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THE CRITICAL MASS OF
COMPRESSIBLE VISCOUS GAS-STARS

Wen-Chi Kuan∗

Abstract. Let γ be the adiabatic index of self-gravitating, spherically
symmetric motion of compressible viscous gas-star. When γ ∈ (1, 2], we
prove the existence of nonisentropic equilibrium. Furthermore, at the
adiabatic index γ = 4

3 , we found a family of particular solutions which
corresponds to an expansive (contractive) gaseous star. Moreover, we
find that there is a critical total mass M0. If the total mass M of star
is less than M0, then the star expands infinitely. However, if M ≥ M0,
then there is an “escape velocity” ver associated with M and the initial
configuration of the star. If v(0, r) ≥ ver, then the star will expand
infinitely. If v(0, r) < ver, then it will collapse after a finite time.

1. Introduction

In studying the evolution of a gaseous star, which consists of spherically
symmetric movements of self-gravitating viscous gas, we have the following
equations
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p = eSργ ,(1.4)

where t ≥ 0, r ≥ 0 (see, e.g., [10, 11, 12, 15]). Here, the unknown variable ρ
is the density of the gas, v is the outward velocity, and S is entropy, p is the
pressure, γ ∈ (1, 2] is the adiabatic exponent, and ν is the viscosity coefficient.

The problem originates in Newtonian (non-relativistic) astrophysical the-
ory. One of the main problems in studying (1.1) ∼ (1.4) is the existence of
temporarily global solution for a given set of initial data at t = 0. However,
when γ = 4

3 , ν = 0, Makino [9] found there is a family of particular solutions
that tend toward the delta function after a finite time, i.e., a model for grav-
itational collapse of a gaseous star even in Newtonian theory. In [3], Fu and
Lin studied the total mass M of these solutions and found that there is a
critical total mass M0. If M < M0, then the star expands infinitely. However,
if M ≥ M0, then there is an “escape velocity”, ver, associated with M and
the initial configuration of the star. If the star expands at an initial velocity
of v(0, r) ≥ ver, then it will expand as in the case in which M < M0. If
the initial velocity v(0, r) < ver, then it will collapse in finite time. In [3, 9],
ν = 0 and they considered S to be constant, i.e., the gas flow is isentropic.
When ν > 0, we can consider nonisentropic flow. In this paper, we extend
the results in [3, 9] under some assumptions about S including the special case
S ≡ constant.

The paper is organized as follows: in Section 2, we study the existence of
a Ball-type stationary solution of (1.1) ∼ (1.4) for γ ∈(1,2]. The definition of
a Ball-type solution is given below. In Section 3 we study a family of special
solutions of (1.1)∼(1.4) for γ = 4

3 , after which we compare the total mass
of these solutions with the Ball-type solution, which yields a very interesting
result.

2. Star in Equilibrium - Stationary Solution

We seek a bounded stationary solution of the following form

ρ(t, r) =
(
q + 1
4π

) q
q−1

yq(r),(2.1)

v(t, r) = 0,(2.2)

s(t, r) = (q + 1)S(r),(2.3)

where q = 1
γ−1 and S(r) is a given function that satisfies the following assump-

tions:
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(S-1) S ∈ C1(0,∞) and is bounded;

(S-2) S is nondecreasing.

According to (2.1) ∼ (2.3), y satisfies

e(q+1)S(y′ + yS′) +
1
r2

∫ r

0
yqτ 2dτ = 0,(2.4)

y′(0) + y(0)S′(0) = 0, y(0) > 0.(2.5)

It is easy to see that (2.4) ∼ (2.5) is equivalent to

y(r) = e−(q+1)S
(
y(0)e(q+1)S(0) +

∫ r

0
qe(q+1)SS′ydτ

−
∫ r

0
τ

(
1− τ

r

)
yqdτ

)
.

(2.6)

Using standard methods we obtain the following:

Proposition 2.1. If S satisfies (S-1), then for all y(0) > 0, there is an
r0 dependent on S and y(0) such that (2.4) ∼ (2.5) has a unique solution in
C([0, r0]), which is C2 in (0, r0).

