq 0)$ and the function T can be replaced by

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq v_{n}-w_{n} \tag{1.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}\right\| \leq w_{n+1}-v_{n} \tag{1.27}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{n+1}=w_{n+1}+\frac{M \beta}{2\left(1-\beta M w_{n+1}\right)}\left(\left(w_{n+1}-v_{n}\right)^{2}+4\left(v_{n}-w_{n}\right)^{2}\right) \tag{1.29}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{1}(r)=s_{0}+\frac{4 M \beta r^{2}}{2(1-\beta M r)}+\frac{15 M \beta r^{2}}{8(1-\beta M r)} \tag{1.30}
\end{equation*}
$$

It can then easily be seen that under the hypotheses of the theorem

$$
\begin{aligned}
&\left\|y_{n}-x_{n}\right\| \leq s_{n}-t_{n} \leq v_{n}-w_{n} \\
&\left\|x_{n+1}-y_{n}\right\| \leq t_{n+1}-s_{n} \leq w_{n+1}-v_{n}
\end{aligned}
$$

and

$$
\left\|x_{n}-x^{*}\right\| \leq R_{1}-t_{n} \leq R^{*}-v_{n}, \text { for all } n \geq 0\left(\text { provided that } R^{*} \leq R\right)
$$

where R^{*} is the minimum nonnegative zero of the equation $T_{1}(r)-r=0$ on $\left[0, R^{*}\right]$.

Let us now introduce the scalar function

$$
g(t)=\frac{k}{2} t^{2}-\frac{1}{\beta} t+\frac{\eta}{\beta}
$$

for some fixed numbers k, β, η, with $k, \beta>0$ and $\eta \geq 0$, the constants

$$
\begin{array}{lll}
r_{1}=\frac{1-\sqrt{1-2 h}}{h} \eta, & r_{2}=\frac{1+\sqrt{1-2 h}}{h} \eta, \quad \eta=\frac{r_{1}}{r_{2}}, \\
k_{1}=\left(M^{2}+\frac{N}{6 \beta}\right)^{1 / 2}, & h_{1}=.46568 \ldots, &
\end{array}
$$

and the iterations for all $n \geq 0$,

$$
\begin{aligned}
p_{n} & =q_{n}-\frac{g\left(g_{n}\right)}{g^{\prime}\left(q_{n}\right)}, \quad q_{0}=0, \\
q_{n+1} & =p_{n}-\frac{3}{4} H_{n}\left(1-\frac{3}{2} H_{n}\right)\left(p_{n}-q_{n}\right), \\
H_{n} & =g^{\prime}\left(q_{n}\right)^{-1}\left(g^{\prime}\left(p_{n}+\frac{2}{3}\left(p_{n}-q_{n}\right)\right)-g^{\prime}\left(p_{n}\right)\right),
\end{aligned}
$$

and

$$
\alpha_{n}=\frac{\left(1-\theta^{2}\right) \eta}{1-\frac{1}{\sqrt[3]{5}}(\sqrt[3]{5} \theta)^{4 n}}(\sqrt[3]{5} \theta)^{4^{n}-1}
$$

In [5] and [6], we showed that if

$$
\begin{aligned}
& \left\|F^{\prime \prime}(x)\right\| \leq M, \quad\left\|F^{\prime \prime}(x)-F^{\prime \prime}(y)\right\| \leq N\|x-y\|, \\
& \left\|F^{\prime}\left(\bar{x}_{0}\right)^{-1}\right\| \leq \beta, \quad\left\|\bar{y}_{0}-\bar{x}_{0}\right\| \leq \eta
\end{aligned}
$$

and

$$
h \geq h_{1}, \quad k \geq k_{1},
$$

then

$$
\begin{gathered}
\left\|\bar{x}_{n}-\bar{x}^{*}\right\| \leq r_{1}-g_{n} \leq \alpha_{n}, \quad F\left(\bar{x}^{*}\right)=0, \\
\left\|\bar{x}_{n+1}-\bar{y}_{n}\right\| \leq q_{n+1}-p_{n}
\end{gathered}
$$

