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A SURVEY ON HEDETNIEMI’S CONJECTURE

Xuding Zhu

Abstract. More than 30 years ago, Hedetniemi made a conjecture
which says that the categorical product of two n-chromatic graphs is
still n-chromatic. The conjecture is still open, despite many different
approaches from different point of views. This article surveys methods
and partial results; and discuss problems related to or motivated by this
conjecture.

1. Introduction

Suppose G and H are simple finite graphs. The product G×H of G and
H has vertex set V (G × H) = {(g, h) : g ∈ V (G) and h ∈ V (H)} and edge
set E(G ×H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and hh′ ∈ E(H)}. This product
is called the categorial product or the tensor product in the literature. As this
is the only product we shall discuss in this paper, we shall simply call it the
product.

Given an n-coloring c of the graph G, it is straightforward to verify that
the mapping c′((g, h)) = c(g) is an n-coloring of the product G×H. Therefore,
χ(G×H) ≤ χ(G). Similarly, we have χ(G×H) ≤ χ(H), and hence

χ(G×H) ≤ min{χ(G), χ(H)}.(1)

Hedetniemi’s conjecture [22] asserts that the equality holds in (1) for all graphs
G and H.

Conjecture 1. For any finite simple graphs G and H,

χ(G×H) = min{χ(G), χ(H)}.

This conjecture is also known as the Lovász-Hedetniemi’s conjecture [35],
or the product conjecture.

For a positive integer n, we define C(n) to be the following statement:
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C(n): If graphs G and H are not n-colorable, then their product G×H is not
n-colorable.

In light of inequality (1), Hedetniemi’s conjecture is equivalent to say that
C(n) is true for all n ≥ 1.

Hedetniemi’s conjecture has enjoyed considerable attention. Many authors
tried many different approaches to this conjecture. Just like any other difficult
conjecture, all the efforts trying to settle it bring up more problems than
solutions. We shall survey methods and partial results; and discuss questions
related to or motivated by Hedetniemi’s conjecture.

2. Exponential Graphs

One approach to Hedetniemi’s conjecture is the exponential graph method,
which was first used in [15] to the study of Hedetniemi’s conjecture, although
the exponential graphs were studied much earlier [6, 37]. Given a graph G and
an integer n, the exponential graph KG

n has as vertices all the mappings from
V (G) to V (Kn) = {1, 2, · · · , n}. Two such mappings f and g are adjacent
in KG

n if for every edge ab ∈ E(G) we have f(a) 6= g(b). It follows from the
definition that KG

n has no loop if and only if χ(G) > n.
We define a homomorphism from a graph G to another graph H as a

mapping h : V (G)→ V (H) such that for any edge xy of G the images f(x)f(y)
is an edge of H. We write G � H to indicate that there is a homomorphism
from G to H. Then the set of all finite graphs forms a partially ordered
set. An important property of this partial order is that G � H implies that
χ(G) ≤ χ(H). Indeed, any n-coloring c of H induces an n-coloring c′ of G
through a homomorphism h from G to H, defined as c′(x) = c(h(x)).

For any graph G, let Sn(G) be the set of graphs H such that χ(G×H) ≤ n.
It turns out that the exponential graph KG

n is the largest element of Sn(G)
with respect to the order of homomorphism. First we show that KG

n ∈ Sn(G).

Lemma 1. For any graph G and for any integer n, the graph G×KG
n is

n-colorable.

Proof. It is straightforward to verify that the coloring c : V (G ×KG
n ) →

{1, 2, · · · , n} defined as c((x, f)) = f(x) is an n-coloring of G×KG
n .

Next we shall show that KG
n is the maximum element of Sn(G).

Lemma 2. If H is a graph with χ(G×H) ≤ n, then H � KG
n .