Proof. Let y1 = e(q+1)Sy. Then y1 satisfies

y1(r) = y1(0) +
∫ r

0
qS′y1dτ +

∫ r

0
τ

(
1− τ

r

)
e−q(q+1)Syq1dτ.(2.7)

Let us denote by Ty1(r) the right-hand side of (2.7). Choosing M > y1(0),
we consider the set of functions F = {η ∈ C[0, r0] : sup

o≤r≤r0
|η(r)| ≤ M}. Then

there exists an r0 dependent on y1(0), M, Sm = inf
0≤r≤∞

S(r), SM = sup
0≤r<∞

S(r),

such that T is a contraction mapping with respect to the metric d(η1, η2) =
‖η1− η2‖∞. (2.6) then admits a unique solution in F , which is the fixed point
of T . Since it is easy to deduce the estimate of r0, we omit the computation
here. The proof is complete.

If, in addition, S satisfies (S-2), from (2.4) we have y′ < 0 for r > 0. Let
us continue y = y(r, y(0)) to the right as long as possible.

Let R = sup{r̃|y > 0 in [0, r̃)}. We need the following definition.

Definition 2.2. (i) If R <∞, then we say y is a Ball-type solution.
(ii) If R =∞, then we say y is a ground-state solution.
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A Ball-type solution means that we have a gaseous star of finite radius.
In order to know when we have Ball-type or ground-state solution, we deduce
the generalized Pohozaev identity. Let

x(r) = yeS.

x(r) then satisfies

(
r2eqSx′

)′
+ r2e−qSxq = 0,(2.8)

x(0) = y(0)eS(0), x′(0) = 0.(2.9)

Let
g(r) = r2eqS,(2.10)

and

h(r) = g

∫ ∞
r

g−1(τ)dτ.(2.11)

We then have the Pohozaev identity for (2.8) ∼ (2.9).

Lemma 2.3. Let x satisfy (2.8) ∼ (2.9) and g, h be given as in (2.10) and
(2.11). Then,

d

dr

{
(gx′)(hx′ + x) +

2gh
q + 1

e−2qSxq+1
}

=
2

1 + q
ge−2qS

(
4h
r
− 3 + q

2

)
xq+1.

(2.12)

Proof. By (2.8), (2.10) and (2.11), it is easy to see that x satisfies

(hx′ + x)′ + he−2qSxq = 0.(2.13)

By (2.8), (2.10), (2.11) and (2.13), we have (2.12).

Remark 2.4. Let H(r) = 4h
r
− 3+q

2 . Using a partial integration, we have

H(r) =
5− q

2
− 4reqS

∫ ∞
r

qτ−1S′e−qSdτ.(2.14)

If S ≡ constant, then H(r) = 5−q
2 , and (2.12) reduces to the usual Pohozaev

identity.

From (2.4), (2.5), (S-1) and (S-2), it is easy to see that y is decreasing
to zero as r → ∞ when y is a ground-state solution. We next give some
asymptotic behavior of x, when y = e−Sx is a ground-state solution.
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Lemma 2.5. Assume S satisfies (S-1) and (S-2). If x is the ground-state
solution of (2.8) and (2.9), then we have

(i) x(r) ≥ c1r
−1, x′ ≤ c2r

−2 for all sufficiently large r, where c1 > 0, c2 < 0
are constants,

(ii) x(r) ≤ c3(q)r
−2
q−1 for all sufficiently large r if q > 1, and rx(r) → ∞ as

r →∞ if q = 3.

The constants c1, c2 and c3(q) are independent of r.

Proof. Since S is bounded and nondecreasing, according to the argument
used in [14], Theorems 2.1, and 2.2, we have asymptotic behavior for x if x is
the ground-state solution of (2.7) and (2.8).

By comparing the asymptotic behavior of x(r) ≥ c1r
−1, if 1 < q <

3, rx(r) → ∞ when q = 3, with x(r) ≤ c3(q)r
−2
q−1 , we have an immediate

contradiction. Thus, 1 < q ≤ 3 and all solutions of (2.8)∼(2.9) are Ball-type.
The proof is complete.

Before we state the result for the full range of q, we make the following
assumption:

(S-3) H(r) ≥ 0 for any r ≥ 0.

Indeed, as 1 < q < 5, if S′ ≥ 0 and S(0) − S(∞) ≥ ln( q+3
8 )

1
q then H(r) ≥ 0

for r ≥ 0. We can now state the following:

Proposition 2.6. If S satisfies (S-1) and (S-2), and if x is the solution
of (2.8) ∼ (2.9), then:

( i ) if 1 < q ≤ 3, then R <∞;

(ii) if 3 < q < 5 and in addition, S satisfies (S-3), then R <∞;

(iii) if q ≥ 5, then R =∞.

