TAIWANESE JOURNAL OF MATHEMATICS Vol. 3, No. 1, pp. 115-122, March 1999

ON THE GLIDING HUMPS PROPERTY

Li Ronglu and Min-Hyung Cho

Abstract. We establish two uniform convergence results for duality pairs consisting of vector-sequence spaces with some gliding humps property and the corresponding function-sequence spaces. These uniform convergence results imply some important facts.

Let X, Y be topological vector spaces and E(X) a vector space of X-valued sequences. For $x \in E(X)$, let x_k denote the k^{th} coordinate of x and, hence, if $\{x^n\}$ is a sequence in E(X), then x_k^n is just the k^{th} coordinate of the n^{th} vector-sequence $x^n \in E(X)$.

Let $[Y^{E(X)}]^{\beta}$ be the family of function-sequences $\{f_k\} \subseteq Y^X$ for which $f_k(0) = 0$ for all k and the series $\sum_{k=1}^{\infty} f_k(x_k)$ converges in Y for each $x = (x_k) \in E(X)$. Especially, let $E(X)^{\beta Y} = \{T = (T_k) \in [Y^{E(X)}]^{\beta}$: each T_k is linear and continuous} (see [10, 11, 13, 14, 15, 17]). As usual, for $f = (f_k) \in [Y^{E(X)}]^{\beta}$ and $x = (x_k) \in E(X)$, we write $f \cdot x = \sum_{k=1}^{\infty} f_k(x_k) = \sum_{k=1}^{\infty} f_k x_k$.

Throughout this paper we assume that $E(X) \supseteq c_{00}(X) = \{x = (x_k) \in X^{\mathbb{N}} : x_k = 0 \text{ eventually}\}$ and E(X) is equipped by some Hausdorff vector topology which is stronger than the topology of coordinatewise convergence and, hence, E(X) is a K(X) space [3]. Let $P_n : E(X) \to E(X)$ be the section map which sends (x_1, x_2, \ldots) to $(x_1, \ldots, x_n, 0, 0, \ldots)$. We say that E(X) has the property SUB if $\{P_n\}_{n=1}^{\infty}$ is uniformly bounded on bounded subsets of the domain space E(X) [13].

Following D. Noll [10], we say that a sequence $\{z^n\}$ of nonzero vectors in E(X) is a block sequence if there is a strictly increasing $\{k_n\} \subseteq \mathbb{N}$ such that $z^n = (0, \ldots, 0, z_{k_n+1}^n, z_{k_n+2}^n, \ldots, z_{k_{n+1}}^n, 0, 0, \ldots)$. We say that E(X) has

Received September 3, 1997; revised November 13, 1997.

Communicated by P. Y. Wu.

¹⁹⁹¹ Mathematics Subject Classification: 46E40.

Key words and phrases: The gliding humps property, boundedly continuous function, uniform convergence.

the strong gliding humps property (SGHP) if every bounded block sequence $\{z^n\}$ in E(X) has a subsequence $\{z^{n_i}\}$ such that the coordinatewise sum $\sum_{i=1}^{\infty} z^{n_i} = (0, \ldots, 0, z_{k_{n_1}+1}^{n_1}, \ldots, z_{k_{n_1+1}}^{n_1}, 0, \ldots, 0, z_{k_{n_2}+1}^{n_2}, \ldots, z_{k_{n_2+1}}^{n_2}, 0, \ldots)$ belongs to E(X) [13]. We say that E(X) has the zero gliding humps property (0-GHP) if for $x^n \to 0$ in E(X) and $i_1 \leq j_1 < i_2 \leq j_2 < \cdots$ in \mathbb{N} , there is an increasing $\{n_p\} \subseteq \mathbb{N}$ such that $(0, \ldots, 0, x_{i_{n_1}}^{n_1}, \ldots, x_{j_{n_1}}^{n_1}, 0, \ldots, 0, x_{i_{n_2}}^{n_2}, \ldots, x_{j_{n_2}}^{n_2}, 0, \ldots)$ belongs to E(X). This form of the gliding humps property was introduced in Lee Peng Yee [5]; see also [6], [14]. For a discussion of various forms of gliding humps properties and their applications, see [2].

