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SOLVING POLYNOMIAL SYSTEMS BY
POLYHEDRAL HOMOTOPIES

Tien-Yien Li*

Abstract. In the last two decades, the homotopy continuation method
has been developed into a reliable and efficient numerical algorithm for
solving all isolated zeros of polynomial systems. During the last few
years, a major computational breakthrough has emerged in the area.
Based on the Bernshtein theory on root count, the polyhedral homotopy
is established to considerably reduce the number of homotopy paths that
need to be traced to find all the isolated roots, making the method much
more powerful. This article reports the most recent development of this
new method along with future considerations.

1. Introduction

Polynomial systems arose quite commonly in many fields of science and
engineering, such as formula construction, geometric intersection, inverse kine-
matics, power flow with PQ-specified bases, computation of equilibrium states,
etc.; see [9]. Elimination theory-based methods, most notably the Buchberger
algorithm [5] for constructing Gröbner bases, are the classical approach to
solving multivariate polynomial systems, but their reliance on symbolic ma-
nipulation makes those methods somewhat unsuitable for all but small prob-
lems.

In 1977, Garcia and Zangwill [13] and Drexler [10] independently presented
theorems suggesting that homotopy continuation could be used to find the full
set of isolated zeros of a polynomial system numerically. During the last two
decades this method has been developed into a reliable and efficient numerical

0Received June 28, 1999.
Communicated by P. Y. Wu.
1991 Mathematics Subject Classification: 65H10, 68Q40, 93B27.
Key words and phrases: Polynomial systems, homotopy continuation, polyhedral homotopy,
Bernshtein theory.
∗Research supported in part by NSF under Grant DMS-9804846.

251



252 Tien-Yien Li

algorithm for approximating all isolated zeros of polynomial systems. See [23]
for a survey.

Let P (x) = 0 be a system of n polynomial equations in n unknowns.
Denoting P = (p1, ..., pn), we want to find all isolated solutions of

p1(x1, ..., xn) = 0,
...

pn(x1, . . . , xn) = 0,
(1)

for x = (x1, ..., xn). The classical homotopy continuation method for solving
(1) is to define a trivial system Q(x) = (q1(x), ..., qn(x)) = 0 and then follow
the curves in the real variable t which make up the solution set of

0 = H(x, t) = (1− t)Q(x) + tP (x).(2)

More precisely, if the system Q(x), known as the start system, is chosen
correctly, the following three properties hold:

• Property 0 (Triviality). The solutions of Q(x) = 0 are known.

• Property 1 (Smoothness). The solution set of H(x, t) = 0 for 0 ≤ t ≤ 1
consists of a finite number of smooth paths, each parametrized by t in
[0, 1).

• Property 2 (Accessibility). Every isolated solution of H(x, 1) = P (x) = 0
can be reached by some path originating at t = 0. It follows that this
path starts at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths can be followed from
the initial points (known because of Property 0) at t = 0 to all solutions of the
original problem P (x) = 0 at t = 1 using standard numerical techniques [1, 2].
A homotopy H(x, t) = 0 with H(x, 0) = Q(x) and H(x, 1) = P (x), which may
not be in the form of (2), is considered to be successful if it satisfies these three
properties.

A typical choice [8, 22, 24, 29, 40, 41] of the system Q(x) = (q1(x), ..., qn(x))
which satisfies Properties 0-2 is,

q1(x1, ..., xn) = a1x
d1
1 − b1,

...
qn(x1, ..., xn) = anx

dn
n − bn,

(3)

where d1, ..., dn are the degrees of p1(x), ..., pn(x) respectively, and aj , bj are
random complex numbers (and therefore nonzero with probability one). So in
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one sense, the original problem posed is solved. All solutions of P (x) = 0 are
found at the end of d1 · · · dn paths that make up the solution set of H(x, t) =
0, 0 ≤ t ≤ 1.

The reason the problem is not satisfactorily solved by the above consid-
erations is the existence of extraneous paths. Although the above method
produces d = d1 · · · dn paths since Q(x) = 0 in (3) has d isolated nonsingular
solutions, the system P (x) = 0 may have fewer than d solutions. We call such
a system deficient. In this case, some of the paths produced by the above
method will be extraneous paths.

More precisely, even though Properties 0-2 imply that each solution of
P (x) = 0 will lie at the end of a solution path, it is also consistent with these
properties that some of the paths may diverge to infinity as the parameter t
approaches 1 (the smoothness property rules this out for t→ t0 < 1). In other
words, it is quite possible for Q(x) = 0 to have more solutions than P (x) = 0.
In this case, some of the paths leading from roots of Q(x) = 0 are extraneous,
and diverge to infinity when t→ 1 (see Figure 1).

Empirically, we find that most systems arising in applications are deficient.
A great majority of the systems have fewer than, and in some cases only a
small fraction of, the expected number of solutions. For a typical example of
this sort, let us look at the following Cassou-Nogues system

FIG. 1.
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p1 =15b4cd2 + 6b4c3 + 21b4c2d− 144b2c− 8b2c2e
−28b2cde− 648b2d+ 36b2d2e+ 9b4d3 − 120,

p2 =30b4c3d− 32cde2 − 720b2cd− 24b2c3e− 432b2c2 + 576ce− 576de
+16b2cd2e+ 16d2e2 + 16c2e2 + 9b4c4 + 39b4c2d2 + 18b4cd3

−432b2d2 + 24b2d3e− 16b2c2de− 240c+ 5184,
p3 =216b2cd− 162b2d2 − 81b2c2 + 1008ce− 1008de+ 15b2c2de

−15b2c3e− 80cde2 + 40d2e2 + 40c2e2 + 5184,
p4 =4b2cd− 3b2d2 − 4b2c2 + 22ce− 22de+ 261.

(4)

Since d1 = 7, d2 = 8, d3 = 6 and d4 = 4 for this system, the system Q(x) in (3)
will produce d1 × d2 × d3 × d4 = 7× 8× 6× 4 = 1344 paths for the homotopy
in (2). However, the system (4) has only 16 isolated zeros. Consequently, a
major fraction of the paths are extraneous. Sending out 1344 paths in search
of 16 solutions is a highly wasteful computation.

The choice of Q(x) in (3) to solve the system P (x) = 0 requires an amount
of computational effort proportional to d1 · · · dn, known as the Bézout number,
which bounds the number of isolated zeros, counting multiplicities, of P (x) in
Cn [36]. We wish to derive methods for solving deficient systems for which the
computational effort is instead proportional to the actual number of solutions.

