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ALGORITHMIC ASPECTS OF LINEAR k-ARBORICITY

Gerard J. Chang∗

Abstract. For a fixed positive integer k, the linear k-arboricity lak(G)
of a graph G is the minimum number ` such that the edge set E(G)
can be partitioned into ` disjoint sets, each induces a subgraph whose
components are paths of lengths at most k. This paper examines linear
k-arboricity from an algorithmic point of view. In particular, we present
a linear-time algorithm for determining whether a tree T has la2(T ) ≤ m.
We also give a characterization for a tree T with maximum degree 2m
having la2(T ) = m.

1. Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless, and
without multiple edges. A linear k-forest is a graph whose components are
paths of lengths at most k. A linear k-forest partition of G is a partition of
the edge set E(G) into linear k-forests. The linear k-arboricity of G, denoted
by lak(G), is the minimum size of a linear k-forest partition of G.

The notion of linear k-arboricity was introduced by Habib and Peroche
[18]. It is a natural refinement of the linear arboricity introduced by Harary
[20], which is the same as linear k-arboricity except that the paths have no
length constraints. Suppose χ′(G) is the chromatic index of G and la(G) the
linear arboricity. Let ∆(G) denote the maximum degree of a vertex in G. The
following propositions are easy to verify.

Proposition 1. If G is a subgraph of H, then lak(G) ≤ lak(H) for k ≥ 1.
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Proposition 2. If G is a graph with n vertices, then

la(G) = lan−1(G) ≤ lan−2(G) ≤ · · · ≤ la2(G) ≤ la1(G) = χ′(G).

Proposition 3. If G is a graph with n vertices and m edges, then

lak(G) ≥ max

{⌈
∆(G)

2

⌉
,

⌈
m

b knk+1c

⌉}
.

On the other hand, Habib and Peroche [18] made the following conjecture.

Conjecture 4. ([18]) If G is a graph with n vertices and k ≥ 2, then
lak(G) ≤ d∆(G)n+α

2b kn
k+1 c

e, where α = 1 when ∆(G) < n − 1 and α = 0 when

∆(G) = n− 1.

This conjecture subsumes Akiyama’s conjecture [2] as follows.

Conjecture 5. ([2]) la(G) ≤ d∆(G)+1
2 e.

Considerable work has been done in determining exact values and bounds
for linear k-arboricity, aimed at these conjectures (see the references at the
end of this paper).

We examine linear k-arboricity from an algorithmic point of view in this
paper. Habib and Peroche [19] showed the first results along this line. They
gave an algorithm for proving that if T is a tree with exactly one vertex of max-
imum degree 2m, then la2(T ) ≤ m. Using this as a basis for induction, they
then characterized a tree T with maximum degree 2m as having la2(T ) = m.
However, their characterization has a flaw as shown in Section 2. Holyer [21]
proved that determining la1(G) is NP-complete, Peroche [24] that determin-
ing la(G) is NP-complete, and Bermond et al. [9] that determining whether
la3(G) = 2 is NP-complete for cubic graphs of 4m vertices. Bermond et al. [9]
conjectured that determining lak(G) for any fixed k is NP-complete.

In this paper, we present a linear-time algorithm for determining whether
a tree T has la2(T ) ≤ m. We employ a “local message passing” approach that
reduces the problem on T to the problem on another tree T ′ obtained from
T by a local modification. We then give a characterization for a tree with
maximum degree 2m having la2(T ) = m. This makes up a gap of Habib and
Peroche’s result [19].
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2. Linear 2-arboricity on Trees

A leaf is a vertex of degree one. A penultimate vertex is a vertex that is
not a leaf and all of whose neighbors are leaves, with the possible exception of
one. Note that a penultimate vertex of a connected graph is always adjacent
to a non-leaf, unless the graph is a star. It is well-known that a non-trivial
tree has at least two leaves, and a tree with at least three vertices has at least
one penultimate vertex.

Theorem 6. For any tree T , la2(T ) ≤ d∆(T )+1
2 e.

Proof. We prove this theorem by induction on the number of vertices of
T . The theorem is trivial when T is a star. We thus consider a general tree
T that is not a star. Choose a penultimate vertex x that is adjacent to a
non-leaf y and r ≥ 1 leaves x1, x2, . . . , xr. Let T ′ = T − {x1, x2, . . . , xr}.
According to the induction hypothesis, la2(T ′) ≤ d∆(T ′)+1

2 e ≤ d∆(T )+1
2 e. The

edge set E(T ′) can then be partitioned to at most d∆(T )+1
2 e linear 2-forests.