 $F \subseteq [Y^{E(X)}]^{\beta}$ is said to be conditionally wE(X)-sequentially compact if every sequence $\{f^n\} \subseteq F$ has a subsequence $\{f^{n_i}\}$ such that $\lim f^{n_i} \cdot x$ exists at each $x \in E(X)$. Finite subsets of $[Y^{E(X)}]^{\beta}$ are conditionally wE(X)sequentially compact, and if F is sequentially compact under the topology wE(X) of pointwise convergence on E(X), then F is conditionally wE(X)sequentially compact. In this paper we would like to establish two uniforn convergence results for conditionally wE(X)-sequentially compact subfamilies of $[Y^{E(X)}]^{\beta}$ whenever E(X) has some properties such as SUB, SGHP and 0-GHP, etc. Using these uniform convergence theorems we shall consummate and improve some recent results in [13], [14], [17].

Theorem 1. Let E(X) be a vector-sequence space having SUB and SGHP. If a subfamily F of $[Y^{E(X)}]^{\beta}$ is conditionally wE(X)-sequentially compact, then for every bounded $B \subseteq E(X)$, the series $\sum_{k=1}^{\infty} f_k x_k$ converges uniformly for $f \in F$ and $x = (x_k) \in B$.

Proof. If not, there exists a neighborhood U of $0 \in Y$ such that if $n_0 \in \mathbb{N}$ then $\sum_{k=n}^{\infty} f_k x_k \notin U$ for some $n > n_0, f \in F$ and $x \in B$. Thus, there exist $n_1 > 1, f^1 \in F$ and $x^1 \in B$ such that $\sum_{k=n_1}^{\infty} f_k^1 x_k^1 \notin U$. Pick a neighborhood V of $0 \in Y$ for which $V + V \subseteq U$. Since the series $\sum_{k=1}^{\infty} f_k^1 x_k^1$ converges, there is an $m_1 > n_1$ for which $\sum_{k=n_1}^{m_1} f_k^1 x_k^1 \notin V$. Similarly, there exist integers $m_2 > n_2 > m_1, f^2 \in F$ and $x^2 \in B$ such that $\sum_{k=n_2}^{m_2} f_k^2 x_k^2 \notin V$. Continuing this construction, we have an integer sequence $n_1 < m_1 < n_2 < m_2 < \cdots, \{f^i\} \subseteq F$ and $\{x^i\} \subseteq B$ such that

(*)
$$\sum_{k=n_i}^{m_i} f_k^i x_k^i \notin V, \ i = 1, 2, 3, \dots$$

Let $z^j = (0, \ldots, x_{n_j}^j, \ldots, x_{m_j}^j, 0, 0, \ldots)$. Since E(X) has SUB and B is a bounded subset of E(X), the set $\{P_n x - P_m z : n, m \in \mathbb{N}, x, z \in B\}$ is bounded and, hence, $\{z^j\}$ is a bounded block sequence in E(X).

Now consider the matrix $(f^i \cdot z^j)_{i,j}$. Since F is conditionally wE(X)sequentially compact, by passing to a subsequence if necessary, we may assume
that $\lim_i f^i \cdot x$ exists at each $x \in E(X)$ and, hence, $\lim_i f^i \cdot z^j$ exists for all j. Let $j_1 < j_2 < \ldots$ in \mathbb{N} . Then there is a subsequence $\{j_{p_r}\} \subseteq \{j_p\}$ such that the sequence $(0, \ldots, 0, x_{n_{jp_1}}^{j_{p_1}}, \ldots, x_{m_{jp_1}}^{j_{p_1}}, 0, \ldots, 0, x_{n_{jp_2}}^{j_{p_2}}, \ldots, x_{m_{jp_2}}^{j_{p_2}}, 0, \ldots, 0, \ldots)$ belongs
to E(X) because E(X) has SGHP, i.e., the coordinatewise sum $z = \sum_{r=1}^{\infty} z^{j_{p_r}}$ belongs to E(X). Hence, for each i we have $f^i \cdot z = \sum_{r=1}^{\infty} \sum_{k=n_{jp_r}}^{m_{jp_r}} f_k^i x_k^{j_{p_r}} = \sum_{r=1}^{\infty} f^i \cdot z^{j_{p_r}}$ and $\lim_i \sum_{r=1}^{\infty} f^i \cdot z^{j_{p_r}} = \lim_i f^i \cdot z$ exists. Thus, by the Antosik-Mikusinski matrix
theorem [1], [8], $\lim_i \sum_{k=n_i}^{m_i} f_k^i x_k^i = \lim_i f^i \cdot z^i = 0$. This contradicts (*).