In the last few years, a major computational breakthrough has emerged
in the area. The new idea takes a great advantage of the Bernshtein theory
[4] which provides a much tighter bound, compared to the Bézout bound,
for the number of isolated zeros of P (x) in the algebraic tori (C∗)n, where
C∗ = C \ {0}. The so-called polyhedral homotopy [17] is then established
for the new method and the homotopy paths so produced are much fewer.
Accordingly, the required computation effort is considerably reduced. The
new algorithm is very promising. In particular, for polynomial systems without
special structures, the new algorithm outperformed the existing methods by a
big margin.

In this article, we report some new developments of this method along with
the necessary tools. Solving polynomial systems by the polyhedral homotopy
in the new method consists of two major steps:

(A) Solve a new polynomial system with the same monomials as the origi-
nally given polynomial system, but with randomly chosen coefficients.

(B) The new polynomial system is then used as the start system in the linear
homotopy in (2) to solve the original system.

We divide our discussion on solving polynomial systems with randomly
chosen coefficients at Step (A) in Sections 2, 3, and 4. In Section 5, the
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cheater’s homotopy that uses the polynomial system solved in Step (A) as the
start system in the linear homotopy in (2) is described for Step (B). Further
considerations of the method as well as a few remarks will be presented in
Section 6.

2. The Bernshtein Theory

The Bernshtein theory on root count of polynomial systems is essential for
our attempt to reduce the number of homotopy curves need to be traced when
the homotopy continuation method is employed to find all the isolated zeros
of polynomial systems.

Let the given polynomial system be P (x) = (p1(x), ..., pn(x)) ∈ C[x], where
x = (x1, ..., xn). With xa = xa1

1 ...x
an
n where a = (a1, ..., an), write

p1(x) =
∑
a∈S1

c∗1,ax
a,

...
pn(x) =

∑
a∈Sn

c∗n,ax
a,

(5)

where S1, ..., Sn are fixed subsets of Nn with cardinalities kj = #Sj , and
c∗j,a ∈ C∗(= C \ {0}) for a ∈ Sj , j = 1, ..., n. We call Sj the support of pj(x),
denoted by supp(pj), its convex hull Qj = conv(Sj) in Rn the Newton polytope
of pj , and S = (S1, ..., Sn) the support of P (x), denoted by supp(P ).

We now embed the system (5) in the systems P (c, x) = (p1(c, x), ..., pn(c, x)),
where

p1(c, x) =
∑
a∈S1

c1,ax
a,

...
pn(c, x) =

∑
a∈Sn

cn,ax
a,

(6)

and the coefficients cj,a with a ∈ Sj , for j = 1, ..., n are taken to be a set of
M ≡ k1 + · · · + kn variables. Namely, the system P (x) in (5) is considered
as a system in (6) corresponding to a set of specified values of coefficients
c̄ = (c∗j , a) or P (x) = P (c̄, x).

In the rest of the paper, the total number of isolated zeros, counting mul-
tiplicities, of a polynomial system will be referred to as the root count of the
system.

Lemma 2.1. [16] For polynomial systems P (c, x) in (6), there exists a
polynomial system G(c) = (g1(c), ..., gn(c)) in the variables c = (cj , a) for
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a ∈ Sj and j = 1, ..., n such that for those coefficients c̄ = (c∗j , a) for which
G(c̄) 6= 0, the root count in (C∗)n of the corresponding polynomial systems in
(6) is a fixed number, and the root count in (C∗)n of any other polynomial
systems in (6) is bounded above by this number.

Remark 2.2. Since the zeros of the polynomial system G(c) in the above
lemma form an algebraic set with dimension smaller than M , its complement
is open and dense with full measure in CM . Therefore, with probability one,
G(c̄) 6= 0 for randomly chosen coefficients c̄ = (c∗j , a) ∈ CM . Hence, polyno-
mial systems P (c̄, x) in (6) with G(c̄) 6= 0 are said to be in general position.

A simple example that illustrates the assertion of Lemma 2.1 above is the
following 2× 2 linear systems:

c11x1 + c12x2 = b1,
c21x1 + c22x2 = b2.

(7)

Here, c = (c11, c12, c21, c22,−b1,−b2). Let

G(c) = det

(
c11 c12
c21 c22

)
× det

(
c11 b1
c21 b2

)
× det

(
b1 c12
b2 c22

)
.

Then, when the coefficient c̄ = (c∗11, c
∗
12, c

∗
21, c

∗
22,−b∗1,−b∗2) satisfies G(c̄) = 0,

its corresponding system in (7) has no isolated solution in (C∗)2; otherwise,
the system has a unique solution in (C∗)2.

Theorem 2.3. ([4], Theorem A) The root count in (C∗)n for a polynomial
system P (x) = (p1(x), . . . , pn(x)) in general position equals to the mixed
volume of its support.

The terminology used in this theorem needs explanation. For nonnegative
variables λ1, ..., λn and the Newton polytopes Qj of pj for j = 1, ..., n, let
λ1Q1 + ...+ λnQn denote the Minkowski sum of λ1Q1, ..., λnQn, that is,

λ1Q1 + ...+ λnQn = {λ1r1 + ...+ λnrn|rj ∈ Qj , j = 1, ..., n}.

It can be shown that the n-dimensional volume of this polytope Voln(λ1Q1+
... + λnQn) is a homogeneous polynomial of degree n in λ1, ..., λn. The coef-
ficient of the term λ1 × ...× λn in this homogeneous polynomial is called the
mixed volume of the polytopes Q1, ..., Qn, denoted by M(Q1, ..., Qn), or the
mixed volume of the support of the system P (x) = (p1(x), ..., pn(x)), denoted
by M(S1, ..., Sn) where Sj = supp(pj) for j = 1, ..., n. Sometimes, when no
ambiguities exist, it is called the mixed volume of P (x).



Solving Polynomial Systems by Polyhedral Homotopies 257

In [6], this root count was nicknamed the BKK bound after its inventors,
Bernshtein [4], Kushnirenko [21] and Khovanskii [20]. In general, it provides a
much tighter bound compared to variant Bézout bounds [31, 36]. An apparent
limitation of the theorem is that it only counts the isolated zeros of polynomial
systems in (C∗)n rather than all the isolated zeros in the affine space Cn. For
the purpose of finding all the isolated zeros of a polynomial system in Cn, a
generalized version of the assertion in the theorem which counts the roots in Cn

is strongly desirable. This problem was first attempted in [34] by introducing
the notion of the shadowed sets and a bound for the root count in Cn was
obtained. Later, a significantly much tighter bound was discovered in the
following theorem.

Theorem 2.4. [28] The root count in Cn of a polynomial system P (x) =
(p1(x), ..., pn(x)) with supports Sj = supp(pj), j = 1, ..., n, is bounded above
by the mixed volume M(S1

⋃
{0}, . . . , Sn

⋃
{0}).