Since r + 1 = degT (x) ≤ ∆(T ), we have d r2e ≤ d
∆(T )+1

2 e − 1. Note that the
star with center x and leaves x1, x2, . . . , xr can be partitioned into d r2e paths
of length at most 2. We then add these paths to d r2e different linear 2-forests
of T ′ that do not contain the edge xy to form a linear 2-forest partition of T .
This proves that la2(T ) ≤ d∆(T )+1

2 e.

Theorem 6 and Propositions 2 and 3 yield the following two consequences.
Corollar 7 was also obtained by Habib and Peroche [19] from a different ap-
proach.

Corollary 7. If T is a tree with ∆(T ) = 2m − 1, then lak(T ) = m for
k ≥ 2.

Corollary 8. If T is a tree with ∆(T ) = 2m, then m ≤ lak(T ) ≤ m + 1
for k ≥ 2.

So, it remains to determine whether lak(T ) is m or m+1 when ∆(T ) = 2m.
Habib and Peroche [19] gave the following characterization of the case in which
k = 2. In a tree T , a vertex x0 is called an m-center if there exist p vertices
x1, x2, . . . , xp of degree 2m such that x0 is of degree p+ q with p+ d q2e > m,
and all internal vertices of the x0-xi path in T are of degree 2m − 1 for 1 ≤
i ≤ p. Habib and Peroche proved that for a tree T of maximum degree 2m,
la2(T ) = m if and only if T has no m-center. This results has a flaw as Figure
1 shows a tree T of maximum degree 6 such that la2(T ) = 4 but T has no
3-center.
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FIG. 1. A tree T with ∆(T ) = 6 and la2(T ) = 4, but without any 3-center.

This paper is intended to give a linear-time algorithm for determining
whether a tree T has la2(T ) ≤ m. We shall then give a characterization for a
tree T of maximum degree 2m having la2(T ) = m. The algorithm is based on
the following theorem.

Theorem 9. Suppose T is a tree in which x is a penultimate vertex adja-
cent to a vertex y and r ≥ 1 leaves x1, x2, . . . , xr. Let T ′ = T−{x1, x2, . . . , xr}
when r ≤ 2m − 2, and T ′ be obtained from T − {x1, x2, . . . , xr} by adding a
new leaf x′ adjacent to y when r = 2m − 1. Then la2(T ) ≤ m if and only if
r ≤ 2m− 1 and la2(T ′) ≤ m.

Proof. (⇒) Suppose la2(T ) ≤ m. According to Proposition 3, it is nec-
essary that r ≤ 2m − 1. For the case in which r ≤ 2m − 2, according to
Proposition 1, la2(T ′) ≤ la2(T ) ≤ m. For the case in which r = 2m− 1, since
x has degree r + 1 = 2m and la2(T ) ≤ m, there exists some 1 ≤ i ≤ r such
that the path (y, x, xi) is a component of a linear 2-forest in an optimal linear
2-forest partition of T . Deleting all edges xx1, xx2, . . . , xxr and replacing the
path (y, x, xi) with (x, y, x′) in the optimal linear 2-forest partition of T , we
obtain a linear 2-forest partition of T ′ of size at most la2(T ) ≤ m. This proves
that la2(T ′) ≤ m for r = 2m− 1.

(⇐) On the other hand, suppose r ≤ 2m − 1 and la2(T ′) ≤ m. We first
consider the case in which r ≤ 2m− 2. The edge set E(T ′) can be partitioned
into m linear 2-forests. Since r ≤ 2m − 2, we have d r2e ≤ m − 1. Note that
the star with center x and leaves x1, x2, . . . , xr can be partitioned into d r2e
paths of length at most 2. We then add these paths to d r2e linear 2-forests
of T ′ different from the one containing the edge xy to form a linear 2-forest
partition of T . This proves that la2(T ) ≤ m.

Next, consider the case in which r = 2m − 1. The edge set E(T ′) can
be partitioned into m linear 2-forests. Since x and x′ are two leaves in T ′,
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we may assume that the path (x, y, x′) is in a linear 2-forest of an optimal
linear 2-forest partition P ′ of T ′. Otherwise, suppose (x, y, z) and (x′, y, z′)
are paths in different linear 2-forests F1 and F2 of P ′. Let T ′z be the subtree
of T ′ − y that contains z. We can then replace the path (x, y, z) of F1 with
(x, y, x′), replace the path (x′, y, z′) of F2 with (z, y, z′), and interchange the
roles of F1∩T ′z and F2∩T ′z to obtain a new optimal linear 2-forest partition of
T ′ with the desired property. Similar (but even simpler) arguments work for
the case in which (x, y, z) in F1 and (x′, y) in F2, or in which (x, y) in F1 and
(x′, y, z′) in F2, or in which (x, y) in F1 and (x′, y) in F2. So, we may assume
that (x, y, x′) is in a linear 2-forest F of P ′. Then replace (x, y, x′) in F with
(y, x, x1) and add (x2i, x, x2i+1) for 1 ≤ i ≤ m − 1 to m − 1 different linear
2-forests other than F . This results in a linear 2-forest partition of T of size
m, and so, la2(T ) ≤ m.

