TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 1, pp. 83-88, March 1999

WIDE DIAMETERS OF BUTTERFLY NETWORKS

Sheng-Chyang Liaw and Gerard J. Chang*

Abstract

Reliability and efficiency are important criteria in the design of interconnection networks. Recently, the w-wide diameter $d_{w}(G)$, the ($w-1$)-fault diameter $D_{w}(G)$, and the w-Rabin number $r_{w}(G)$ have been used to measure network reliability and efficiency. In this paper, we study wide diameters for an important class of parallel networksbutterfly networks. The main result of this paper is to determine their wide diameters.

1. Introduction

Reliability and efficiency are important criteria in the design of interconnection networks. Connectivity is widely used to measure network faulttolerance capacity, while diameter determines routing efficiency along individual paths. In practice, we are interested in high-connectivity, small-diameter networks.

The distance $d_{G}(x, y)$ from a vertex x to another vertex y in a network G is the minimum number of edges of a path from x to y. The diameter $d(G)$ of a network G is the maximum distance from one vertex to another. The connectivity $k(G)$ of a network G is the minimum number of vertices whose removal results in a disconnected or trivial network. According to Menger's theorem, there are k (internally) vertex-disjoint paths from a vertex x to another vertex y in a network of connectivity k. Throughout this paper, "vertex-disjoint" always means "internally vertex-disjoint."

For a network G with connectivity $k(G)$ and $w \leq k(G)$, the three parameters $d_{w}(G), D_{w}(G)$, and $r_{w}(G)$ (defined below) arise from the study of,

[^0]respectively, parallel routing, fault-tolerant systems, and randomized routing (see $[3,6,9,10]$). Due to widespread use of (and demand for) reliable, efficient, and fault-tolerant networks, these three parameters have been the subjects of extensive study over the past decade (see [3]).

The w-wide diameter $d_{w}(G)$ of a network G is the minimum l such that for any two distinct vertices x and y there exist w vertex-disjoint paths of length at most l from x to y. The notion of w-wide diameter was introduced by Hsu [3] to unify the concepts of diameter and connectivity.

The $(w-1)$-fault diameter of G is $D_{w}(G)=\max \{d(G-S):|S| \leq w-1\}$. This notion was defined by Hsu [3], and the special case in which $w=k(G)$ was first defined by Krishnamoorthy and Krishnamurthy [6] who studied the fault-tolerant properties of graphs and networks.

The w-Rabin number $r_{w}(G)$ of a network G is the minimum l such that for any $w+1$ distinct vertices x, y_{1}, \cdots, y_{w} there exist w vertex-disjoint paths of length at most l from x to $y_{1}, y_{2}, \cdots, y_{w}$. This concept was first defined by Hsu [3], and the special case in which $w=k(G)$ was studied by Rabin [10] in conjunction with a randomized routing algorithm.

It is clear that when $w=1, d_{1}(G)=D_{1}(G)=r_{1}(G)=d(G)$ for any network G. On the other hand, these parameters can be very large, as in the case in which $w=k(G)$. For example, Hsu and Luczak [4] showed that $d_{k}(G)=\frac{n}{2}$ for some regular graphs G having connectivity and degree k and n vertices. The following are basic properties and relationships among $d_{w}(G)$, $D_{w}(G)$, and $r_{w}(G)$.

Proposition 1. [8] The following statements hold for any network G of connectivity k.
(1) $D_{1}(G) \leq D_{2}(G) \leq \cdots \leq D_{k}(G)$.
(2) $d_{1}(G) \leq d_{2}(G) \leq \cdots \leq d_{k}(G)$.
(3) $r_{1}(G) \leq r_{2}(G) \leq \cdots \leq r_{k}(G)$.
(4) $D_{w}(G) \leq d_{w}(G)$ and $D_{w}(G) \leq r_{w}(G)$ for $1 \leq w \leq k$.

This paper examines the above parameters for butterfly networks, which are banyan networks in the literature. The butterfly network B_{n} is the graph whose vertices are $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ with $0 \leq x_{0} \leq n$ and $x_{i} \in\{0,1\}$ for $1 \leq i \leq n$, and two vertices x and y are adjacent if and only if $y_{0}=x_{0}+1$ and $x_{i}=y_{i}$ for $1 \leq i \leq n$ with $i \neq y_{0}$. Note that B_{1} is a 4 -cycle. For a vertex $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ in B_{n}, we say that x is in level x_{0} of B_{n} and call x_{i} the i th coordinate of x. FIG. 1 shows an example of B_{3}, in which the top line indicates the level numbers and the left column indicates the names ($x_{1}, x_{2}, \cdots, x_{n}$).