In other words, the theorem says that the root count in Cn of a polynomial
system P (x) = (p1(x), ..., pn(x)) is bounded above by the root count in (C∗)n

of the polynomial system P̄ (x) in general position obtained by augmenting
constant terms to those p′js in P (x) which do not have them. As a corollary,
when 0 ∈ Sj for all j = 1, ..., n, namely, all pj(x) in P (x) have constant terms,
then the mixed volume of P (x) also serves as a bound for the root count of
P (x) in Cn, more than just a bound for the root count in (C∗)n as Theorem
2.3 asserts.

This theorem was further extended in several different ways [18, 35].

3. The Polyhedral Homotopy

In light of Theorem 2.4 given in the last section, to find all isolated zeros of
a given polynomial system P (x) = (p1(x), ..., pn(x)) in Cn with support S =
(S1, ..., Sn), we first augment the monomial x0 (=1) to those pi’s which do not
have constant terms. Followed by choosing coefficients of all the monomials at
random, a new system Q(x) = (q1(x), ..., qn(x)) with support S′ = (S′1, ..., S

′
n)

is obtained, where, of course, S′j = Sj ∪ {0} for j = 1, ..., n. We want to solve
this system in the first place, and the details will be discussed in this section.
Afterwards, in Section 5, this system will be used as the start system to solve
P (x) = 0 via linear homotopy in (2).

To begin, we write
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Q(x) =



q1(x) =
∑
a∈S′1

c̄1,ax
a,

...
qn(x) =

∑
a∈S′n

c̄n,ax
a.

(8)

Since all those coefficients c̄j,a for a ∈ S′j and j = 1, ..., n are chosen at random,
this system may be considered as a system in general position. Namely, there
exists a polynomial system

G(c) = (g1(c), ..., gn(c))(9)

in the variables c = (cj,a), for a ∈ S′j and j = 1, ..., n, such that G(c̄) 6= 0 for
the set of coefficients c̄ = (c̄j,a) in (8), and such polynomial systems reach the
maximum root count in (C∗)n for the support S′ = (S′1, ..., S

′
n).

Let t denote a new complex variable and consider the polynomial system
Q̂(x, t) = (q̂1(x, t), ..., q̂n(x, t)) in the n+ 1 variables (x, t) given by

Q̂(x, t) =



q̂1(x, t) =
∑
a∈S′1

c̄1,ax
atw1(a),

...
q̂n(x, t) =

∑
a∈S′n

c̄n,ax
atwn(a),

(10)

where each wj : S′j → R for j = 1, ..., n is chosen generically. For a fixed t0,
we rewrite the system in (10) as

Q̂(x, t0) =



q̂1(x, t0) =
∑
a∈S′1

(c̄1,at
w1(a)
0 )xa,

...
q̂n(x, t0) =

∑
a∈S′n

(c̄n,at
wn(a)
0 )xa.

This system is in general position if for G(c) in (9),

T (t0) ≡ G(c̄j,at
wj(a)
0 ) 6= 0, for a ∈ S′j and j = 1, ..., n.

The equation T (t) = 0 can have at most finitely many solutions, since T (t) is
not identically 0 because T (1) = G(c̄j,a) 6= 0. Let

t1 = r1e
iθ1 , ..., tk = rke

iθk
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be the solutions of T (t) = 0. Then, for any θ 6= θj for j = 1, ..., k, the systems
Q̄(x, t) = (q̄1(x, t), ..., q̄n(x, t)) given by

Q̄(x, t) =



q̄1(x, t) =
∑
a∈S′1

(c̄1,ae
iw1(a)θ)xatw1(a),

...
q̄n(x, t) =

∑
a∈S′n

(c̄n,aeiwn(a)θ)xatwn(a),

are in general position for all t > 0 because

c̄j,ae
iwj(a)θtwj(a) = c̄j,a(teiθ)wj(a)

and
G(c̄j,a(teiθ)wj(a)) = T (teiθ) 6= 0.

Therefore, without loss of generality, (choose an angle θ at random and change
the coefficients c̄j,a to c̄j,ae

iwj(a)θ if necessary) we may suppose the systems
Q̂(x, t) in (10) are in general position for all t > 0. Together with Lemma 2.1
given in the last section, it follows that for all t > 0 the systems Q̂(x, t) in (10)
have the same number of isolated zeros in (C∗)n. This number, say k, should
equal to the mixed volume of the support of Q(x) in (8) by Theorem 2.3. We
shall skip this fact temporarily and will reach this assertion at the end of this
section.

Now, consider Q̂(x, t) = 0 as a homotopy defined on (C∗)n × [0, 1], known
as the polyhedral homotopy. We have Q̂(x, 1) = Q(x), and the zero set of
this homotopy is made up of k homotopy paths, say, x(1)(t), ..., x(k)(t), since
for each t, 0 < t ≤ 1, Q̂(x, t) has exactly k isolated zeros from the argument
given above. Since each q̂j(x, t) has nonzero constant term for all j = 1, ..., n,
by a standard application of generalized Sard’s Theorem [7], all those ho-
motopy paths are smooth with no bifurcations. Therefore, both Property
1 (Smoothness) and Property 2 (Accessibility) introduced in Section 1 hold
for this homotopy. However, at t = 0, Q̂(x, 0) ≡ 0; see Figure 2. Conse-
quently, the starting points x(1)(0), ..., x(k)(0) of those homotopy paths cannot
be identified, causing the breakdown of the standard homotopy continuation
algorithm. This major obstacle can be overcome by the device we describe
below.

For α = (α1, ..., αn) ∈ Rn, consider the transformation y = t−αx defined
by

y1 = t−α1x1,
...

yn = t−αnxn.

(11)

259
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FIG. 2.

For a = (a1, ..., an) ∈ Nn, we have

xa = xa1
1 · · ·xann

= (y1t
α1)a1 · · · (yntαn)an

= ya1
1 · · · yann tα1an+···+αnan

= yat〈α,a〉.