and

$$
\left\|\bar{y}_{n}-\bar{x}_{n}\right\| \leq p_{n}-q_{n},
$$

where

$$
\begin{aligned}
\bar{y}_{n} & =\bar{x}_{n}-F^{\prime}\left(\bar{x}_{n}\right)^{-1} F\left(\bar{x}_{n}\right), \\
\bar{x}_{n+1} & =\bar{y}_{n}-\frac{3}{4} \bar{H}_{n}\left(I-\frac{3}{2} \bar{H}_{n}\right)\left(\bar{y}_{n}-\bar{x}_{n}\right)
\end{aligned}
$$

and

$$
\bar{H}_{n}=F^{\prime}\left(\bar{x}_{n}\right)^{-1}\left[F^{\prime}\left(\bar{x}_{n}+\frac{2}{3}\left(\bar{y}_{n}-\bar{x}_{n}\right)\right)-F^{\prime}\left(\bar{x}_{n}\right)\right] \text { for all } n \geq 0 .
$$

Hence the order of convergence of iteration (2)-(4) under the hypotheses of Theorem 1.1 is almost four.

3. Monotone Convergence

In this section we will assume that the reader is familiar with the meaning of a divided difference of order one and the notion of a partially ordered topological space, POTL-space $[4,6,10,11]$. From now on we assume that E_{1} and E_{2} are POTL-spaces.

We introduce the iterations

$$
\begin{gather*}
F\left(v_{n}\right)+\left[x_{n}, x_{n}\right]\left(w_{n}-v_{n}\right)=0, \tag{2.1}\\
F\left(x_{n}\right)+\left[x_{n}, x_{n}\right]\left(y_{n}-x_{n}\right)=0, \tag{2.2}\\
-L_{n}\left(w_{n}-v_{n}\right)+\left[x_{n}, x_{n}\right]\left(v_{n+1}-w_{n}\right)=0, \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
-L_{n}\left(y_{n}-x_{n}\right)+\left[x_{n}, x_{n}\right]\left(x_{n+1}-y_{n}\right)=0, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
L_{n}= & \frac{3}{8}\left[\left[x_{n}+\frac{2}{3}\left(y_{n}-x_{n}\right), x_{n}+\frac{2}{3}\left(y_{n}-x_{n}\right)\right]-\left[x_{n}, x_{n}\right]\right] B_{n} \tag{2.5}\\
& \cdot\left[3\left[x_{n}+\frac{2}{3}\left(y_{n}-x_{n}\right), x_{n}+\frac{2}{3}\left(y_{n}-x_{n}\right)\right]-5\left[x_{n}, x_{n}\right]\right] \text { for all } n \geq 0 .
\end{align*}
$$

Here $[x, y]$ denotes a divided difference of order one, and B_{n} denotes continuous, nonnegative left subinverses of the linear operator $A_{n}=\left[x_{n}, x_{n}\right]$ for all $n \geq 0$. Note that the operator L_{n} can also be written as

$$
\begin{align*}
L_{n}= & \frac{1}{2}\left[\left[x_{n}, y_{n}\right]+\left[y_{n}-x_{n}\right]+2\left[y_{n}, y_{n}\right]\right] B_{n} \tag{2.6}\\
& \cdot\left[\left[x_{n}, y_{n}\right]+\left[y_{n}, x_{n}\right]+2\left[y_{n}, y_{n}\right]-2\left[x_{n}, x_{n}\right]\right] \text { for all } n \geq 0 .
\end{align*}
$$

We can now prove the main result:
Theorem 2.1. Let F be a nonlinear operator defined on a convex subset D of a regular POTL-space E_{1} with values in another POTL-space E_{2}. Let v_{0} and x_{0} be two points of D such that

$$
\begin{equation*}
v_{0} \leq x_{0} \quad \text { and } \quad F\left(v_{0}\right) \leq 0 \leq F\left(x_{0}\right) . \tag{2.7}
\end{equation*}
$$

Suppose that F has a divided difference of order one on $D_{0}=\left\langle v_{0}, x_{0}\right\rangle=\{x \in$ $\left.E_{1} \mid v_{0} \leq x \leq x_{0}\right\} \subseteq D$ satisfying
(2.8) $A_{0}=\left[x_{0}, x_{0}\right]$ has a continuous nonnegative left subinverse B_{0},

$$
\begin{gather*}
{\left[x_{0}, y\right] \geq 0 \text { for all } v_{0} \leq y \leq x_{0}} \tag{2.9}\\
{[x, v] \leq[x, y] \text { if } v \leq y} \tag{2.10}\\
{[x, y]+[y, x]+2[y, y]-2[x, x] \geq 0 \text { if } y \leq x} \tag{2.11}
\end{gather*}
$$