FIG. 1. The butterfly network B_{3}.
Cao, Du, Hsu and Wan [1] gave the connectivity, the diameter, the fault diameter, and bounds of the wide diameter and the Rabin number of the butterfly network B_{n} as follows.

Theoremm 2. [1] If $n \geq 2$, then $k\left(B_{n}\right)=2, d\left(B_{n}\right)=2 n, D_{2}\left(B_{n}\right)=$ $2 n+2,2 n+2 \leq d_{2}\left(B_{n}\right) \leq 2 n+4$, and $2 n+2 \leq r_{2}\left(B_{n}\right) \leq 2 n+4$.

In this paper, we prove that $d_{2}\left(B_{n}\right)=2 n+2$ for $n \geq 2$.

2. The Wide Diameter $d_{2}\left(B_{n}\right)$

For any $a \in\{0,1\}, \bar{a}$ is defined to be $1-a$. Suppose y and x are two vertices with $y_{0}=i \leq j=x_{0}$ and $y_{k}=x_{k}$ for $k \in\{1,2, \cdots, i\} \cup\{j+1, j+2, \cdots, n\}$. Denote as $P_{i, j}(y, x)$, or $P_{i, j}$ with y and x specified, the following path of length $j-i$ from y to x :

$$
\begin{aligned}
& \left(i, y_{1}, \cdots, y_{i}, y_{i+1}, y_{i+2}, y_{i+3}, \cdots, y_{j}, y_{j+1}, \cdots, y_{n}\right) \\
\rightarrow & \left(i+1, y_{1}, \cdots, y_{i}, x_{i+1}, y_{i+2}, y_{i+3}, \cdots, y_{j}, y_{j+1}, \cdots, y_{n}\right) \\
\rightarrow & \left(i+2, y_{1}, \cdots, y_{i}, x_{i+1}, x_{i+2}, y_{i+3}, \cdots, y_{j}, y_{j+1}, \cdots, y_{n}\right) \\
\rightarrow & \cdots \cdots \\
\rightarrow & \left(j, y_{1}, \cdots, y_{i}, x_{i+1}, x_{i+2}, x_{i+3}, \cdots, x_{j}, y_{j+1}, \cdots, y_{n}\right) .
\end{aligned}
$$

Similarly, if y and x are two vertices with $y_{0}=i \geq j=x_{0}$ and $y_{k}=x_{k}$ for $k \in\{1,2, \cdots, j\} \cup\{i+1, i+2, \cdots, n\}$. Denote as $Q_{i, j}(y, x)$, or $Q_{i, j}$ with y and x specified, the following path of length $i-j$ from y to x :

$$
\begin{aligned}
& \left(i, y_{1}, \cdots, y_{j}, y_{j+1}, \cdots, y_{i-2}, y_{i-1}, y_{i}, y_{i+1}, \cdots, y_{n}\right) \\
\rightarrow & \left(i-1, y_{1}, \cdots, y_{j}, y_{j+1}, \cdots, y_{i-2}, y_{i-1}, x_{i}, y_{i+1}, \cdots, y_{n}\right) \\
\rightarrow & \left(i-2, y_{1}, \cdots, y_{j}, y_{j+1}, \cdots, y_{i-2}, x_{i-1}, x_{i}, y_{i+1}, \cdots, y_{n}\right) \\
\rightarrow & \cdots \cdots \\
\rightarrow & \left(j, y_{1}, \cdots, y_{j}, x_{j+1}, \cdots, x_{i-2}, x_{i-1}, x_{i}, y_{i+1}, \cdots, y_{n}\right)
\end{aligned}
$$

We are now ready to prove the main result.
Theorem 3. If $n \geq 2$, then $d_{2}\left(B_{n}\right)=2 n+2$.
Proof. According to Proposition 1 (4) and the fact that $D_{2}\left(B_{n}\right)=2 n+2$ (see [1]), it suffices to show that for any two vertices $y=\left(y_{0}, y_{1}, \cdots, y_{n}\right)$ and $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$, there exist two vertex-disjoint y - x paths of lengths at most $2 n+2$. We, in fact, will construct two vertex-disjoint $y-x$ walks based on the following three cases. Without loss of generality, we may assume that $y_{0} \geq x_{0}$. Let $a=\left\lceil\frac{y_{0}+x_{0}-2}{2}\right\rceil$.