(12)

Here, 〈·, ·〉 stands for the usual inner product in Rn. Substituting (12) into
(10) yields, for j = 1, ..., n,

hj(y, t) ≡ q̂j(ytα, t) =
∑
a∈S′j

c̄j,ay
at〈α,a〉twj(a)

=
∑
a∈S′j

c̄j,ay
at〈(α,1),(a,wj(a))〉

=
∑
a∈S′j

c̄j,ay
at〈α̂,â〉,

(13)

where α̂ = (α, 1) ∈ Rn+1, and â = (a,wj(a)) for a ∈ S′j . The new homotopy

H(y, t) = (h(y1, t), ..., hn(y, t)) = 0(14)

retains most of the properties of the homotopy Q̂(x, t) = 0, in particular,
H(y, 1) = Q̂(y, 1) = Q(y) and both Properties 1 (Smoothness) and 2 (Acces-
sibility) stand. Let
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βj = min
a∈S′j
〈α̂, â〉, j = 1, ..., n,(15)

and define the homotopy

Hα(y, t) = (hα1 (y, t), ..., hαn(y, t)) = 0(16)

on (C∗)n × [0, 1], where, for j = 1, ..., n,

hαj (y, t) ≡ t−βjhj(y, t) =
∑
a∈S′j

c̄j,ay
at〈α̂,â〉−βj

=
∑
a∈S′

j
〈α̂,â〉=βj

c̄j,ay
a +

∑
a∈S′

j
〈α̂,â〉>βj

c̄j,ay
at〈α̂,â〉−βj .(17)

Evidently, for any path ỹ(t) defined on [0, 1], we have, for all t > 0,

Hα(ỹ(t), t) = 0 ⇐⇒ H(ỹ(t), t) = 0.

Therefore, the zero set of Hα(y, t) = 0 consists of the same homotopy paths
of the homotopy H(y, t) = 0 in (14). The difference is, the starting points of
the homotopy paths considered in the homotopy Hα(y, t) = 0 are solutions of
the system

Hα(y, 0) =



hα1 (y, 0) =
∑
a∈S′1
〈α̂,â〉=β1

c̄1,ay
a = 0,

...
hαn(y, 0) =

∑
a∈S′n
〈α̂,â〉=βn

c̄n,ay
a = 0.

(18)

As indicated below, when this system is in certain desired form, its isolated
nonsingular solutions that lie in (C∗)n can be constructively identified. In
those situations, Property 0 (Triviality) becomes partially valid for the homo-
topy paths that emanate from those nonsingular solutions of (18) in (C∗)n,
and we may follow those paths to reach a partial set of isolated zeros of Q(y)
at t = 1.

The system (18) is known as the binomial system if each hαj (y, 0) consists
of exactly two terms, that is,

hα1 (y, 0) = c11y
a

(1)
1 + c12y

a
(1)
2 = 0,

...

hαn(y, 0) = cn1y
a

(n)
1 + cn2y

a
(n)
2 = 0,

(19)
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where a(j)
l ∈ S′j and cjl = c̄j,al for j = 1, ..., n and l = 1, 2.

Proposition 3.1. The binomial system in (19) has

kα ≡

∣∣∣∣∣∣∣∣det


a

(1)
1 − a

(1)
2

...
a

(n)
1 − a(n)

2


∣∣∣∣∣∣∣∣(20)

nonsingular solutions in (C∗)n.

The proof of this proposition is constructive and therefore provides an
algorithm for solving the binomial system (18) in (C∗)n. We will come back
to this matter in the next section.

In summary, for given α = (α1, ..., αn) ∈ Rn, by changing variables y =
t−αx, as in (11), in the homotopy Q̂(x, t) = (q̂1(x, t), ..., q̂n(x, t)) = 0 in (10),
the homotopy H(y, t) = (h1(y, t), ..., hn(y, t)) = 0 in (14) is obtained, where
hj(y, t) = q̂j(ytα, t). Followed by factoring out the lowest power tβj of t among
all monomials in each individual hj(y, t) = 0 for j = 1, ..., n, we arrive at the
homotopy Hα(y, t) = 0 in (16). When the start system Hα(y, 0) = 0 of this
homotopy is binomial, its nonsingular solutions in (C∗)n, kα (as given in (20))
of them, become available. We may then follow those homotopy paths of
Hα(y, t) = 0 originated from those kα regular solutions of Hα(y, 0) = 0 in
(C∗)n, and reach kα isolated zeros of Q(y) at t = 1. Worth noting here is
the fact that the system Q(x), or Q(y), stays invariant at t = 1 during the
process. See Figure 3.

Now, the existence of α ∈ Rn for which the start system Hα(y, 0) = 0 is
binomial is warranted by the following

Proposition 3.2. For all the real functions wj : S′j → R, j = 1, ..., n,
being generically chosen, there must exist α ∈ Rn for which the start system
Hα(y, 0) = 0 of the homotopy Hα(y, t) = 0 in (16) is binomial with a nonempty
set of nonsingular solutions in (C∗)n, i.e., kα 6= 0 in (20).

The assertion of this proposition was proved implicitly in [17] with termi-
nologies and machineries developed in combinatorial geometry, such as, ran-
dom liftings, fine mixed subdivisions, lower facets of convex polytopes, etc.; see
also [23]. Here, we elect to reinterpret the result without those specialized
terms.

Now, different α ∈ Rn given in Proposition 3.2 leads to different homotopy
Hα(y, t) = 0 in (16). Henceforth, following homotopy paths of those different
homotopies will reach different sets of isolated zeros of Q(y). By taking the
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Puiseux series expansions of those homotopy paths of Hα(y, t) = 0 originated
at (C∗)n into consideration, it is not hard to see that those different sets of

Given α = (α1, ..., αn) ∈ Rn

Q̂(x, t) = 0 Q̂(x, 1) = Q(x)

x = ytα

y xj = yjt
αj

H(y, t) ≡ Q̂(ytα, t) = 0 H(y, 1) = Q̂(y, 1) = Q(y)

β = (β1, ..., βn)

y hαj = t−βjhj(y, t)

Hα(y, t) ≡ t−βH(y, t) = 0 Hα(y, 1) = H(y, 1) = Q(y)

• When Hα(y, 0) = 0 is binomial, i.e.,

hαj (y, 0) = cj1y
a

(j)
1 + cj2y

a
(j)
2 , j = 1, ..., n,

its kα(= det[(a(1)
1 − a

(1)
2 )T , ..., (a(n)

1 − a(n)
2 )T ]) nonsingular solutions in

(C∗)n are available.

• Follow those homotopy paths y(t) of Hα(y, t) = 0 where y(0) ∈ (C∗)n,
kα zeros of Q(y) will be reached at t = 1.