Note that, in Theorem 1, each mapping $f = (f_k) \in F$ need not be linear and each coordinate function f_k need not be continuous. In fact, we only require that $f \cdot 0 = 0$, i.e., $f_k(0) = 0$ for all k, while [13], [14], [17] gave results only for continuous linear $f_k : X \to Y$ and $f = (f_k) \in E(X)^{\beta Y}$. A similar improvement to Schur's theorem was given in [9] for abstract function matrices.

Corollary 2. ([13], Th. 4). Assume that E(X) has properties SUB and SGHP and that X is an \mathcal{A} -space. If $F \subseteq E(X)^{\beta Y}$ is pointwise bounded on E(X), then F is uniformly bounded on bounded subsets of E(X).

Proof. Let $\{x^n\}$ be a bounded sequence in E(X) and $\{f^n\} \subseteq F$. Since E(X) has SUB, for each k, $\{(0, \ldots, 0, x_k^n, 0, 0, \ldots) : n \in \mathbb{N}\}$ is bounded in E(X) and, since the topology on E(X) is stronger than the topology of coordinatewise convergence, $\{x_k^n\}_{n=1}^{\infty}$ is bounded in X and $\lim_n \frac{1}{n} f_k^n x_k^n = 0$ because X is an A-space ([8], Cor. 4). On the other hand, $\{f^n\}$ is pointwise bounded on E(X) and, hence, $\frac{1}{n} f^n \cdot x \to 0$ at each $x \in E(X)$, i.e., the set $\{\frac{1}{n} f^n : n \in \mathbb{N}\}$ is conditionally wE(X)-sequentially compact. Now by Theorem 1 the series $\sum_{k=1}^{\infty} \frac{1}{n} f_k^n x_k^m$ converges uniformly for $n, m \in \mathbb{N}$. Thus,

$$\lim_{n} \frac{1}{n} f^{n} \cdot x^{n} = \lim_{n} \sum_{k=1}^{\infty} \frac{1}{n} f^{n}_{k} x^{n}_{k} = \sum_{k=1}^{\infty} \lim_{n} \frac{1}{n} f^{n}_{k} x^{n}_{k} = 0.$$

Using 0-GHP instead of SGHP, C. Swartz gave a similar but more clear-cut uniform boundedness result; see [15], Th. 12.5.7.

Li Ronglu and Min-Hyung Cho

We say that a map $u: X \to Y$ is boundedly continuous if (x_a) is a bounded net in X such that $x_a \to x_0$ in X, then $u(x_a) \to u(x_0)$. Clearly, a continuous map is boundedly continuous and a boundedly continuous map must be sequentially continuous. Theorem 1 of [13] asserts that if E(X) has some suitable properties, then each $f = (f_k) \in E(X)^{\beta Y}$ is sequentially continuous. Note that if $f = (f_k) \in E(X)^{\beta Y}$, then each coordinate function f_k is continuous and linear. In contrast to Theorem 1 of [13], the following result only requires that coordinate functions be boundedly continuous.

Corollary 3. Assume that E(X) has SUB and SGHP. If $f = (f_k) \in [Y^{E(X)}]^{\beta}$ is such that each coordinate function $f_k : X \to Y$ is boundedly continuous, then f is boundedly continuous on E(X) and, hence, f is sequentially continuous. In particular, each $T = (T_k) \in E(X)^{\beta Y}$ is boundedly continuous and, hence, T is sequentially continuous.