Proof. If c is a coloring of G × H with n colors 1, 2, · · · , n, then the
mapping f : V (H) → V (KG

n ) defined as (f(x))(y) = c(x, y) for all y ∈ V (G)
is a homomorphism of H to KG

n .
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Combining Lemmas 1 and 2, we have the following result:

Theorem 1. Given two graphs G and H. The following are equivalent:

1. The product G×H is n-colorable.

2. H admits a homomorphism to KG
n .

3. G admits a homomorphism to KH
n .

Using Theorem 1, we conclude that statement C(n) is equivalent to the
following statement C ′(n).

C ′(n) : If χ(G) > n, then KG
n is n− colorable.

Indeed if C ′(n) is false, then there is a graph G with χ(G) > n such that
χ(KG

n ) > n. Then we have two graphs G and KG
n , none of which is n-colorable

and yet their product is n-colorable, contrary to C(n). On the other hand, if
C(n) is false, then there are graphs G and H such that both G and H are not
n-colorable, but G × H is n-colorable. Then H admits a homomorphism to
KG
n , and hence KG

n is not n-colorable, contrary to C ′(n).
The exponential graph method was used in [15] to show that C(3) is true.

In other words, El-Zahar and Sauer proved the following result:

Theorem 2. If G and H are not 3-colorable, then their ploduct G×H is
also not 3-colorable.

Theorem 2 is probably the most significant progress in the investigation of
Hedetniemi’s conjecture. We note that C(1) is trivial. The validity of C(2) was
established in [22] by observing that the product of two odd cycles contains
an odd cycle. Theorem 2 was published a decade ago, and yet no attempts
to generalize it has succeeded. The proof was quite complicated. However,
we shall still give a complete proof of Theorem 2, because it is important and
also because we would like to discuss possible ways to extend it. The proof
is essentially the one in [15], with some re-arrangements and simplification to
make it shorter.

Proof of Theorem 2. We first consider the exponential graphs KCn
3 , where

Cn denotes the cycle of n vertices, say v1, v2, . . . , vn. For a vertex f of KCn
3 , a

vertex vi of Cn is called a fixed point of f if f(vi−1) 6= f(vi+1).

Claim 1. For two adjacent vertices f1 and f2 of KCn
3 , where n is odd, the

number of fixed points of f1 has the same parity as the number of fixed points
of f2.
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Let f1 and f2 be two adjacent vertices in KCn
3 . Consider the product

Cn ×K2 which has vertices {(vi, aj) : i = 1, 2, . . . , n and j = 1, 2}, and which
is isomorphic to an even cycle C2n. It is straightforward to verify that the
mapping f ∈ V (KCn×K2

3 ) defined as f(ci, aj) = fj(ci) is a proper coloring
of Cn ×K2, and that the number of fixed points of f is the sum of the fixed
points of f1 and f2. Therefore to prove the claim, it suffices to show that f has
an even number fixed points. However it can be proved easily by induction
on the number of vertices that any proper 3-coloring of an even cycle has an
even number of fixed points. This completes the proof of Claim 1.

Suppose H is a graph with χ(H) ≥ 4. Let f ∈ V (KH
3 ) be a non-isolated

vertex of KH
3 . We shall show that

Claim 2. There is an odd cycle, say Cn, of H such that f has an even
nvmber of fixed points on Cn.

Let X = {x ∈ V (H) : ∃y ∈ V (H), xy ∈ E(H), f(x) = f(y)}. We claim
that X contains an odd cycle. Otherwise X can be partitioned into two
independent subsets X1 and X2. Let g be any vertex adjacent to f in KH