Theorem 9 leads to the following algorithm.

Algorithm Tree. Test whether la2(T ) ≤ m for a tree T .
Input. A tree T and a positive integer m.
Output. “Yes” if la2(T ) ≤ m and “no” otherwise.
Method.

if (m = 1 and T has more than two edges)
then output “no” and stop;
while (T is not an edge) do

choose a penultimate vertex x adjacent to
a vertex y and r ≥ 1 leaves x1, x2, . . . , xr;
case 1. r ≤ 2m− 2:

delete x1, x2, . . . , xr from T ;
case 2. r = 2m− 1:

delete x1, x2, . . . , xr from T and
add a new leaf x′ adjacent to y;

case 3. r ≥ 2m:
output “no” and stop;

end while;
output “yes”.

Note that in Theorem 9, when m = 1 and T has exactly three vertices,
T ′ is isomorphic to T . This is the reason we have the first line in the above
algorithm to treat this special case.

To implement the algorithm efficiently, we do not really delete and add
vertices from and to T . Instead, we choose a vertex v∗ and order the vertices
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of T into v1, v2, . . . , vn such that

dT (v1, v
∗) ≥ dT (v2, v

∗) ≥ . . . ≥ dT (vn, v∗).

It is then clear that the first vertex vi that is not a leaf is a penultimate vertex.
We also use two arrays deleted[1..n] and degree[1..n]. Initially, deleted[i] = 0
and degree[i] is the degree of vi in T for 1 ≤ i ≤ n. To delete a leaf vi from T
we simply make deleted[i] = 1 and decrease degree[j] by one, where vj is the
vertex adjacent to vi still in T . To add a new leaf v′ adjacent to some vertex
vj , we increase degree[j] by one without creating a new vertex v′ in the tree.
In a general step, we choose the first vi with deleted[i] = 0 and degree[i] ≥ 2
as the penultimate vertex x. The deletion and addition of vertices in cases 1
and 2 of the algorithm are performed by updating the arrays “deleted” and
“degree” described above. The running time of the algorithm is clearly linear.

Theorem 10. Algorithm Tree determines whether a tree T has la2(T ) ≤
m in linear time.

Next, we shall give a characterization for a tree T of maximum degree 2m
having la2(T ) = m.

For a tree T , D(T ) denotes the graph obtained from T by deleting all leaves
of T . Note that if T has at least 3 vertices, D(T ) remains a tree. A tree is
called m-critical if it has at least 3 vertices and degT (v)+degD(T )(v) = 2m+1
for any vertex v in D(T ). The tree T in Figure 1 is 3-critical, where the black
vertices induce D(T ).

Lemma 11. If T is an m-critical tree, then la2(T ) = m+ 1.

Proof. According to the definition of an m-critical tree, degT (v) ≤ 2m+ 1
for all vertices v in T . By Theorem 6, la2(T ) ≤ d∆(T )+1

2 e ≤ d2m+1+1
2 e = m+1.

Next, we prove by induction on the number n of vertices of D(T ) that
la2(T ) ≥ m + 1. For n = 1, T is a star with exactly 2m + 2 vertices. Thus,
la2(T ) ≥ m + 1. Suppose T is an m-critical graph with n ≥ 2. Choose a
penultimate vertex x adjacent to a non-leaf y and 2m−1 leaves. Let T ′ be the
tree as defined in Theorem 9. Note that x is in D(T ) but not in D(T ′). Then,
degT ′(v) = degT (v) and degD(T ′)(v) = degD(T )(v) for all vertices v in D(T ′)
except degT ′(y) = degT (y) + 1 and degD(T ′)(y) = degD(T )(y) − 1. Therefore,
degT ′(v) + degD(T ′)(v) = degT (v) + degD(T )(v) = 2m + 1 for all vertices v
in D(T ′). This shows that T ′ is an m-critical tree with n′ = n − 1. By the
induction hypothesis, la2(T ′) ≥ m+ 1. Then, by Theorem 9, la2(T ) ≥ m+ 1.