Proof. Let $(x^a)_{a \in I}$ be a bounded net such that $x^a \to x$ in E(X). Then for each k we have $x_k^a \to x_k$ because the topology on E(X) is stronger than the topology of coordinatewise convergence. Since E(X) has SUB, for each k the net $(x_k^a)_{a \in I}$ is bounded in X. Thus, for each k, $\lim_a f_k x_k^a = f_k x_k$ by hypothesis. Since the singleton $\{f\}$ is conditionally wE(X)-sequentially compact and $(x^a)_{a \in I}$ is bounded, by Theorem 1 the series $\sum_{k=1}^{\infty} f_k x_k^a$ converges uniformly for $a \in I$. Therefore,

$$\lim_{a} f \cdot x^{a} = \lim_{a} \sum_{k=1}^{\infty} f_{k} x^{a}_{k} = \sum_{k=1}^{\infty} \lim_{a} f_{k} x^{a}_{k} = \sum_{k=1}^{\infty} f_{k} x_{k} = f \cdot x.$$

If E(X) has 0-GHP, then for every $T = (T_k) \in E(X)^{\beta Y}$ and $x^n \to 0$ in E(X), the series $\sum_{k=1}^{\infty} T_k x_k^n$ converges uniformly for $n \in \mathbb{N}$ ([17], Th. 2). We would like to establish a similar result for $F \subseteq [Y^{E(X)}]^{\beta}$. Recall that E(X) is an AK-space if $(0, \ldots, 0, x_n, x_{n+1}, \ldots) \to 0$ for each $(x_k) \in E(X)$ ([15], p. 128). For example, the sequence spaces $(c_0, \|\cdot\|_{\infty})$ and $(1^p, \|\cdot\|_p)$ are AK-spaces having 0-GHP.

Theorem 4. Let E(X) be an AK-space with 0-GHP. If F is a conditionally wE(X)-sequentially compact subfamily of $[Y^{E(X)}]^{\beta}$, then for every $x^n \to 0$ in E(X) the series $\sum_{k=1}^{\infty} f_k x_k^n$ converges uniformly with respect to $f = (f_k) \in F$ and $n \in \mathbb{N}$.

Proof. First we claim that for each $x = (x_k) \in E(X)$ the series $\sum_{k=1}^{\infty} f_k x_k$ converges uniformly with respect to $f = (f_k) \in F$. If not, there exist a neighborhood V of $0 \in Y$, $\{f^i\} \subseteq F$ and an integer sequence $n_1 < m_1 < n_2 < m_2 < m_$

118

... such that $\sum_{k=n_i}^{m_i} f_k^i x_k \notin V$ for all i. If $z^j = (0, \ldots, 0, x_{n_j}, \ldots, x_{m_j}, 0, 0, \ldots)$, then $z^j \to 0$ because E(X) is an AK-space. Since F is conditionally wE(X)-sequentially compact, by passing to a subsequence if necessary, we may assume that $\lim_i f^i \cdot x$ exists at each $x \in E(X)$. As in the proof of Theorem 1, by 0-GHP, the Antosik-Mikusinski theorem shows that $\sum_{k=n_i}^{m_i} f_k^i x_k \to 0$, but this is a contradiction.

Now suppose the conclusion of Theorem 4 fails. Then there exists a neighborhood V of $0 \in Y$ satisfying

(*)
$$\forall n_0 \in \mathbb{N} \; \exists m > n > n_0, \; f \in F \text{ and } i \in \mathbb{N} \text{ such that } \sum_{k=n}^m f_k x_k^i \notin V.$$

Thus, there exist $m_1 > n_1 > 1$, $f^1 \in F$ and $i_1 \in \mathbb{N}$ such that $\sum_{k=n_1}^{m_1} f_k^1 x_k^{i_1} \notin V$. By the first part of this proof, there is an $m_0 \in \mathbb{N}$ such that $\sum_{k=n}^m f_k x_k^i \in V$ for all $m \ge n > m_0$, $f = (f_k) \in F$ and $1 \le i \le i_1$. Therefore, by (*) again, there exist $m_2 > n_2 > \max(m_0, m_1)$, $f^2 \in F$ and $i_2 > i_1$ such that $\sum_{k=n_2}^{m_2} f_k^2 x_k^{i_2} \notin V$. Continuing this construction we have integer sequences $n_1 < m_1 < n_2 < m_2 < \dots, i_1 < i_2 < \dots$ and $\{f^p\} \subseteq F$ such that $\sum_{k=n_p}^{m_p} f_k^p x_k^{i_p} \notin V$ for all $p \in \mathbb{N}$. However, as before the Antosik-Mikusinski theorem, the condition 0-GHP, and $x^{i_p} \to 0$ imply a contradictory fact.