Proof. For 3 < q < 5, since we have a Pohozaev identity and S satisfies
(S-3), we can use the argument for Theorem 3.1 [14] and draw the appropriate
conclusion.

For q ≥ 5, if R < ∞, then integrating (2.12) from 0 to R, since S′ ≥ 0,
therefore H(r) < 0 and we have a contradiction. The proof is complete.

We can now state the following:

Theorem 2.7. Assume S(r) satisfies (S-1) and (S-2), and let (ρ, v, S)(t,r)

be the solution given for (2.1) ∼ (2.3).

( i ) If 4
3 ≤ γ < 2, (ρ, v, S) is a Ball-type solution.
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(ii) If 6
5 < γ < 4

3 , and S(r) satisfies (S-3), then (ρ, v, S) is a Ball-type
solution.

(iii) If 1 < γ < 6
5 , then (ρ, v, S) is a ground-state solution.

Remark 2.8. It is interesting to know the mass-radius diagram (M −R
diagram) from [1]. The total mass M of a Ball-type solution is given by

M = 4πCq
∫ R

0
yqr2dr <∞,

where Cq =
(
q+1
4π

) q
q−1 .

To understand the M −R diagram, it is useful to study the following two
problems.

Problem 1. Given y(0) = α > 0,M > 0, how many solutions of (2.4)
and (2.5) are there?

Problem 2. Given y(0) = α > 0, R > 0, how many solutions of (2.4) and
(2.5) are there?

In [7], S ≡ constant, we know the M −R diagram for 1 < q ≤ 3 looks like
the following Fig. 1

FIG. 1.

But in (2.2) and (2.3), when S 6≡ constant, the computation of dM
dα

in
Problem 1 or dR

dα
in Problem 2 is more difficult than the case in which S ≡

constant.

3. The Relation of Mass and Expanding of Star

In this section we shall study a particular solution for nonisentropic gas.
Following [9], we adopt the following transformation to seek a particular class
of solutions. Let
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r = a(t)z,(3.1)

ρ(t, r) = Aa−3(t)y3(z),(3.2)

v(t, r) = ȧ(t)z and(3.3)

s(t, r) = 4S(z).(3.4)

The positive r and ρ ≥ 0 require z > 0, y(z) ≥ 0 and a(t) > 0. It is easy to
verify that (1.1) ∼ (1.3) are satisfied by (3.1) ∼ (3.4) and (1.2) becomes

a2äz3 +Aγ−1z2e4Sa−3γ+4y3γ−4(3γy′ + 4S′y) + 4πA
∫ z

0
y3ξ2dξ = 0.(3.5)

Furthermore, if γ = 4
3 and we let A = π−3/2, then (3.5) becomes

1
4πA

a2äz3 + z2e4S(y′ + S′y) +
∫ z

0
y3ξ2dξ = 0.(3.6)

Now, (3.6) can be solved by the method of separation of variables. Indeed, let

a2ä(t) =
4
3
πAλ.(3.7)

Then (3.6) becomes

z2e4S(y′ + yS′) +
∫ z

0
ξ2(y3 + λ)dξ = 0.(3.8)

We consider the initial condition

y′(0) + y(0)S′(0) = 0, y(0) > 0.(3.9)

Remark 3.1. We denote the solution of (3.8) and (3.9) by yλ(z) =
y(z, λ, y(0)). As λ = 0, the equation for y0(z) is the same as (2.1) and (2.2) for
q = 3. Henceforth, we will omit the subscript λ, which causes no confusion.