Theorem 12. For any tree T of maximum degree 2m, la2(T ) = m if and
only if T contains no m-critical tree as an induced subgraph.
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Proof. (⇒) Suppose la2(T ) = m. If T contains an m-critical tree G, then
la2(T ) ≥ la2(G) = m + 1 by Proposition 1 and Lemma 11, a contradiction.
So, T contains no m-critical tree.

(⇐) On the other hand, suppose T contains no m-critical tree but la2(T ) =
m+ 1. Choose a minimal subtree G of T with la2(G) = m+ 1. Since ∆(G) ≤
∆(T ) ≤ 2m, D(G) has at least two vertices.

Suppose D(G) has a vertex x such that degG(x) + degD(G)(x) ≤ 2m. Let
x have r neighbors x1, x2, . . . , xr in G, where x1, x2, . . . , xs are in D(G) with
1 ≤ s ≤ r and r+s ≤ 2m. For each 1 ≤ i ≤ r, consider the subtree Gi obtained
from the component of G − x containing xi by adding the edge xxi. By the
minimality of G, la2(Gi) ≤ m. Let Pi = {Fi,1, Fi,2, . . . , Fi,m} be a 2-forest
partition of Gi such that xxi is in Fi,i for 1 ≤ i ≤ s. Since d r−s2 e ≤ m − s,
the r − s edges xxs+1, xxs+2, . . . , xxr can be partitioned into m− s paths Pj
of lengths at most two, where s + 1 ≤ j ≤ m. Then, P = {F1, F2, . . . , Fm}
is clearly a 2-forest partition of G, where Fj = ∪1≤i≤rFi,j for 1 ≤ j ≤ s and
Fj = ∪1≤i≤rFi,j ∪ {Pj} for s + 1 ≤ j ≤ m. So, la2(G) ≤ m, a contradiction.
Therefore, degG(v) + degD(G)(v) ≥ 2m+ 1 for all vertices v in D(G).

Choose a minimal subtree H of G such that degH(x) + degD(H)(x) ≥
2m + 1 for all vertices in D(H). Suppose D(H) has a vertex x such that
degH(x) + degD(H)(x) ≥ 2m + 2. Choose any vertex y adjacent to x in H.
Delete y from H when y is a leaf of H; otherwise, delete all vertices of H−y not
in the component containing x from H. This results a smaller tree H ′ such that
degH′(v) + degD(H′)(v) ≥ 2m + 1 for all vertices v in D(H ′), a contradiction
to the choice of H. Hence H is an m-critical tree in T , a contradiction. Thus,
la2(T ) = m.

An efficient algorithm for determining whether lak(T ) ≤ m for a general k
is desirable.
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4. J. Akiyama and V. Chvátal, A short proof of the linear arboricity for cubic
graphs, Bull. Liber. Arts and Sci., NMS 2 (1981), 1-3.

5. J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, cyclic
and acyclic invariants, Math. Slovaca 30 (1980), 405-417.

6. J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV, linear
arboricity, Networks 11 (1981), 69-72.

7. J. Akiyama and M. Kano, Path factors of a graph, in: Graph Theory and its
Applications, Wiley and Sons, New York, 1984.

8. N. Alon, The linear arboricity of graphs, Israel J. Math. 62 (1988), 311-325.

9. J. C. Bermond, J. L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity,
Discrete Math. 52 (1984), 123-132.

10. B. L. Chen, H. L. Fu and K. C. Huang, Decomposing graphs into forests of
paths with size less than three, Australas. J. Combin. 3 (1991), 55-73.

11. B. L. Chen and K. C. Huang, On the linear k-arboricity of Kn and Kn,n,
manuscript (1996).

12. B. L. Chen and K. C. Huang, Some results on linear k-arboricity, manuscript
(1996).

13. H. Enomoto, The linear arboricity of 5-regular graphs, Technical Report, Dept.
of Information Sci., Univ. of Tokyo (1981).

14. H. Enomoto and B. Peroche, The linear arboricity of some regular graphs, J.
Graph Theory 8 (1984), 309-324.

15. H. L. Fu and K. C. Huang, The linear 2-arboricity of complete bipartite graphs,
Ars Combin. 38 (1994), 309-318.

16. F. Guldan, The linear arboricity of 10-regular graphs, Math. Slovaca 36 (1986),
225-228.

17. F. Guldan, Some results on linear arboricity, J. Graph Theory 10 (1986), 505-
509.

18. M. Habib and P. Peroche, Some problems about linear arboricity, Discrete
Math. 41 (1982), 219-220.

19. M. Habib and P. Peroche, La k-arboricité linéaire des arbres, in: Combinatorial
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