Now we would like to show some applications of Theorems 1 and 4. It is easy to see that with the norm $||(t_k)||_{\infty} = \sup_k |t_k|$, the space ℓ^{∞} of bounded scalar sequences has SUB and SGHP. Observing that ℓ^{∞} is the dual of $(\ell^1, \|\cdot\|_1)$, we have the following.

Corollary 5. (Schur lemma [12], [1]) Every weakly convergent sequence in $(\ell^1, \|\cdot\|_1)$ must be norm convergent.

Proof. Suppose $r^n = (r_k^n) \in \ell^1$ and $r^n \to 0$ weakly, i.e., for each $t = (t_k) \in \ell^{\infty}, \lim_n r^n \cdot t = \lim_n \sum_{k=1}^{\infty} t_k r_k^n = 0$. Let $\varepsilon > 0$. By Theorem 1, there is a k_0 such that $\left| \sum_{k=k_0+1}^{\infty} t_k r_k^n \right| < \varepsilon/2$ for all n and (t_k) with $\sup_k |t_k| \le 1$. On the other hand, for each $k, \lim_n r_k^n = 0$ holds obviously and, hence, there is an n_0

Li Ronglu and Min-Hyung Cho

such that
$$\sum_{k=1}^{k_0} |t_k r_k^n| < \varepsilon/2$$
 for all $n > n_0$ and (t_k) with $\sup_k |t_k| \le 1$. Thus,
 $\left|\sum_{k=1}^{\infty} t_k r_k^n\right| < \varepsilon$ if $n > n_0$ and $\sup_k |t_k| \le 1$, i.e., $\sum_{k=1}^{\infty} |r_k^n| \le \varepsilon$ if $n > n_0$.

Let λ be a family of scalar sequences. A sequence $\{x_k\}$ in a topological vector space X is said to be λ -multiplier convergent (λ -mc) if the series $\sum_{k=1}^{\infty} t_k x_k$ converges for each $(t_k) \in \lambda$. Recently, the first author has given the following nice result [7]:

Let X be a Hausdorff locally convex space with the dual X' and $\lambda = c_0$ or ℓ^p $(p \ge 1)$. Then λ -mc is an invariant for all admissible polar topologies, i.e., if $\{x_k\} \subseteq X$, then the series $\sum_{k=1}^{\infty} t_k x_k$ converges for each $(t_k) \in \lambda$ under the strongest admissible topology $\beta(X, X')$ if and only if $\sum_{k=1}^{\infty} t_k x_k$ converges for each $(t_k) \in \lambda$ under the weakest admissible topology $\sigma(X, X')$.

By Theorem 4 we can generalize this result. Recall that if X is a barrelled space with the dual X', then the topology on X is just $\beta(X, X')$; if X is a bornological space and Y is an arbitrary locally convex space, then every bounded linear operator $T: X \to Y$ is continuous and, hence, every sequentially continuous linear operator $T: X \to Y$ must be continuous. Note that a locally convex metric space is bornological and a barrelled bornological space need not be an inductive limit of Banach spaces ([4], p, 39).

Theorem 6. Let (λ, τ) be a barrelled bornological AK-space of scalar sequences such that τ is stronger than the topology of coordinatewise convergence and (λ, τ) has 0-GHP, e.g., $(\lambda, \tau) = (c_0, \|\cdot\|_{\infty})$ or $(\ell^p, \|\cdot\|_p), p \ge 1$. If $\{x_k\}$ is a sequence in a Hausdorff locally convex space X with the dual X' such that for each $(t_k) \in \lambda$ the series $\sum_{k=1}^{\infty} t_k x_k$ converges weakly, then for each $(t_k) \in \lambda$ the series $\sum_{k=1}^{\infty} t_k x_k$ converges under the strongest admissible topology $\beta(X, X')$.