there exists a positive number c such that

$$
\begin{align*}
& {[x, y]+[y, x]+2[y, y]-(c+2)[x, x] \leq 0,} \\
& \frac{c}{2}[[x, y]+[y, x]+2[y, y]]+[z, x] \leq[p, q] \tag{2.12}
\end{align*}
$$

for all $v \leq y \leq p \leq q \leq x$.
Then there exist two sequences $\left\{v_{n}\right\},\left\{x_{n}\right\}(n \geq 0)$ satisfying the approximations (2.1)-(2.4),

$$
v_{0} \leq w_{0} \leq v_{1} \leq \cdots \leq w_{n} \leq v_{n+1} \leq x_{n+1} \leq y_{n} \leq \cdots \leq x_{1} \leq y_{0} \leq x_{0}
$$

and

$$
\lim _{n \rightarrow \infty} v_{n}=v^{*} \leq x^{*}=\lim _{n \rightarrow \infty} x_{n} \text { with } x^{*}, v^{*} \in D_{0}
$$

Moreover, if the operator A_{n} is inverse nonnegative, then any solution u of the equation $F(x)=0$ in D_{0} belongs to $\left\langle v^{*}, x^{*}\right\rangle$.

Proof. Let us define the operator

$$
P_{1}:\left\langle 0, x_{0}-v_{0}\right\rangle \rightarrow E_{1}, \quad P_{1}(x)=x-B_{0}\left(F\left(v_{0}\right)+A_{0}(x)\right) .
$$

This operator is isotone and continuous. We can have in turn

$$
\begin{aligned}
P_{1}(0) & =-B_{0} F\left(v_{0}\right) \geq 0, \quad \text { by }(2.7), \\
P_{1}\left(x_{0}-v_{0}\right) & =x_{0}-v_{0}-B_{0} F\left(x_{0}\right)+B_{0}\left(F\left(x_{0}\right)-F\left(v_{0}\right)-A_{0}\left(x_{0}-v_{0}\right)\right) \\
& \leq x_{0}-v_{0}+B_{0}\left(\left[x_{0}, v_{0}\right]-\left[x_{0}, x_{0}\right]\right)\left(x_{0}-v_{0}\right) \quad \text { by }(2.7) \\
& \leq x_{0}-v_{0},
\end{aligned}
$$

since $\left[x_{0}, v_{0}\right] \leq\left[x_{0}, x_{0}\right]$ by (2.10).
By Kantorovich's theorem [6,10], the operator P_{1} has a fixed point $z_{1} \in$ $\left\langle 0, x_{0}-v_{0}\right\rangle: P_{1}\left(z_{1}\right)=z_{1}$. Set $w_{0}=v_{0}+z_{1}$, and we have the estimates

$$
\begin{aligned}
& F\left(v_{0}\right)+A_{0}\left(w_{0}-v_{0}\right)=0 \\
F\left(w_{0}\right)= & F\left(w_{0}\right)-F\left(v_{0}\right)-A_{0}\left(w_{0}-v_{0}\right) \leq 0
\end{aligned}
$$

and

$$
v_{0} \leq w_{0} \leq x_{0} .
$$

We define the operator

$$
P_{2}:\left\langle 0, x_{0}-w_{0}\right\rangle \rightarrow E_{1}, \quad P_{2}(x)=x+B_{0}\left(F\left(x_{0}\right)-A_{0}(x)\right) .
$$

This operator is isotone and continuous. We can have in turn

$$
\begin{aligned}
P_{2}(0) & =B_{0} F\left(x_{0}\right) \geq 0, \quad \text { by }(2.7), \\
P_{2}\left(x_{0}-w_{0}\right) & =x_{0}-w_{0}+B_{0} F\left(w_{0}\right)+B_{0}\left(F\left(x_{0}\right)-F\left(w_{0}\right)-A_{0}\left(x_{0}-w_{0}\right)\right) \\
& \leq x_{0}-w_{0}+B_{0}\left(\left[x_{0}, w_{0}\right]-\left[x_{0}, x_{0}\right]\right)\left(x_{0}-w_{0}\right) \quad \text { by }(2.7) \\
& \leq x_{0}-w_{0},
\end{aligned}
$$