3 . It
is straightforward to verify that the mapping c defined as

c(x) = f(x) for x ∈ V (H)−X1 and c(x) = g(x) for x ∈ X1

is a proper 3-coloring of H, contrary to the assumption that χ(H) ≥ 4.
Let Cn = (v1, v2, . . . , vn) be an odd cycle of X. We shall show that f

has an even number of fixed points on Cn. Consider monochromatic intervals
(vi, . . . , vi+k) of Cn. Such an interval contributes 2 fixed points if k ≥ 1. If
k = 0 then it contributes 0 or 1 fixed point depending on whether f(vi−1) =
f(vi+1) or not. Therefore if f has an odd number fixed points on Cn, then
there are three consecutive vertices, say (vi−1, vi, vi+1), of the cycle Cn which
get different colors from f . Since g is adjacent to f , we conclude that g(vi) 6=
f(vi−1), f(vi+1), and hence g(vi) = f(vi). However this is a contradiction, as
there exists a vertex y of H such that vi+1y ∈ E(H) and f(y) = f(vi). This
completes the proof of Claim 2.

Assume contrary to Theorem 2 that there are connected graphs G and H
with χ(G) ≥ 4 and χ(H) ≥ 4 and that χ(G × H) ≥ 3. Let f be a proper
3-coloring of G×H. For each vertex x ∈ V (G), let fx ∈ V (KH

3 ) be defined as
fx(y) = f(x, y). Similarly, for each y ∈ V (H), let fy ∈ V (KG

3 ) be defined as
fy(x) = f(x, y). It is easy to see that xx′ ∈ E(G) implies that fxfx′ ∈ E(KH

3 ).
Hence fx is a non-isolated vertex of KH

3 for each x ∈ G. Therefore, there is
an odd cycle Cn of H such that fx has an even number of fixed points on Cn.
As adjacent vertices in KH

3 have the same parity of fixed points on the cycle
Cn, we conclude that for all x ∈ V (G), fx have even number of fixed points on
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Cn. Similarly, there is an odd cycle, say Cm, of G such that for all y, fy have
even number of fixed points on Cm.

Suppose Cn has vertex set {v1, v2, · · · , vn} and Cm has vertex set {u1, u2, · · ·,
um}. Let Mi be the number of fixed points of fvi on Cm, and let Nj be the
mlmber of fixed points of fuj on Cn. As all Mi and Nj are even, and nm is
odd, it follows that

mn−
m∑
i=1

Mi −
n∑
j=1

Nj

is odd.
Figure 1 below shows some of the edges of Cn × Cm. Let

Qi,j = {(vi−1, uj), (vi, vj+1), (vi+1, uj), (vi, uj−1)}

be the quadrilateral as shown in Figure 1. Then the edges of Cn×Cm is parti-
tioned into k disjoint “cycles” of quadrilaterals, each of the formQi,jQi+1,j+1 · · ·,
where k = gcd(m,n). It is easy to verify that if a quadrilateral Qi,j is colored
by 3 colors, then either vi is a fixed point of fuj or uj is a fixed point of fvi ,
and hence it contributes 1 to the sum

∑
Mi+

∑
Nj ; and if Qi,j is colored by 2

colors, then neither vi is a fixed point of fuj nor uj is a fixed point of fvi and
hence it contributes 0 to the sum

∑
Mi+

∑
Nj . Therefore mn−

∑
Mi−

∑
Nj

is equal to the number of quadrilaterals Qi,j that are colored by 2 colors.
We define an orientation of the edges of Cn × Cm such that the arrows

goes from colors 1 to 2, 2 to 3 and 3 to 1. It is easily verified that if Qi,j is
colored by 3 colors then the opposite sides of Qi,j have parallel orientations,
and if Qi,j is colored by 2 colors then the opposite sides of Qi,j have opposite
orientations.

FIG. 1.

5



6 Xuding Zhu

Consider a “cycle” Qi,jQi+1,j+1 · · · of quadrilaterals. “Adjacent” quadri-
laterals share a common edge. The number of quadrilaterals in this sequence
in which the opposite sides are oriented in opposite directions is equal to
the number of times that the “common” edges change directions in the se-
quence, which is even as it starts and finishes at the same edge. Therefore
mn−

∑
Mi−

∑
Nj is even, contrary to our previous conclusion. This completes

the proof of Theorem 2.

