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NEAREST NEIGHBOR MEDIAN ESTIMATION OF
REGRESSION FUNCTION AND ITS DERIVATIVES∗

Ying Yang

Abstract. Consider the fixed-design nonparametric median regression
model Yi = g(xi) + ei, i ≥ 1. For estimating the regression function
g(x) and its derivative, the nearest neighbor median estimators g̃n,h(x)
are employed, where h is the number of the nearest neighbors. Under
mild regularity conditions, rates of convergence for the estimators are
obtained.

1. Introduction

Consider the observations

Yi = g(xi) + ei, i ≥ 1,(1)

where g(·) is an unknown regression function to be estimated and assumed to
be continuous on [0, 1], {xi, i ≥ 1} are nonrandom fixed-design points from
the interval [0, 1], {ei, i ≥ 1} are independent and identically distributed (iid)
random errors with a unique median 0 and Yi (i ≥ 1) are noisy observations
of g(x) at xi (i ≥ 1). The practical importance of obtaining a nonparametric
regression estimate of g(x) has led to several estimators for g(x), for examples,
kernel estimates (Priestly and Chao, 1972; Gasser and Müller, 1979; Cheng
and Lin, 1981 a,b; Georgiev, 1984; and the references therein) and weighted
orthogonal series estimation (Yang, 1994). The presence of a small part of
outliers may, however, cause a difficult explanation of the estimated regres-
sion function. Robust alternatives to the kernel methods have been proposed
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(Härdle and Gasser, 1984). Robust spline smoothing and local median method
in the random case were considered (Huber, 1979; Truong, 1989).

The estimation of derivatives from noisy observations is of importance in
many areas of engineering and physics. Härdle and Gasser (1985) discussed
the problem on robust kernel estimation of derivatives of regression functions.
Holiday (1989) also discussed the estimation of derivatives of a nonparametric
regression function when the data are correlated.

The results above-mentioned except Truong (1989) are considered in the
nonparametric regression setup. However, the model (1) is not, generally
speaking, a nonparametric regression, since the conditional expectation

Eg(·)[Yi] = g(xi) + Eei

may not exist under Assumptions 1 and 2 below. The g(xi) has the meaning
of conditional median.

The aim of this paper is to present a robust estimator for the nonparametric
median function g(x) and its derivative g

′
(x). In the nonparametric regression

setup, similar problems have been studied by Holiday (1989). The rates of
convergence for the estimators will be described in Section 2. Proofs of the
conclusions are given in Section 3.

2. Assumptions and Main Results

Take a subseries {Yi, 1 ≤ i ≤ n} from the infinite series {Yi, i ≥ 1}. With-
out loss of generality, assume that 0 ≡ x0 ≤ x1 ≤ x2 · · · ≤ xn ≡ 1. For
x ∈ [0, 1] and n ≥ 1, let {Dn1(x), Dn2(x) · · · , Dnn(x)} be the order statistics
of {x1, x2, · · · , xn}, ordered by the distances {|x − xi|}, 1 ≤ i ≤ n, with ties
being broken by the chronological order. Let Yni(x) and eni(x) (i = 1, 2, · · · , n)
denote the corresponding noisy observation and random error at Dni(x) (i =
1, 2, · · · , n), respectively. The following estimate

g̃n,h(x) = m(Yn1(x), Yn2(x), · · · , Ynh(x))

= median of Yn1(x), Yn2(x), · · · , Ynh(x)
(2)

is called the nearest neighbor median estimator of g(x), where the number of
nearest neighbors h plays the role of the smoothing parameter. If h is even,
then g̃n,h(x) is equal to the average of the two middle order statistics.

The estimate of g
′
(x), the derivative of g(x), is defined by

Dg̃n,h(x) = δn,h[g̃n,h(x+ δ−1
n,h)− g̃n,h(x)],(3)

where the integer sequence δn,h →∞.
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A set of mild regularity conditions will be useful throughout this paper.

Assumption 1. e1, e2, · · · , en, · · · are iid random variables with median 0,
i.e., F (0) = 1

2 , and common distribution function F (x) and density function
f(x) = F (x)′. ∃δ > 0, ∃c1 > 0 such that f(x) ≥ c1, ∀x ∈ [−δ, δ];

Assumption 2. (i) ∃L > 0 such that |g(x) − g(y)| ≤ L|x − y| for x, y ∈
[0, 1]; (ii) ∃M0 > 0 such that |g′′(x)| ≤M, ∀x ∈ (0, 1);

Assumption 3. ∃c2 > 0 such that |x−Dnh(x)| ≤ c2
h
n , where h ∼ n

2
3 .