since $\left[x_{0}, w_{0}\right] \leq\left[x_{0}, x_{0}\right]$ by (2.10).
By Kantorovich's theorem, there exists $z_{2} \in\left\langle 0, x_{0}-w_{0}\right\rangle$ such that $P_{2}\left(z_{2}\right)=$ z_{2}. Set $y_{0}=x_{0}-z_{1}$, and we have the estimates

$$
\begin{aligned}
& F\left(x_{0}\right)+A_{0}\left(y_{0}-x_{0}\right)=0 \\
F\left(y_{0}\right)= & F\left(y_{0}\right)-F\left(x_{0}\right)-A_{0}\left(y_{0}-x_{0}\right) \geq 0
\end{aligned}
$$

and

$$
v_{0} \leq w_{0} \leq y_{0} \leq x_{0} .
$$

We now define the operator

$$
P_{3}:\left\langle 0, x_{0}-v_{0}\right\rangle \rightarrow E_{1}, \quad P_{3}(x)=x-B_{0}\left(L_{0} B_{0} F\left(v_{0}\right)+A_{0}(x)\right) .
$$

where $L_{0}=\left[x_{0}, x_{0}\right]-\left[x_{0}, y_{0}\right]$.
This operator is isotone and continuous. We have in turn

$$
\begin{aligned}
P_{3}(0)= & -B_{0} L_{0} B_{0} F\left(v_{0}\right) \geq 0 \quad \text { by }(2.7), \\
P_{3}\left(x_{0}-v_{0}\right)= & x_{0}-v_{0}-B_{0} L_{0} B_{0} F\left(x_{0}\right)+B_{0}\left(L_{0} B_{0}\left(F\left(x_{0}\right)-F\left(v_{0}\right)\right)\right. \\
& \left.-\left[x_{0}, x_{0}\right]\left(x_{0}-v_{0}\right)\right) .
\end{aligned}
$$

But, by (2.5), (2.6), and (2.10), we can have

$$
\begin{aligned}
& L_{0} B_{0}\left(F\left(x_{0}\right)-F\left(v_{0}\right)\right)-\left[x_{0}, x_{0}\right]\left(x_{0}-v_{0}\right) \\
& =\left(L_{0} B_{0}\left[x_{0}, v_{0}\right]-\left[x_{0}, x_{0}\right]\right)\left(x_{0}-v_{0}\right) \leq\left(L_{0}-\left[x_{0}, x_{0}\right]\right)\left(x_{0}-v_{0}\right) \leq 0 .
\end{aligned}
$$

Therefore, we have

$$
P_{3}\left(x_{0}-v_{0}\right) \leq x_{0}-v_{0} .
$$

By Kantorovich's theorem, there exists $z_{3} \in\left\langle 0, x_{0}-v_{0}\right\rangle$ such that $P_{3}\left(z_{3}\right)=$ z_{3}. Set $v_{1}=w_{0}+z_{3}$, and we have the estimates

$$
-L_{0}\left(w_{0}-v_{0}\right)+A_{0}\left(v_{1}-w_{0}\right)=0
$$

and

$$
L_{0}\left(w_{0}-v_{0}\right) \geq 0 .
$$

Furthermore, we can define the operator

$$
P_{4}:\left\langle 0, x_{0}-v_{0}\right\rangle \rightarrow E_{1}, \quad P_{4}(x)=x+B_{0}\left(L_{0} B_{0} F\left(x_{0}\right)-A_{0}(x)\right) .
$$

This operator is isotone and continuous. We have in turn

$$
\begin{aligned}
P_{4}(0)= & B_{0} L_{0} B_{0} F\left(x_{0}\right) \geq 0 \quad \text { by }(2.7), \\
P_{4}\left(x_{0}-v_{0}\right)= & x_{0}-v_{0}+B_{0} L_{0} B_{0} F\left(v_{0}\right) \\
& +B_{0}\left(L_{0} B_{0}\left(F\left(x_{0}\right)-F\left(v_{0}\right)\right)-A_{0}\left(x_{0}-v_{0}\right)\right) \leq x_{0}-v_{0}
\end{aligned}
$$