Case 1. $y_{0} \geq x_{0}+2$. In this case, we have $y_{0}>a+1>x_{0}$. The first $y-x$ walk is $W=P_{y_{0}, n}\left(y, u^{1}\right) Q_{n, a}\left(u^{1}, u^{2}\right) Q_{a, 0}\left(u^{2}, u^{3}\right) P_{0, a+1}\left(u^{3}, u^{4}\right) Q_{a+1, x_{0}}\left(u^{4}, x\right)$, where

$$
\begin{aligned}
& y=\left(y_{0}, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, y_{a+1}, y_{a+2}, \cdots, y_{y_{0}-1}, y_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& u^{1}=\left(n, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, y_{a+1}, y_{a+2}, \cdots, y_{y_{0}-1}, y_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& u^{2}=\left(a, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, \overline{x_{a+1}}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& u^{3}=\left(0, x_{1}, \cdots, x_{x_{0}}, x_{x_{0}+1}, x_{x_{0}+2}, \cdots, x_{a}, \overline{x_{a+1}}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& u^{4}=\left(a+1, x_{1}, \cdots, x_{x_{0}}, \overline{y_{x_{0}+1}}, x_{x_{0}+2}, \cdots, x_{a}, \overline{x_{a+1}}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& x=\left(x_{0}, x_{1}, \cdots, x_{x_{0}}, x_{x_{0}+1}, x_{x_{0}+2}, \cdots, x_{a}, x_{a+1}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right),
\end{aligned}
$$

and W has a length of $\left(n-y_{0}\right)+(n-a)+a+(a+1)+\left(a+1-x_{0}\right)=$ $2 n+2+2 a-y_{0}-x_{0} \leq 2 n+1$. The second $y-x$ walk is $W^{\prime}=Q_{y_{0}, a}\left(y, v^{1}\right)$ $P_{a, n}\left(v^{1}, v^{2}\right) Q_{n, 0}\left(v^{2}, v^{3}\right) P_{0, x_{0}}\left(v^{3}, x\right)$, where

$$
\begin{aligned}
& y=\left(y_{0}, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, y_{a+1}, y_{a+2}, \cdots, y_{y_{0}-1}, y_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right) \\
& v^{1}=\left(a, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, \overline{y_{a+1}}, y_{a+2}, \cdots, y_{y_{0}-1}, x_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right) \\
& v^{2}=\left(n, y_{1}, \cdots, y_{x_{0}}, y_{x_{0}+1}, y_{x_{0}+2}, \cdots, y_{a}, \overline{y_{a+1}}, y_{a+2}, \cdots, y_{y_{0}-1}, \overline{x_{y_{0}}}, y_{y_{0}+1}, \cdots, y_{n}\right) \\
& v^{3}=\left(0, x_{1}, \cdots, x_{x_{0}}, x_{x_{0}+1}, x_{x_{0}+2}, \cdots, x_{a}, x_{a+1}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right) \\
& x=\left(x_{0}, x_{1}, \cdots, x_{x_{0}}, x_{x_{0}+1}, x_{x_{0}+2}, \cdots, x_{a}, x_{a+1}, x_{a+2}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right)
\end{aligned}
$$

and W^{\prime} has a length of $\left(y_{0}-a\right)+(n-a)+n+x_{0}=2 n-2 a+y_{0}+x_{0} \leq 2 n+2$. Moreover, between levels n and y_{0}, vertices in W and W^{\prime} differ at $(a+1)$ th
coordinate; between levels y_{0} and 0 , vertices in W and W^{\prime} differ at y_{0} th, $(a+1)$ th, or $\left(x_{0}+1\right)$ th coordinate. So, W and W^{\prime} are vertex-disjoint. From W and W^{\prime} we can find two vertex-disjoint $y-x$ paths as desired.

Case 2. $y_{0}=x_{0}+1$ or $y_{0}=x_{0} \neq 0$. In this case, we have $y_{0}=a+1 \geq x_{0}$. For $y_{0}=x_{0}+1$, the first $y-x$ walk is $W=Q_{y_{0}, 0}\left(y, u^{1}\right) P_{0, n}\left(u^{1}, u^{2}\right) Q_{n, y_{0}}\left(u^{2}, u^{3}\right)$ $Q_{y_{0}, x_{0}}\left(u^{3}, x\right)$, where

$$
\begin{aligned}
& y=\left(y_{0}, y_{1}, \cdots, y_{y_{0}-1}, y_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& u^{1}=\left(0, y_{1}, \cdots, y_{y_{0}-1}, \overline{x_{y_{0}}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& u^{2}=\left(n, x_{1}, \cdots, x_{y_{0}-1}, \overline{x_{y_{0}}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& u^{3}=\left(y_{0}, x_{1}, \cdots, x_{y_{0}-1},{\bar{x} y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& x=\left(x_{0}, x_{1}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right) .
\end{aligned}
$$