Let αn = n−
1
3
√

lognβn, where βn tends very slowly to infinity.

Theorem 2.1. Suppose Assumptions 1, 2(i), and 3 hold and let h ∼ n
2
3 .

Then
α−1
n sup

0≤x≤1
|g̃n,h(x)− g(x)| = o(1) a.s..

Theorem 2.2. Under the assumptions of Theorem 2.1,

sup
0≤x≤1

E(g̃n,h(x)− g(x))2 = O

((
h

n

)2
+

1
h

)
+ o(h−

3
2 ).

In particular, if h ∼ n
2
3 , then

sup
0≤x≤1

E(g̃n,h(x)− g(x))2 = O(n−
2
3 ).

Theorem 2.3. Suppose Assumptions 1, 2(ii), and 3 hold and let h ∼ n
2
3

and δn,h = 1√
αn

. Then

sup
1≤x≤1

|Dg̃n,h(x)− g′(x)| = O(
√
αn) a.s..

Remark 1. x+ (δn,h)−1 ∈ [0, 1] in (3) is required.

Remark 2. It should be noted that in the present work, the choice of
h is left somewhat subjective. However, the smoothing parameters can be
chosen using the cross-validation procedure. Zheng and Yang (1996) and Yang
and Zheng (1996) suggested the following median cross-validation criterion to
choose the number of nearest neighbors h:

cv(h) = median of |Y1 − g̃−1
n,h(x1)|, |Y2 − g̃−2

n,h(x2)|, · · · , |Yn − g̃−nn,h(xn)|,
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where g̃−in,h(xi) is the deleted-one version of the estimator in (2), i.e., g̃−in,h(xi) =
m(Yn2(xi), Yn3(xi), · · · , Ynh(xi)). The interested reader can refer to Zheng and
Yang (1996) and Yang and Zheng (1996) for details.

3. Proofs

Proof of Theorem 2.1. By Assumptions 2(i) and 3, for each i, 1 ≤ i ≤ n,
and every x ∈ [xi−1, xi], 1 ≤ j ≤ h, h ∼ n

2
3 , we have

|g(Dnj(x))− g(x)| ≤ L|Dnj(x)− x| ≤ Lc2
h

n
.(4)

Also, when n� 1, ∀ε > 0, h ∼ n
2
3 ,

εαn − Lc2
h

n
∼ εn−

1
3
√

log nβn − Lc2n−
1
3 ≥ 1

2
εαn,(5)

and then by Assumption 1 and the mean value theorem

F

(
εαn − Lc2

h

n

)
− F (0) =

(
εαn − Lc2

h

n

)
f(θn,h),

where θn,h lies between 0 and εαn − Lc2
h
n . If h ∼ n

2
3 , n � 1, then 0 <

εαn − Lc2 hn ≤ δ. Thus

F

(
εαn − Lc2

h

n

)
− F (0) ≥ c1

(
εαn − Lc2

h

n

)
≥ 1

2
c1εαn.(6)

Therefore, for n sufficiently large, by (4) ∼ (6) we have

P
{

sup
0≤x≤1

|g̃n,h(x)− g(x)| ≥ εαn
}

≤ P
{

max
1≤i≤n

sup
xi−1≤x≤xi

|g̃n,h(x)− g(x)| ≥ εαn
}

≤ n max
1≤i≤n

P
{

sup
xi−1≤x≤xi

|m(en1(x) + g(Dn1(x)), · · · , enh(x)

+g(Dnh(x)))− g(x)| ≥ εαn
}

≤ n max
1≤i≤n

P
{

sup
xi−1≤x≤xi

|m(en1(x), · · · , enh(x))|

+ max
1≤j≤h

|g(Dnj(x))− g(x)| ≥ εαn
}

≤ n max
1≤i≤n

P
{

sup
xi−1≤x≤xi

|m(en1(x), · · · , enh(x))|+ Lc2
h

n
≥ εαn

}
≤ n max

1≤i≤n
P
{ n⋃
i=1

|m(en1(xi), · · · , enh(xi))| ≥ εαn − Lc2
h

n

}
≤ n2 max

1≤i≤n
P
{
|m(en1(xi), · · · , enh(xi))| ≥

1
2
εαn

}
.
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Since m(en1(xi), · · · , enh(xi)) and m(e1, · · · , eh) have the same distribution,

P

{
sup

1≤x≤1
|g̃n,h(x)− g(x)| ≥ εαn

}
≤ n2P

{
|m(e1, · · · , eh)| ≥ 1

2
εαn

}
≤ n2P

{
m(e1, · · · , eh) ≥ 1

2
εαn

}
+ n2P

{
m(e1, · · · , eh) ≤ −1

2
εαn

}
.