(by using the same approach as for P_{3}). By Kantorovich's theorem, there exists $z_{4} \in\left\langle 0, x_{0}-v_{0}\right\rangle$ such that $P_{4}\left(z_{4}\right)=z_{4}$. Set $x_{1}=y_{0}-z_{4}$, and we have the estimates

$$
-L_{0}\left(y_{0}-x_{0}\right)+A_{0}\left(x_{1}-y_{0}\right)=0
$$

and

$$
L_{0}\left(y_{0}-x_{0}\right) \leq 0 .
$$

From the approximation (2.3), we now have

$$
v_{1}-w_{0}=w_{0}+B_{0} L_{0}\left(w_{0}-v_{0}\right)-w_{0}=B_{0} L_{0}\left(w_{0}-v_{0}\right) \geq 0
$$

Hence, we obtain $w_{0} \leq v_{1}$. Moreover, from the approximation (2.4), we have

$$
x_{1}-y_{0}=y_{0}+B_{0} L_{0}\left(y_{0}-x_{0}\right)-y_{0}=B_{0} L_{0}\left(y_{0}-x_{0}\right) \leq 0 .
$$

That is, we get $x_{1} \leq y_{0}$. Furthermore, we can obtain in turn

$$
\begin{aligned}
v_{1}-x_{1}= & w_{0}+B_{0} L_{0}\left(w_{0}-v_{0}\right)-\left(y_{0}-B_{0} L_{0}\left(y_{0}-x_{0}\right)\right) \\
= & w_{0}-y_{0}+B_{0} L_{0}\left(w_{0}-v_{0}+x_{0}-y_{0}\right) \\
= & v_{0}-B_{0} L_{0} F\left(v_{0}\right)-\left(x_{0}-B_{0} F\left(x_{0}\right)\right)+B_{0} L_{0}\left(v_{0}-B_{0} F\left(v_{0}\right)\right) \\
& \quad-B_{0} L_{0}\left(v_{0}\right)+B_{0} L_{0}\left(x_{0}\right)-B_{0} L_{0}\left(x_{0}-B_{0} F\left(x_{0}\right)\right) \\
= & v_{0}-x_{0}-B_{0}\left(F\left(v_{0}\right)-F\left(x_{0}\right)\right)-B_{0} L_{0} B_{0}\left(F\left(v_{0}\right)-F\left(x_{0}\right)\right) \\
= & \left(I-B_{0}\left[v_{0}, x_{0}\right]-B_{0} L_{0} B_{0}\left[v_{0}, x_{0}\right]\right)\left(v_{0}-x_{0}\right) .
\end{aligned}
$$

But, using hypotheses (2.11) and (2.12), we have

$$
\begin{aligned}
B_{0} L_{0} B_{0}\left[v_{0}, x_{0}\right] & +B_{0}\left[v_{0}, x_{0}\right] \leq B_{0} L_{0} B_{0} A_{0}+B_{0}\left[v_{0}, x_{0}\right] \\
& \leq B_{0} L_{0}+B_{0}\left[v_{0}, x_{0}\right] \leq B_{0}\left(L_{0}+\left[v_{0}, x_{0}\right]\right) \\
& \leq B_{0}[p, q] \leq B_{0} A_{0} \leq I .
\end{aligned}
$$

We now obtain $v_{1} \leq x_{1}$. From all the above, we now have that

$$
v_{0} \leq w_{0} \leq v_{1} \leq x_{1} \leq y_{0} \leq x_{0}
$$

By hypothesis (2.10), it follows that the operator A_{n} has a continuous nonnegative left subinverse B_{n} for all $n \geq 0$. Proceeding by induction, we can show that there exist two sequences $\left\{v_{n}\right\},\left\{x_{n}\right\}(n \geq 0)$ satisfying (2.1)-(2.4) in a regular space E_{1} and as such, they converge to some $v^{*}, x^{*} \in D_{0}$. That is, we have

$$
\lim _{n \rightarrow \infty} v_{n}=v^{*} \leq x^{*}=\lim _{n \rightarrow \infty} x_{n} .
$$

If $v_{0} \leq u \leq x_{0}$ and $F(u)=0$, then we can obtain

$$
\begin{aligned}
A_{0}\left(y_{0}-u\right) & =A_{0}\left(x_{0}-B_{0} F\left(x_{0}\right)\right)-A_{0} u=A_{0}\left(x_{0}-u\right)-A_{0} B_{0}\left(F\left(x_{0}\right)-F(u)\right) \\
& =A_{0}\left(I-B_{0}\left[x_{0}, u\right]\right)\left(x_{0}-u\right) \geq 0, \text { since } B_{0}\left[x_{0}, u\right] \leq B_{0} A_{0} \leq I .
\end{aligned}
$$

Similarly, we show $A_{0}\left(w_{0}-u\right) \leq 0$.
If the operator A_{0} is inverse nonnegative, then it follows from the above that $w_{0} \leq u \leq y_{0}$. Proceeding by induction, we deduce that $w_{n} \leq u \leq y_{n}$, from which it follows that $w_{n} \leq v_{n} \leq w_{n+1} \leq u \leq y_{n+1} \leq x_{n} \leq y_{n}$ for all $n \geq 0$. That is, we have $v_{n} \leq u \leq x_{n}$ for all $n \geq 0$. Hence, we get $v^{*} \leq u \leq x^{*}$.