FIG. 3

isolated zeros of Q(y) reached by different sets of homotopy paths are actu-
ally disjoint from each other. Most importantly, it can be shown that every
isolated zero of Q(y) can be obtained this way by following certain homotopy
curve of the homotopy Hα(y, t) = 0 associated with certain α ∈ Rn given by
Proposition 3.2. Thus the total number of isolated zeros of Q(y) must equal to
the sum of those kα’s corresponding to all the possible α’s provided by Propo-
sition 3.2, respectively. In [17], it was shown that this sum actually equal to
the mixed volume of Q(y). This yields an alternative proof of Theorem 3.2,
which is very different from Bernshtein’s original approach [4].
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4. The Algorithms

Summarizing the details of the polyhedral homotopy method described
in the last section for solving all the isolated zeros of the system Q(x) =
(q1(x), ..., qn(x)) in (8), where

q1(x) =
∑
a∈S′1

c̄1,ax
a,

...
qn(x) =

∑
a∈S′n

c̄n,ax
a,

we have the following procedures:

Step 0. Choose a set of real valued functions, wj : S′j → R, j = 1, ..., n, gener-
ically. In fact, since all S′j are finite, only finitely many real random
numbers need to be identified.

Step 1. Find all the possible α ∈ Rn given in Proposition 3.2, and for each α
find a set of pairs of distinct vectors

Aα = {(a(j)
1 , a

(j)
2 )|a(j)

l ∈ S
′
j , for j = 1, ..., n and l = 1, 2}(21)

such that

kα ≡

∣∣∣∣∣∣∣∣det


a

(1)
1 − a

(1)
2

...
a

(n)
1 − a(n)

2


∣∣∣∣∣∣∣∣ 6= 0.(22)

More precisely, we look for α ∈ Rn and its associated set of vectors
Aα in (21) for which the start system Hα(y, 0) = 0 of the homotopy
Hα(y, t) = (hα1 (y, t), ..., hαn(y, t)) = 0, where for j = 1, ..., n,

hαj (y, t) =
∑
a∈S′j

c̄j,ay
at〈α̂,â〉−βj(23)

with 〈α̂, â〉 = 〈(α, 1), (a,wj(a))〉 = 〈α, a〉+wj(a) and βj = mina∈S′j 〈α̂, â〉,
is in the following binomial form:

hα1 (y, 0) = c11y
a

(1)
1 + c12y

a
(1)
2 = 0,

...

hαn(y, 0) = cn1y
a

(n)
1 + cn2y

a
(n)
2 = 0,

(24)

where cjl = c̄
j,a

(j)
l

for j = 1, ..., n and l = 1, 2.



Solving Polynomial Systems by Polyhedral Homotopies 265

Step 2. For each α obtained in Step 1, identify the kα, as in (22), nonsingular
solutions of the binomial system (24) in (C∗)n.

Step 3. For each α, follow kα homotopy paths of the homotopy Hα(y, t) = 0 in
(23) with starting points in (C∗)n obtained in Step 2. At t = 1, they
reach kα isolated zeros of Q(y), and when α is exhausted we find all the
isolated zeros of Q(y).

Among these steps, the algorithms for Steps 0 and 3 are standard applica-
tion of existing methods. Hence, we only discuss the details of the algorithms
for Steps 1 and 2 in the rest of this section,

First of all, α ∈ Rn in Step 1 must satisfy the following conditions:

(i) 〈α̂, â(j)
1 〉 = 〈α̂, â(j)

2 〉 = βj ,

(ii) βj < 〈α̂, â〉 for all a ∈ S′j , j = 1, ..., n,

and the matrix 
a

(1)
1 − a

(1)
2

...
a

(n)
1 − a(n)

2


is nonsingular.

From conditions (i) and (ii), we have, for j = 1, ..., n,

〈α, a(j)
1 〉+ wj(a

(j)
1 ) = 〈α, a(j)

2 〉+ wj(a
(j)
2 ), and

〈α, a(j)
1 〉+ wj(a

(j)
1 ) < 〈α, a〉+ wj(a), for all a ∈ S′j .

Or,
(a(j)

1 − a
(j)
2 )Tα = wj(a

(j)
2 )− wj(a(j)

1 ), and

(a(j)
1 − a)Tα < wj(a)− wj(a(j)

1 ), for all a ∈ S′j .
(25)

In simple notations, (25) can be written in the matrix form

Āα ≤ d,(26)

where the rows of the matrix Ā consist of vectors of either a(j)
1 −a

(j)
2 or a(j)

1 −a(j)

for certain a ∈ S′j \ {a
(j)
1 , a

(j)
2 } and the corresponding entries of vector d are

either wj(a
(j)
2 )− wj(a(j)

1 ) or wj(a(j))− wj(a(j)
1 ) respectively.

In view of (26), the search for α ∈ Rn in Step 1 can be organized as follows:
Given any pair (a(j)

1 , a
(j)
2 ) of two distinct points in each S′j , for j = 1, ..., n,

consider the combination of those pairs,
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(a(1)
1 , a

(1)
2 ), ..., (a(n)

1 , a
(n)
2 )(27)

when the matrix 
a

(1)
1 − a

(1)
2

...
a

(n)
1 − a(n)

2


is nonsingular. The existence of α ∈ Rn for which the matrix inequality in (26)
holds for this combination is known as the Phase I problem in Linear Program-
ming for the feasibility of the constraints listed in (25). It is quite obvious that
this problem is equivalent to the extreme value of the minimization problem,

min ε,
Āα− εe ≤ d, e = (1, ..., 1)T ,

ε ≥ 0,
(28)

in the variables (α, ε) being 0. The constraints of this minimization problem
is always feasible, since for α = 0, we can always choose ε large enough to
satisfy the matrix inequality in (28). Hence, the standard simplex algorithm
in Linear Programming can be employed to solve this minimization problem.
If the extreme value of ε fails to be zero, then for the combination in (27) in
consideration there exists no α ∈ Rn together with which the matrix inequality
(26) can be satisfied. When ε = 0 for certain α0 ∈ Rn, then, obviously, α0
and the set of vectors in the combination meet our search requirement in Step
1. In this way, by examining all the possible combinations, we may obtain all
the proper α’s along with their associated sets of vectors that we search for.

Apparently, this exhausting search procedure appears to be quite brutal
and costly. However, in practice, this procedure can be made much more
efficient with many special designs. For instance, to narrow down our search,
we may test the feasibility conditions for all the possible pairs of distinct points
in each individual S′j in the first place, and only those pairs that survive the
test can be considered as possible candidates for being an element in the
combination in (27). To be more precise, for a fixed j0, 1 ≤ j0 ≤ n, let (a1, a2)
be any pair of two distinct points in S′j0 . If this pair belongs to any successful
combinations in (27) for which there exists α ∈ Rn such that both conditions
(i) and (ii) are satisfied for all j = 1, .., n, then, by restricting conditions (i)
and (ii) on S′j0 , this α must satisfy:

(i)′ (a1 − a2)Tα = w(j0)(a2)− w(j0)(a1),

(ii)′ (a1 − a)Tα < w(j0)(a)− w(j0)(a1), for all a ∈ S′j0 .
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In other words, the constraints consisting of conditions (i)′ and (ii)′ must
be feasible. We solve the Phase I problem of these constraints first, and the pair
(a1, a2) will be deleted for further considerations if those constraints fail to be
feasible. In practice, this filtration can narrow down the search considerably.