(3.8) and (3.9) are equivalent to

y(z) = e−4S
{
y(0)e4S(0) +

∫ r

0
3e4SS′ydξ −

∫ z

0
ξ

(
1− ξ

z

)(
y3 + λ

)
dξ

}
.(3.10)

Using standard methods as in Proposition 2.1, we have a local solution y(z)
for (3.8) and (3.9) near z = 0 if S satisfies (S-1). We continue y(z) to the
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right as long as possible. Furthermore, if S satisfies (S-2), then y′ < 0 for
r ≥ 0 as λ ≥ 0. On the other hand, y′ may change signs as λ < 0. In order to
get more information about the solution y(z), let

x = eSy.(3.11)

Differentiating (3.8) once, we obtain

(
z2e3Sx′

)′
+ z2e−3Sx3 + λz2 = 0,(3.12)

x(0) = y(0)eS(0), x′(0) = 0.(3,13)

Lemma 3.2 Let x(z) be the solution of (3.12) ∼ (3.13). Let Z = Z(λ) =
sup{z|x(z) > 0 in (0, z)}, ϕ(z) = ∂x

∂λ
. Assume S satisfies (S-1) and (S-2). If

x′(z) ≤ 0 in (0, Z), then ϕ(z) < 0 in (0, Z].

Proof. By (3.11), (3.12) and (3.13), it is easy to see that ϕ(z) satisfies

(z2e3Sϕ′)′ + 3z2e−3Sx2ϕ+ z2 = 0(3.14)

and

ϕ(0) = 0 = ϕ′(0).(3.15)

Define

ϕλ(x) =
1
2
e3Sϕ′2 +

∫ z

0
(3e−3Sx2ϕ+ 1)ϕ′dξ.(3.16)

By partial integration, we have

ϕλ(z) =
1
2
e3Sϕ′2 + ϕ+

3
2
e−3Sx2ϕ2

+
∫ z

0

3
2
ϕ2(3S′e−3Sx2 − 2e−3Sxx′)dξ.

(3.17)

Then by (3.14), we have

dϕλ
dz

= −
(

2
z

+
3
2
S′
)
e3Sϕ′2 ≤ 0 for z > 0.(3.18)

Since ϕλ(0) = 0,

ϕλ(z) < 0 in (0, Z].(3.19)
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By (3.17), (3.19), (S-2) and our assumption that x′(z) ≤ 0, we have ϕ(z) < 0
in (0, Z].

Observe that x(z, λ) is C1 in λ, and if x′(Z(λ)) 6= 0, then by the implicit
function theorem Z(λ) is C1 in λ. If Z <∞, we have

∂x

∂z
(Z(λ), λ)

dZ

dλ
+ ϕ(Z(λ), λ) = 0.(3.20)

Hence, if x′(z) ≤ 0 in (0, Z), then, by Lemma 3.2, dZ
dλ
< 0. Thus it is important

to know when x′(z) is nonpositive in (0, Z].

Lemma 3.3. Assume S satisfies (S-1) and (S-2). If x(z) is the solution
of (3.12) ∼ (3.13), then there is λ < 0 such that for all λ > λ, there exists
Z = Z(λ) <∞ such that x(z) > 0 in (0, Z), x(Z) = 0 and x′(z) < 0 in (0, Z].

Proof. If λ ≥ 0, by (3.12) ∼ (3.13)

z2e3Sx′(z) = −
∫ z

0
(ξ2e−3Sx3 + λξ2)dξ.(3.21)

Hence,

x′(z) < 0 for z > 0, λ ≥ 0.(3.22)

As λ = 0, the equation of (3.12) is the same as (2.8). Thus, by Proposition
2.6(i), Z(0) < ∞. Furthermore, as λ > 0, by (3.22) and Lemma 3.2, we have
ϕ(Z) < 0. Hence, dZ

dλ
< 0 for λ > 0.

Since for λ = 0, x′(z) < 0 in (0, Z(0)], therefore as λ < 0 and |λ| is suffi-
ciently small, we can use the argument of continued dependence on parameter
λ to obtain Z(λ) < ∞ such that x(z) > 0 in (0, Z(λ)), x′(z) < 0 in (0, Z(λ)).
We may choose λ to be the smallest number that still allows this argument to
hold. The proof is complete.

Indeed, if λ < 0 and is small enough, then x(z) > 0 for all z > 0. We state
the result below.

Lemma 3.4. Assume S satisfies (S-1) and (S-2). If λ + 1
4y

3(0) < 0,
then every solution x(z) of (3.11) ∼ (3.12) is positive for any z > 0.