That completes the proof of the theorem.
In what follows, we shall give some natural conditions under which the points v^{*} and x^{*} are solutions of the equation $F(x)=0$.

Theorem 2.2. Under the hypotheses of Theorem 2.1, suppose that F is continuous at v^{*} and x^{*}. If one of the following conditions is satisfied
(a) $x^{*}=y^{*}$;
(b) E_{1} is normal and there exists an operator $Q: E_{1} \rightarrow E_{2}(Q(0)=0)$ which has an isotone inverse continuous at the origin and such that $A_{n} \leq T$ for sufficiently large n;
(c) E_{2} is normal and there exists an operator $R: E_{1} \rightarrow E_{2}(R(0)=0)$ continuous at the origin and such that $A_{n} \leq R$ for sufficiently large n;
(d) the operators A_{n} are equicontinuous for all $n \geq 0$; and
(e) E_{2} is normal and $[u, v] \leq[x, y]$ if $u \leq x$ and $v \leq y$.

Then, we have

$$
F\left(v^{*}\right)=F\left(x^{*}\right)=0 .
$$

Proof.
(a) Using the continuity of F and $F\left(v_{n}\right) \leq 0 \leq F\left(x_{n}\right)$ we get $F\left(v^{*}\right) \leq v^{*} \leq$ $F\left(v^{*}\right)$. That is, we obtain $F\left(x^{*}\right)=F\left(v^{*}\right)=0$.
(b) By (2.1) and (2.2), we get

$$
\begin{aligned}
& 0 \geq F\left(v_{n}\right)=A_{n}\left(v_{n}-w_{n}\right) \geq Q\left(v_{n}-w_{n}\right), \\
& 0 \leq F\left(x_{n}\right)=A_{n}\left(x_{n}-y_{n}\right) \leq Q\left(x_{n}-y_{n}\right) .
\end{aligned}
$$

Hence, we get

$$
0 \geq Q^{-1} F\left(v_{n}\right) \geq v_{n}-w_{n}, \quad 0 \leq Q^{-1} F\left(x_{n}\right) \leq x_{n}-y_{n} .
$$

Since E_{1} is normal and $\lim _{n \rightarrow \infty}\left(v_{n}-w_{n}\right)=\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} Q^{-1} F\left(v_{n}\right)=\lim _{n \rightarrow \infty} Q^{-1} F\left(x_{n}\right)=0$. Hence, by continuity, we get $F\left(v^{*}\right)=F\left(x^{*}\right)=0$.
(c) As above, we get

$$
0 \geq F\left(v_{n}\right) \geq R\left(v_{n}-w_{n}\right), \quad 0 \leq F\left(x_{n}\right) \leq R\left(x_{n}-y_{n}\right) .
$$

Using the normality of E_{2} and the continuity of F and R, we get $F\left(v^{*}\right)=$ $F\left(x^{*}\right)=0$.
(d) From the equicontinuity of the operator A_{n}, we have $\lim _{n \rightarrow \infty} A_{n}\left(v_{n}-\right.$ $\left.w_{n}\right)=\lim _{n \rightarrow \infty} A_{n}\left(x_{n}-y_{n}\right)=0$. Hence, by (2.1) and (2.2), $F\left(v^{*}\right)=$ $F\left(x^{*}\right)=0$.
(e) Using hypotheses (2.9)-(2.12), we get in turn

$$
\begin{aligned}
0 \leq F\left(y_{n}\right) & =F\left(y_{n}\right)-F\left(x_{n}\right)-A_{n}\left(y_{n}-x_{n}\right) \\
& =\left(A_{n}-\left[y_{n}, x_{n}\right]\right)\left(x_{n}-y_{n}\right) \leq\left(\left[x_{0}, x_{0}\right]-\left[x^{*}, x^{*}\right]\right)\left(x_{n}-y_{n}\right) .
\end{aligned}
$$