The set Aα = {(a(j)
1 , a

(j)
2 ), j = 1, ..., n} in (21) that satisfies (22) is known

as a fine mixed cell of type (1, ...., 1) for the reason that each pair (a(j)
1 , a

(j)
2 )

provides one independent direction a(j)
1 − a

(j)
2 . The construction of those cells

plays an important role when the polyhedral homotopy method is used to
solve polynomial systems. The methods for the construction, including the
one we described above, were discussed in [11, 12, 38, 39]. At present, the
most efficient technique for finding those cells remains undetermined. More
rigorously, it appears that a plenty of room exists for major improvements of
the existing methods.

We now discuss the method for solving the binomial system (24) in (C∗)n.
Let

vj = a
(j)
1 − a

(j)
2 , j = 1, ..., n,

and, with y ∈ (C∗)n in mind we rewrite the system (24) as

yv1 = b1,
...

yvn = bn,

(29)

where bj = cj2/cj1 for j = 1, ..., n. Let

V =
[
vT1 |vT2 | · · · | vTn

]
(30)

and for brevity, write

yV = (yv1 , ..., yvn) and b = (b1, ..., bn).

Then, (29) becomes,

yV = b.(31)

With this notation, it is easy to verify that for an n×n integer matrix U , the
following holds,

(yV )U = y(V U).

Now, when the matrix V in (30) is an upper triangular matrix, i.e.,

V =


v11 v12 · · · v1n
0 v22 · · · v2n
...

. . . . . .
...

0 · · · 0 vnn

 ,
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writing out the equation in (31) explicitly, we have,

yv11
1 = b1,
yv12

1 yv22
2 = b2,

...
yv1n

1 yv2n
2 · · · yvnnn = bn.

(32)

By forward substitutions, all the solutions of the system (32) in (C∗)n can be
found, and the total number of solutions is |v11| × · · · × |vnn| = |detV |.

In general, we may upper triangularize V in (30) by the following process.
Recall that the greatest common divisor d of two nonzero integers a and b,
denoted by gcd(a, b), can be written as

d = gcd(a, b) = ka+ lb

for certain nonzero integers k and l. Let

M =

[
k l

− b
d

a
d

]
.

We have det(M) = 1, and

M

[
a
b

]
=

[
k l

− b
d

a
d

] [
a
b

]
=

[
d
0

]
.

Similar to using Givens rotation to produce zeros in a matrix for its QR
factorization, the matrix M may be used to upper triangularize V as follows.
For v ∈ Zn, let a and b be its ith and the jth (nonzero) components where
i < j, that is,

v =



...
a
...
b
...


→ ith

→ jth.

With d = gcd(a, b), we let
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ith jth

U(i, j) =



1
. . .

1
k l

1
. . .

1
− b
d

a
d

1
. . .

1



ith

jth

.

(33)

Evidently, U(i, j) is an integer matrix with | det(U(i, j))| = 1 and

U(i, j)v =



...
d
...
0
...


ith

jth
.

Thus a series of matrices in the form of U(i, j) in (33) may be used to suc-
cessively produce zeros in the lower triangular part of the matrix V in (30),
resulting in an upper triangular matrix. In simple terms, we may construct
an integer matrix U , as a product of those U(i, j)’s, with |detU | = 1 and UV
is an upper triangular integer matrix.

Now, as mentioned above, the solutions of the system

(zU )V = zUV = b(34)

in (C∗)n can be found by forward substitutions, since UV is an upper trian-
gular integer matrix. And the total number of solutions in (C∗)n is

| det(UV )| = | det(U)| · |det(V )| = | det(V )|.

By letting y = zU for each solution z of (34) in (C∗)n, we obtain all the
solutions of the system (31) in (C∗)n, and hence, solve the start system (24)
in (C∗)n in Step 2.
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5. Cheater’s Homotopy

The cheater’s homotopy was originally designed in [25] (a similar procedure
can be found in [32]) to deal with the problem when the polynomial was asked
to be solved for several different values of the coefficients c = (c1, ..., cM ) (here
c may not include the coefficients of all the monomials). In other words, we
think of P (c, x) = 0 as a system with the same structure or sparsity.

Recall that a homotopy is considered to be successful when it possesses
three properties: Property 0 (Triviality), Property 1 (Smoothness), and Prop-
erty 2 (Accessibility). The idea of the cheater’s homotopy is to establish Prop-
erties 1 and 2 theoretically by deforming a sufficiently generic system and then
to cheat on Property 0 by using a preprocessing step. The amount of com-
putation per preprocessing step may be large, but is shared among several
solving characteristics of the problem.

We begin with an example. Let P (x1, x2) = (p1(x1, x2), p2(x1, x2)) be the
system

p1(x1, x2) = x3
1x

2
2 + c1x

3
1x2 + x2

2 + c2x1 + c3 = 0,

p2(x1, x2) = c4x
4
1x

2
2 − x2

1x2 + x2 + c5 = 0.
(35)

This is a system of two polynomial equations in two unknowns x1 and x2. We
want to solve this system of equations several times, for various specific choices
of c = (c1, . . . , c5). It turns out that for any choice of coefficients c, system
(35) has no more than 10 isolated solutions in C2. (This may be considered as
a consequence of applying Theorem 2.3 in Section 2, since the mixed volume
of the system is 10.) The total degree of the system is 6 × 5 = 30, meaning
that the classical homotopy (2) using the start system Q(x) = 0 in (3) will
produce d = 30 paths, beginning at 30 trivial starting points. Thus there are
(at least) 20 extraneous paths.

The cheater’s homotopy continuation approach begins by solving (35) with
randomly chosen complex coefficients c̄ = (c̄1, . . . , c̄5); let X∗ be the set of 10
solutions. Subsequently, for each choice of coefficients c = (c1, . . . , c5) for
which the system (35) needs to be solved, we use the homotopy continuation
method to follow a straight-line homotopy, as in (2), from the system with co-
efficient c̄ to the system with coefficient c, and we follow the 10 paths beginning
at the 10 elements of X∗. Thus Property 0, the existence of trivial starting
points, is satisfied. The fact that Properties 1 and 2 are also satisfied is the
content of Theorem 5.1 below. Thus for each fixed c, all 10 (or fewer) isolated
solutions of (35) lie at the end of 10 smooth homotopy paths beginning at the
seeds in X∗. After the initial step of finding the seeds, the complexity of all
further solving of (35) is proportional to the number of solutions 10, rather
than the total degree 30.
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A statement of the theoretical result we need follows. Let

R(c, x) =


r1(c1, . . . , cM , x1, . . . , xn) = 0,

...
rn(c1, . . . , cM , x1, . . . , xn) = 0,

(36)

be a system of polynomial equations in the variables c = (c1, ..., cM ) and
x = (x1, ..., xn). For each choice of c = (c1, . . . , cM ) in CM , this is a system of
polynomial equations in the variables x1, . . . , xn.