Proof. Suppose that $t^n = (t_k^n) \to 0$ as $n \to +\infty$ in (λ, τ) . Then for each k, $\lim_n t_k^n = 0$ and, hence, $\lim_n t_k^n x_k = 0$. Since $x = (x_k) \in \lambda^{\beta(X, weak)}$ and the singleton $\{x\} = \{(x_k)\}$ is $w\lambda$ -sequentially compact, by Theorem 4 the series $\sum_{k=1}^{\infty} t_k^n x_k$ converges in (X, weak) uniformly for $n \in \mathbb{N}$. Therefore, in (X, weak) we have that $\lim_n \sum_{k=1}^{\infty} t_k^n x_k = \sum_{k=1}^{\infty} \lim_n t_k^n x_k = 0$. Observing that

 (λ, τ) is bornological and letting $T((t_k)) = \text{weak} - \sum_{k=1}^{\infty} t_k x_k$, we obtain that $T : (\lambda, \tau) \to (X, \text{ weak})$ is continuous and linear. Now let $\lambda' = (\lambda, \tau)'$. By the

120

Hellinger-Toeplitz theorem ([16], p. 168, Th. 2), T must be $\beta(\lambda, \lambda')$ - $\beta(X, X')$ continuous. But $\beta(\lambda, \lambda') = \tau$ because (λ, τ) is barrelled. Thus T is τ - $\beta(X, X')$ continuous.

Now let $(t_k) \in \lambda$ be arbitrary. Since (λ, τ) is an AK-space, $(t_1, t_2, \ldots, t_n, 0, 0, \ldots) \xrightarrow{\tau} (t_k)$. Therefore,

$$\sum_{k=1}^{n} t_k x_k = T[(t_1, \dots, t_n, 0, 0, \dots)] \xrightarrow{\beta(X, X')} T[(t_k)] = \text{weak-} \sum_{k=1}^{\infty} t_k x_k,$$

i.e., the series $\sum_{k=1}^{\infty} t_k x_k$ converges in $(X, \beta(X, X'))$.

References

- P. Antosik and C. Swartz, *Matrix Methods in Analysis*, Lecture Notes in Math., 1113, Heidelberg, 1985.
- J.Boos and D. Fleming, Gliding hump properties and some applications, *Internat. J. Math. Math. Sci.* 1 (1995), 121-132.
- J.Boos and T. Leiger, Some distinguished subspaces of domains of operator valued matrices, *Results Math.* 16 (1989), 199-211.
- S. M. Khaleelulla, Counter Examples in Topological Vector Spaces, Lecture Notes in Math. 936, Heidelberg, 1982.
- Lee Peng Yee, Sequence spaces and the gliding hump property, Southeast Asia Bull. Math. Special Issue (1993), 65-72.
- Lee Peng Yee and C. Swartz, Continuity of superposition operators on sequence spaces, New Zealand J. Math. 24 (1995), 41-52.
- 7. Li Ronglu, An invariant with respect to all admissible topologies, to appear.
- 8. Li Ronglu and C. Swartz, Spaces for which the uniform boundedness principle holds, *Studia Sci. Math. Hungar.* **27** (1992), 379-384.
- Li Ronglu and C. Swartz, A nonlinear Schur theorem, Acta Sci. Math. (Szeged) 58 (1993), 497-508.
- 10. D. Noll, Sequential completeness and spaces with the gliding humps property, Manuscripta Math. 66 (1990), 237-252.
- D. Noll and W. Stadler, Abstract sliding hump technique and characterization of barrelled spaces, *Studia Math.* 94 (1989), 103-120.
- J. Schur, Uber lineare Transformation in der Theorie die unendlichen Reihen, J. Reine Angew. Math. 151 (1920), 79-111.
- C. Swartz, The gliding hump property in vector sequence spaces, *Mh. Math.* 116 (1993), 147-158.

- 14. C. Swartz, Automatic continuity and boundedness of matrix mappings, *Bull. Polish Acad. Sci. Math.* **43** (1995), 19-28.
- C. Swartz, *Infinite Matrices and the Gliding Hump*, World Scientific, Singapore, 1996.
- A. Wilanski, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.
- 17. Wu Junde, Li Ronglu and C. Swartz, Continuity and boundedness for operatorvalued matrix mappings, to appear.

Li Ronglu Department of Mathematics, Harbin Institute of Technology Harbin, China

Min-Hyung Cho Departmeht of Applied Mathematics, Kum-Oh University of Technology Kumi, Korea

122