(7)

As to the second term on the right side in (7), by Hoeffding’s inequality (Ho-
effding, 1963)

n2P

{
m(e1, · · · , eh) ≥ 1

2
εαn

}
= n2P

{
1
n

h∑
i=1

I{ei≥ 1
2 εαn}

≥ 1
2

}

= n2P

{
1
n

h∑
i=1

[
I{ei≥ 1

2 εαn}
− P

{
ei ≥

1
2
εαn

}]
≥ 1

2
− P

{
ei ≥

1
2
εαn

}}

= n2P

{
1
n

h∑
i=1

[
I{ei≥ 1

2 εαn}
− P

{
ei ≥

1
2
εαn

}]
≥ F

(
1
2
εαn

)
− F (0)

}

≤ n2P

{
1
n

h∑
i=1

[
I{ei≥ 1

2 εαn}
− P

{
ei ≥

1
2
εαn

}]
≥ 1

2
c1εαn

}

≤ 2n2 exp

{
−c0

(
1
2
c1εαn

)2
h

}

∼ 2n2 exp
{
−1

4
c0c

2
1ε

2β2
n log n

}
≤ 1
n2 , (n� 1).

(8)

Similarly, when n� 1,

n2P

{
m(e1, · · · , eh) ≤ −1

2
εαn

}
≤ 1
n2 .(9)

By (7) ∼ (9),

∞∑
n=1

P
{

sup
0≤x≤1

|g̃n,h(x)− g(x)| ≥ εαn
}
<∞,

therefore, according to Borel-Cantelli lemma:

α−1
n sup

1≤x≤1
|g̃n,h(x)− g(x)| = o(1) a.s..

This finishes the proof of the theorem.
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Proof of Theorem 2.2. Note that

|g̃n,h(x)− g(x))| = |m(en1(x) + g(Dn1(x)), · · · , enh(x) + g(Dnh(x)))− g(x)|

≤ |m(en1(x), · · · , enh(x))|+ max
1≤j≤h

|g(Dnj(x))− g(x)|

≤ |m(en1(x), · · · , enh(x))|+ Lc2
h

n
.

Sine m(en1(x), · · · , enh(x)) and m(e1, · · · , eh) have the same distribution, by
Theorem C (Serfling, 1983, p. 101)

E[m(en1(x), · · · , enh(x))]2 =
1

4f2(0)h
+ o(h−

3
2 ).

So

E|g̃n,h(x)− g(x))|2 ≤ 2E[m(en1(x), · · · , enh(x))]2 + o(h−
3
2 ) + 2

(
Lc2

h

n

)2

= O

((
h

n

)2
+

1
h

)
+ o

(
h−

3
2

)
.

This finishes the proof of the theorem.

Proof of Theorem 2.3. Note that

|Dg̃n,h(x)− g(x)|

= |δn,h[g̃n,h(x+ δ−1
n,h)− g̃n,h(x)]− g′(x)|

≤ |δn,h[g̃n,h(x+ δ−1
n,h)− g(x+ δ−1

n,h)]|

+|δn,h[g̃n,h(x)− g(x)]|+ |δn,h[g(x+ δ−1
n,h − g(x)]− g′(x)|

= |δn,h[gn,h(x+ δ−1
n,h)− g(x+ δ−1

n,h)]|

+|δn,h[gn,h(x)− g(x)]|+
∣∣∣∣12g′′(x)δ−1

n,h + o(|δ−1
n,h|)

∣∣∣∣ ,
where o(·) is uniformly in x ∈ [0, 1]. Therefore for all n large enough, h ∼ n

2
3 ,

and |δn,h| ∼ α
− 1

2
n , we have

sup
x∈[0,1]

|Dg̃n,h(x)− g(x)| ≤ 2|δn,h| sup
x∈[0,1]

|g̃n,h(x)− g(x)|+M |δ−1
n,h|

≤ 2c|δn,h|αn +M |δ−1
n,h|

= o

(
1
√
αn
αn

)
+O(

√
αn) = O(

√
αn) a.s.,

which implies the desired conclusion.
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