Theorem 5.1. Let c belong to CM . There exists an open dense full-
measure subset U of Cn+M such that for (b̄, c̄) = (b∗1, . . . , b

∗
n, c
∗
1, . . . , c

∗
M ) ∈ U ,

the following holds:

(a) The set X∗ of solutions x = (x1, . . . , xn) of the system

G(b̄, c̄, x) =


g1(x1, . . . , xn) = r1(c∗1, . . . , c

∗
M , x1, . . . , xn) + b∗1 = 0

...
gn(x1, . . . , xn) = rn(c∗1, . . . , c

∗
M , x1, . . . , xn) + b∗n = 0

(37)

consists of isolated nonsingular solutions.

(b) Properties 1 and 2 (Smoothness and Accessibility) hold for the homotopy

H(x, t) = (1− t)G(b̄, c̄, x) + tR(c, x) = 0(38)

for any c ∈ CM . It follows that for any fixed c, every solution of
R(c, x) = 0 is reached by a path of H(x, t) = 0 beginning at a point
of X∗.

A proof of this theorem can be found in [25]. As a special case hiding
in the proof, when all the components rj(c, x) of R(c, x) have constant terms
and their coefficients are members of the coordinates of c = (c1, ..., cM ), as
in the system (35), then b̄ = (b∗1, ..., b

∗
n) in the theorem can be replaced by

b̄ = (0, ..., 0). This result will be used later.
The theorem is used as part of the following procedure. Let R(c, x) = 0,

as in (36), denote the system to be solved for various values of the coefficients
c.

Cheater’s Homotopy Procedure.

Step 1. Choose complex numbers (b̄, c̄) = (b∗1, . . . , b
∗
n, c
∗
1, . . . , c

∗
M ) at random and

solve G(b̄, c̄, x) = 0 in (37). Let X∗ denote the set of d0 solutions we
found.
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Step 2. For each new choice of coefficients c = (c1, . . . , cM ), follow the d0 paths
defined by the zero set of the homotopy H(x, t) = 0 in (38), beginning
at the points in X∗, to find all solutions of R(c, x) = 0.

In Step 1 above, solve G(b̄, c̄, x) = 0 in (37) may sometimes be computa-
tionally expensive for randomly chosen c = (c∗1, . . . , c

∗
M ). It is desirable that,

at least in certain special occasions, those coefficients are allowed to be specific
so that the solutions of the equation G(b̄, c̄, x) = 0 is obvious. To illustrate,
consider the linear system

c11x1 + · · ·+ c1nxn = b1,
...

cn1x1 + · · ·+ cnnxn = bn,

(39)

as a system consisting of polynomial equations with degree one each. For
randomly chosen cij ’s, the system in (39) has a unique solution which is not
available right away. However, if we are allowed to let cij = δij (the Kronecker
delta), the solution is obvious.

For this purpose, an alternative is suggested in [27]. When a system
R(c, x) = 0 with a specific c0, not necessarily randomly chosen, is solved,
then for any parameter c ∈ CM consider the nonlinear homotopy

H(a, x, t) = R((1− [t− t(1− t)a])c0 + (t− t(1− t)a)c, x) = 0.

It was shown in [27] that this homotopy satisfies all three Properties 0, 1,
2 (Triviality, Smoothness, Accessibility, respectively) for generically chosen
a ∈ C under the natural assumption that for generic c, R(c, x) = 0 has the
same number of isolated zeros in Cn and this number agrees with that of
R(c0, x) = 0. This idea was used in [26] for solving the indirect position
problem for revolt-joint kinematic manipulators more efficiently.

While the purposes are different, the machinery of the cheater’s homotopy
method described above fits our procedure for solving a polynomial system
P (x) = (p1(x), ..., pn(x)) ∈ C[x] with fixed coefficients by the polyhedral ho-
motopies quite well. As described in Section 3, we first augment the monomial
x0 (=1) to those pi’s which do not have constant terms. Followed by choosing
coefficients of all the monomials at random, a new system Q(x) = 0 is ob-
tained. We then solve all the isolated solutions of this new system Q(x) = 0
by establishing the polyhedral homotopy Q̂(x, t) = 0 in (10).

Now, after Q(x) = 0 is solved, consider the linear homotopy

H(x, t) = (1− t)Q(x) + tP (x) = 0.(40)

By Theorem 5.1, Properties 1 and 2 (Smoothness and Accessibility) hold for
this homotopy. Notice that since every component qj(x) of Q(x), for j =
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1, ..., n has constant term, b̄ = (b∗1, ..., b
∗
n) in the theorem can be replaced by

b̄ = (0, ..., 0) as we mentioned before. Moreover, because of the availability of
all the isolated solutions of Q(x) = 0, Property 0 also holds. Therefore, every
isolated zeros of P (x) lies at the end of a homotopy path of H(x, t) = 0 in
(40), starting from an isolated solutions of Q(x) = 0.

6. Further Considerations

For the purpose of discussing further developments of the polyhedral ho-
motopy method described in Sections 2-5 for finding all isolated zeros of a
given polynomial system P (x) = (p1(x), ..., pn(x)) in Cn with supp(pj) = Sj ,
for j = 1, ..., n, we outline the major steps in brief terms as follows:

(0) Choose a polynomial system Q(x) = (q1(x), ..., qn(x)) with supp(qj) =
Sj ∪ {0}, j = 1, ..., n, and with randomly chosen coefficients. Let k =
M(S∞∪{′}, ...,S\∪{′}), the mixed volume of the support (S1∪{0}, ..., Sn∪
{0}).

(A) Set up the polyhedral homotopy Q̂(x, t) : (C∗)n×[0, 1]→ (C∗)n for Q(x)
with Q̂(x, 1) = Q(x). Namely, for j = 1, ..., n,

qj(x) =
∑
a

c̄j,ax
a =⇒ q̂j(x) =

∑
a

c̄j,ax
atwj(a).

(B) Find the finite subset B in Rn given in Proposition 3.2, and for each
α ∈ B, define the homotopy

Hα(y, t) ≡ t−βQ̂(ytα, t) = 0,(41)

where β = (β1, ..., βn) and βj is the lowest order in t among all the terms
in q̂j(ytα, t).