Proof. We define the energy function

E(z) =
1
2
e3Sx′2 +

∫ z

0
(e−3Sx3 + λ)x′dξ + λx(0) +

1
4
x4(0)e−3S(0).(3.23)

By partial integration, we have
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E(z) =
1
2
e3Sx′2 + λx+

1
4
e−3Sx4 +

∫ z

0

3
4
e−3SS′x4dξ.(3.24)

Differentiating (3.23) once, we obtain

dE

dz
= −

(
2
z

+
3
2
S′
)
e3Sx′2 ≤ 0.(3.25)

If there is any Z(λ) < ∞ such that x(Z(λ)) = 0, then by (S-2),(3.23) and
(3.24), 0 < E(Z(λ)) ≤ E(0). Hence, if λ+ 1

4y
3(0) = E(0)

x(0) < 0, then we have a
contradiction. The proof is complete.

The total mass M of solution (ρ, v, S) of (1.1)∼(1.4) is given by

M = 4π
∫ R(t)

0
ρ(t, r)r2dr,(3.26)

where R(t) ≤ ∞ is the first zero of ρ(t, r) at time t. For solutions of the form
(3.1) ∼ (3.4), M(λ) is dependent only on λ and y(0), with

M(λ) = 4πA
∫ Z(λ)

0
y3ξ2dξ.(3.27)

By (3.11),

M(λ) = 4πA
∫ Z(λ)

0
e−3Sx3ξ2dξ.(3.28)

Thus,

dM

dλ
= 4πA

∫ Z(λ)

0
3e−3Sx2 · ∂x

∂λ
ξ2dξ(3.29)

if Z(λ) <∞ and x(Z(λ)) = 0. By Lemmas 3.2, and 3.3, we have:

Lemma 3.5. Assume S satisfies (S-l) and (S-2), and let x(0) be fixed.
Then there is a λ dependent on x(0) such that for all λ > λ,

dM

dλ
< 0.(3.30)

Proof. The result follows easily from Lemmas 3.2 and 3.3. The proof is
complete.

By Lemma 3.5, we define

M = lim
λ→λ

M(λ).(3.31)
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On the other hand, for the equation (3.7), we consider the initial-value problem

a(0) = a0 > 0, ȧ(0) = a1.(3.32)

The solutions of (3.7) and (3.32) have been studied in [3, 9]. We merely
review the results here.

Proposition 3.6. Let a(t) be the solution of (3.7) and (3.32). We then
have the following results.

( I ) If λ > 0, then a(t) > 0 for any t > 0, and a(t)→∞ as t→∞.

(II) If λ = 0, then a(t) = a1t+ a0.

(III) If λ < 0, let

a∗1(λ) =
(
SπA

3
|λ|a−1

0

)1/2

.(3.33)

If a1 ≥ a∗1(λ), then a(t) > 0 for any t > 0, and a(t)→∞ as t→∞.

If a1 < a∗1(λ), then there is T < ∞ such that a(t) > 0 in (0, T ), and
a(t)→ 0 as t→ T−.

Denote by M0 = M(0). For any λ ∈ (λ,∞), a0 > 0, a1 ∈ R, the solutions of
(3.1) ∼ (3.4) are given by

ρ(t, r) = Aa−3(t)y3
(

r

a(t)

)
,(3.34)

v(t, r) = a−1(t)ȧ(t)r and(3.35)

S(t, r) = S

(
r

a(t)

)
,(3.36)

with an initial velocity of

v(0, r; a0, a1) = a−1
0 a1r,(3.37)

where a(t) ≡ a(t; a0, a1) and S is any given function satisfying (S-1) and
(S-2). Denote the escape velocity, ver, as

ve ≡ ve(λ, a0) =
(

8πA
3
|λ|a−1

0

)1/2

.(3.38)

Combining the results of Proposition 3.6 and Lemma 3.5, we obtain the fol-
lowing main result.
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Theorem 3.7. Assume S satisfies (S-1), (S-2), and the total mass M ∈
(0,M). Then a gaseous star of the form (3.1) ∼ (3.4) is given by (3.33) ∼
(3.35). Furthermore, we have:

( I ) If M < M0, then the star will expand and the density eventually tends
toward zero.

(II) If M > M0, and the initial velocity v(0, r) ≥ ver for r ∈ (0, R0), where
ρ(0, R0) = 0, then the star behaves as in (I). On the other hand, if
v(0, r) < ver for r ∈ (0, R0), then the star will collapse toward its center
in a finite time.

(III) If M = M0, we have three cases:
( i ) when a1 > 0, the star behaves as in (I);
(ii) when a1 < 0, the star collapses toward its center;
(iii) when a1 = 0, the star is in equilibrium.
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