Since E_{2} is normal and $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$, we get $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=0$. Moreover, from hypothesis (2.10)

$$
\left[x^{*}, x^{*}\right]\left(x_{n}-x^{*}\right) \leq\left[x^{*}, x_{n}\right]\left(x_{n}-x^{*}\right)=F\left(x_{n}\right)-F\left(x^{*}\right) \leq\left[x_{0}, x_{0}\right]\left(x_{n}-x^{*}\right)
$$

and by the normality of $E_{2}, F\left(x^{*}\right)=\lim _{n \rightarrow \infty} F\left(x_{n}\right)$. Hence, we get $F\left(x^{*}\right)=0$. The result $F\left(v^{*}\right)=0$ can be obtained similarly.

The proof of the theorem is complete.
As in Theorems 2.1 and 2.2, we can prove the following result (see also $[4,6,10]):$

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 are true. Then the approximations

$$
\begin{aligned}
& y_{n}=x_{n}-B_{n} F\left(x_{n}\right), \\
& x_{n+1}=y_{n}+B_{n} L_{n}\left(y_{n}-x_{n}\right), \quad L_{n}=\left[x_{n}, x_{n}\right]-\left[x_{n}, y_{n}\right], \\
& w_{n}=v_{n}-B_{n} F\left(v_{n}\right)
\end{aligned}
$$

and

$$
v_{n+1}=w_{n}+B_{n} L_{n}\left(w_{n}-v_{n}\right),
$$

where the operators B_{n} are nonnegative subinverses of A_{n}, generate two sequences $\left\{v_{n}\right\}$ and $\left\{x_{n}\right\}$ satisfying approximations (2.1)-(2.4). Moreover, for any solution $u \in\left\langle v_{0}, x_{0}\right\rangle$ of the equation $F(x)=0$ we have

$$
u \in\left\langle v_{n}, x_{n}\right\rangle, \quad n \geq 0 .
$$

Furthermore, assume that the following are true:
(a) E_{2} is a POTL-space and E_{1} is a normal POTL-space;
(b) $\lim _{n \rightarrow \infty} x_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=v^{*}$;
(c) F is continuous at v^{*} and x^{*}; and
(d) there exists a continuous nonsingular nonnegative operator T such that $B_{n} \geq T$ for sufficiently large n.
Then

$$
F\left(v^{*}\right)=F\left(x^{*}\right)=0 .
$$

References

1. I. K. Argyros, On a class of nonlinear integral equations arising in neutron transport, Aequationes Math. 36 (1988), 99-111.
2. I. K. Argyros, The Newton-Knatorovich method under mild differentiability conditions and the Ptak error estimates, Monatsh. Math. 109 (1990), 191-203.
3. I. K. Argyros, On the solution of equations with nondifferentiable operators and the Ptak error estimates, BIT 90 (1990), 752-754.
4. I. K. Argyros and F. Szidarovszky, On the monotone convergence of general Newton-like methods, Bull. Austral. Math. Soc. 45 (1992), 489-502.
5. I. K. Argyros and F. Szidarovszky, A fourth order method in Banach spaces, Applied Math. Lett. 6 (1993), 97-98.
6. I. K. Argyros and F. Szidarovszky, The Theory and Applications of Iteration Methods, C.R.C. Press, Inc., Boca Raton, Florida, 1993.
7. X. Chen and T. Pamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim. 10 (1984), 37-48.
8. M. A. Mertvecovz, An analog of the process of tangent hyperbolas for general functional equations (Russian), Dokl. Akad. Nauk. UzSSR 88 (1953), 611-614.
9. M. T. Necepurenko, On Chebysheff's method for functional equations (Russian), Uspekhi Mat. Nauk 9 (1954), 163-170.
10. F. A. Potra, On an iterative algorithm of order $1.839 \ldots$ for solving nonlinear operator equations, Numer. Funct. Anal. Optim. 7 (1984-85), 75-106.
11. S. Ul'm, Iteration methods with divided differences of the second order (Russian), Dokl. Akad. Nauk. UzSSR 158 (1964), 55-58; Soviet Math. Dokl., 5, 1187-1190.
12. P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of NewtonKantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim. 9 (1987), 671-684.

Department of Mathematics, Cameron University
Lawton, OK 73505, U.S.A.