(C) Solve the start system Hα(y, 0) = 0 in (C∗)n, and follow homotopy paths
of Hα(y, t) = 0 with starting points in (C∗)n for all α ∈ B, k paths of
them in total, to find all the isolated zeros of Q(x).

(D) Use the linear homotopy

H(x, t) = (1− t)Q(x) + tP (x) = 0(42)

to find all isolated zeros of P (x) in Cn by following k homotopy paths
starting from isolated zeros of Q(x).

Now here are some remarks as regards to further developments of the method:
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(i) As we can see, in order to find all the isolated zeros of P (x) in Cn there
are k homotopy paths in both Steps (C) and (D), and hence 2k in total,
need to be followed. This work may be reduced by half by the following
strategy as suggested in [17]: First of all, at Step (A), we let

Q̃(x, t) = (1− t)Q(x) + tP (x)

and set up the polyhedral homotopy Q̄(x, t) = (q̄1(x, t), ..., q̄n(x, t)) = 0
for Q̃(x, t) instead with the same variable t. More precisely, for generic
wj : Sj ∪ {0} → R, j = 1, ..., n,

pj(x) =
∑
a

c∗j,ax
a

qj(x) =
∑
a

c̄j,ax
a

 =⇒ q̄j(x, t) =
∑
a

[(1− t)c̄j,a + tc∗j,a]x
atwj(a).

Apparently, we have Q̄(x, 1) = P (x) and for each t in [0, 1], Q̄(x, t) and
Q̃(x, t) have the same support. Moreover, since

Q̃(x, t) = Q(x) + t(P (x)−Q(x)),

it is clear that, for any α ∈ Rn, the lowest order terms in t of both
q̂j(ytα, t) and q̄j(ytα, t) are the same. Hence the finite subset B in Step
(B) stays invariant, and the start system of the homotopy

H̄α(y, t) ≡ t−βQ̄(ytα, t) = 0(43)

is the same as that of Hα(y, t) = 0 in (41). Here, again, β = (β1, ..., βn)
and βj is the lowest order in t among all the terms in q̄j(ytα, t). Thus,
when nonsingular solutions of Hα(y, 0) = 0 in (C∗)n are available in Step
(C), we may follow those homotopy paths of H̄α(y, t) = 0 in (43) instead
with those starting points. Those paths, k of them in total for all α ∈ B,
will lead to all the isolated zeros of P (x) at t = 1 without employing
the linear homotopy in Step (D). In this way we only need to follow k
homotopy paths in total.

A major disadvantage of this approach is the possibility of losing a de-
gree of stability in the curve following scheme for those new paths. We
may save the work of following the extra number of paths at the ex-
pense of reducing the speed of following the remaining number of paths.
At present, the magnitude of the cost of this trade-off remains undeter-
mined. For clearance, an intensive investigation of this approach on a
vast variety of polynomial systems is required.
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(ii) The mixed volume k = M(S1 ∪ {0}, ..., Sn ∪ {0}), which represents the
number of paths we need to follow, provides an upper bound for the root
count of the system P (x) in Cn. This bound may not be exact, meaning
that we might follow extraneous paths as the following example shows:
Consider the system

P (x1, x2) =

{
p1(x1, x2) = ax2 + bx2

2 + cx1x3
p2(x1, x2) = dx1 + ex2

1 + fx3
1x2.

(44)

For generic coefficients {a, b, c, d, e, f}, this system has six isolated zeros
in C2 and three isolated zeros in (C∗)2. However, its augmented system

Q(x1, x2) =

{
q1(x1, x2) = ε1 + ax2 + bx2

2 + cx1x3
q2(x1, x2) = ε2 + dx1 + ex2

1 + fx3
1x2

(45)

has eight isolated zeros in (C∗)2, since the mixed volume of Q(x1, x2)
is eight. So eight paths in either the homotopy H(x, t) = 0 in (42)
or the homotopy H̄α(y, t) = 0 in (43) need to be traced to find all six
isolated zeros in C2 of P (x1, x2) in (44), and two of them are obviously
extraneous.

In [18], Huber and Sturmfels gave a tighter upper bound for the root
count of the polynomial system P (x) in Cn by introducing the stable
mixed cells. The sum of the mixed volumes of those stable mixed cells
is called the stable mixed volume, and the root count of P (x) in Cn is
bounded above by this number. By the way the stable mixed volume,
denoted by SM(S1, ..., Sn), is defined, it satisfies

M(S1, ..., Sn) ≤ SM(S1, ..., Sn) ≤M(S1 ∪ {0}, ..., Sn ∪ {0}).

Based on this tighter upper bound, a homotopy algorithm was suggested
in [18], so that fewer homotopy paths need to be followed.

A drawback of this method is the drastic increase of the computation
effort in determining the stable mixed cells. This drawback is overcome
in [19].

(iii) In some occasions, the polyhedral homotopy method is capable of taking
advantages of the special structures characterized by certain polynomial
systems. In [17], a more general version of the algorithm was presented
when some of the pj ’s share the same supports and the algorithm can
be made much more efficient by taking this special structure into con-
sideration. In [37], symmetric polyhedral homotopies were constructed
to deal with certain symmetric polynomial systems.
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(iv) Several software packages dedicated to solving polynomial systems by
homotopy continuation methods are publicly available. HOMPACK [33]
and CONSOL [30] are written in FORTRAN 77. HOMPACK is a general
package for homotopy continuation with a polynomial driver. It has
been parallelized to various architectures [3, 14]. The code for CONSOL
is contained in [30], Appendix 6.

The polyhedral homotopy method was first implemented in PHC [38]
and Pelican [15]. The package PHC written in Ada, along with its FOR-
TRAN version developed by the author and his students, offers a wide
variety of root-counting and homotopy methods. The performance of
these codes on a large collection of more than eighty polynomial systems
coming from a wide variety of application fields [9] provides practical ev-
idence that the newly developed methods constitute a powerful general
purpose solver. Nonetheless, a more efficient and user-friendly black-box
solver for even more extended applications is still under development. It
is hoped that the polyhedral homotopy method would become even more
powerful as well as more applicable with a better understanding of con-
vex geometry and a clever use of linear programming techniques.

The modern scientific computing is marked by the advent of vector and
parallel computers and the search for algorithms that are to a large
extent naturally parallel. A great advantage of the homotopy contin-
uation algorithm for solving polynomial system is that it is to a large
degree parallel, in the sense that each isolated zero can be computed
independently. This natural parallelism makes the method an excellent
candidate for a variety of architectures. In this respect, it stands in con-
trast to the highly serial Gröbner bases method. We wish to return to
this subject in the foreseeing future.
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