Note that the length of W is $y_{0}+n+\left(n-y_{0}\right)+\left(y_{0}-x_{0}\right)=2 n+y_{0}-x_{0} \leq 2 n+1$. For $y_{0}=x_{0}$, replace $Q_{y_{0}, x_{0}}\left(u^{3}, x\right)$ with $Q_{y_{0}, x_{0}-1}\left(u^{3}, u^{4}\right) P_{x_{0}-1, x_{0}}\left(u^{4}, x\right)$, where $u^{4}=\left(x_{0}-1, x_{1}, \cdots, x_{y_{0}-1}, \overline{x_{y_{0}}}, x_{y_{0}+1}, \cdots, x_{n}\right)$, to obtain the first y - x walk W of length $2 n+2$. The second $y-x$ walk is $W^{\prime}=Q_{y_{0}, 0}\left(y, v^{1}\right) P_{0, n}\left(v^{1}, v^{2}\right) Q_{n, x_{0}}\left(v^{2}, x\right)$, where

$$
\begin{aligned}
& y=\left(y_{0}, y_{1}, \cdots, y_{y_{0}-1}, y_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& v^{1}=\left(0, y_{1}, \cdots, y_{y_{0}-1}, x_{y_{0}}, y_{y_{0}+1}, \cdots, y_{n}\right), \\
& v^{2}=\left(n, x_{1}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right), \\
& x=\left(x_{0}, x_{1}, \cdots, x_{y_{0}-1}, x_{y_{0}}, x_{y_{0}+1}, \cdots, x_{n}\right) .
\end{aligned}
$$

Note that the length of W^{\prime} is $y_{0}+n+\left(n-x_{0}\right)=2 n+y_{0}-x_{0} \leq 2 n+1$. Moreover, vertices in W and W^{\prime} differ at the y_{0} th coordinate and hence are disjoint.

Case 3. $y_{0}=x_{0}=0$. Consider y - x walks $W^{j}=P_{0, n}^{j} Q_{n, 0}^{j}$ for $j=0$ or 1, where $P_{0, n}^{j}$ is from $y=\left(0, y_{1}, \cdots, y_{n}\right)$ to $\left(n, j, x_{2}, \cdots, x_{n}\right)$ and $Q_{n, 0}^{j}$ is from $\left(n, j, x_{2}, \cdots, x_{n}\right)$ to $x=\left(0, x_{1}, \cdots, x_{n}\right)$. It is clear that vertices in W^{0} and W^{1} differ at the 1st coordinate and hence are disjoint. Moreover, the length of W^{0} or W^{1} is $2 n$.

The referee provides the information that Chen and Li [2] extended the study of wide diameter to k-ary butterfly networks. In particular, they proved that the wide diameter of the k-ary butterfly network is bounded above by $D+4$ if $n \geq 4$, by $D+2$ if $n \geq 8$, and by $D+3$ if $4 \leq n \leq 7$, where n is the dimension and D the diameter of the network.

Determining the exact values of $r_{2}\left(B_{n}\right)$ remains open. Although there is no strong indication, after checking many special cases, we do believe the following conjecture should be true.

Conjecture. $r_{2}\left(B_{n}\right)=2 n+2$.

Acknowledgments

We thank Dingzhu Du and Frank Hsu for bringing to our attention the paper [1] about the wide diameters of butterfly networks. We also thank a referee for many useful suggestions.

References

1. F. Cao, D. Z. Du, D. F. Hsu and P. Wan, Fault-tolerant routing in butterfly networks, Technical Report TR 95-073, Department of Computer Science, University of Minnesota (1995).
2. Y. Chen and Q. Li, The wide-diameter of the n-dimensional k-ary butterfly graph, preprint.
3. D. F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fund. Electron. Comm. Comput. Sci. E77-A (1994), 668-680.
4. D. F. Hsu and T. Luczak, Note on the k-diameter of k-regular k-connected graphs, Discrete Math. 133 (1994), 291-296.
5. D. F. Hsu and Y. D. Lyuu, A graph theoretical study of transmission delay and fault tolerance, Internat. J. Mini Microcomput. 16 (1994), 35-42.
6. M. S. Krishnamoorthy and B. Krishnamurthy, Fault diameter of interconnection networks, Comput. Math. Appl. 13 (1987), 577-582.
7. Q. Li, D. Sotteau and J. Xu, 2-Diameter of de Bruijn graphs, Networks 28 (1996), 7-14.
8. S. C. Liaw, F. Cao, G. J. Chang and D. F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networks, submitted for publication.
9. S. C. Liaw and G. J. Chang, Generalized diameters and Rabin numbers of networks, submitted for publication.
10. M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, J. Assoc. Comput. Mach. 36 (1989), 335-348.

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050, Taiwan
E-mail address: gjchang@math.nctu.edu.tw

[^0]: Recéeived May 12, 1997; revised January 12, 1998. Communicated by S.-Y. Shaw.
 1991 Mathematics Subject Classification: 05C12, 05C40.
 Key words and phrases: Diameter, connectivity, wide diameter, butterfly network, banyan network, level.
 *Supported in part by the National Science Council under grant NSC86-2115-M009-002.