This proof made extensive use of the structure of odd cycles, which are
the only critical 3-chromatic graphs. One difficulty in generalizing this proof
is that we know almost nothing about the structure of critical n-chromatic
graphs for n ≥ 4.

The above argument actually proved a stronger statement, namely it is
proved that if Cn is an odd cycle of G and Cm is an odd cycle of H, then
(Cn × H) ∪ (G × Cm) is not 3-colorable, provided that G and H are not
3-colorable.

Based on this observation, the following conjecture was proposed in [15]:

Conjecture 2. Let G and H be connected graphs which are not n-colorable.
Let G′ and H ′ be n-chromatic subgraphs of G and H respectively. Then
(G×H ′) ∩ (G′ ×H) is not n-colorable.

It is trivial that Conjecture 2 implies Conjecture 1.
A crucial concept in the proof of Theorem 2 is the parity of the number of

fixed points of an element f ∈ V (KCn
3 ). It seems that what really matters is

which component of KH
n contains the element f in consideration. We denote

by C(KH
n ) the component of KH

n which contains the constant mappings. (Note
that the n constant mappings fi(v) = i for 1 ≤ i ≤ n form a complete
subgraph.) We propose the following conjecture corresponding to Claim 2.

Conjecture 3. Suppose χ(H) > n and that f is contained in a component
of KH

n which has chromatic number at least n. Then there is a subgraph H ′

of H with χ(H ′) = n and that f |H ′ ∈ C(KH′
n ). Here f |H ′ is the restriction

of f to H ′.

Corresponding to the argument of counting the 2-colored quadrilaterals,
we propose the following conjecture for the general case.

Conjecture 4. Suppose G and H are n-chromatic graphs. Let f be a
proper n-coloring of G × H. For x ∈ V (G), let fx ∈ V (KH

n ) be defined as
fx(y) = f(x, y). Similarly, we define fy ∈ V (KG

n ) for each y ∈ V (H). Then
either fx 6∈ C(KH

n ) or fy 6∈ C(KG
n ).
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Theorem 3. For any integer n ≥ 1, if Conjectures 3 and 4 are true, then
statement C(n) is true.

Proof. Assume to the contrary that statement C(n) is false, and that
Conjectures 3 and 4 are true. Let G and H be connected graphs such that
χ(G) > n and χ(H) > n and that G × H is n-colorable. Let f be a proper
n-coloring of G×H. Because Conjecture 3 is true, there are subgraphs G′ and
H ′ of G and H respectively such that for χ(G′) = χ(H ′) = n and that for each
x ∈ V (G′), fx ∈ C(KH′

n ) and for each y ∈ V (H ′), fy ∈ C(KG′
n ). However this

is in contrary to Conjecture 4.

The exponential graph method can be used to simplify the proofs of many
other special cases of Hedetniemi’s Conjecture. For example, the following
result proved by Turzik [46] can be easily proved by using exponential graphs.

Theorem 4. If χ(G) > n and for every pair of edges ei and ej there exists
an edge e adjacent to both of them, then for any graph H with χ(H) > n, the
product G×H is not n-colorable.

By Theorem 1, Theorem 4 is equivalent to the statement that KG
n is n-

colorable. This is quite obvious. Indeed, for any f ∈ V (KG
n ), let e = ab be

an edge of G such that f(a) = f(b) (such an edge exists because χ(G) > n).
Then the coloring c defined as c(f) = f(a) = f(b) is a proper n-coloring of
KG
n .

Suppose G is a connected graph with χ(G) > n. One important property
of KG

n is that KG
n contains a unique complete subgraph of order n, namely

the subgraph induced by the n constant mappings. To prove this fact, we let
f1, f2, · · · , fn be the vertices of a complete subgraph of KG

n . Let H be a critical
(n + 1)-chromatic subgraph of G. We claim that for each i = 1, 2, · · · , n, for
each x ∈ H, there is a vertex y ∈ H such that fi(x) = fi(y). If this is not
true, say, f1(x) 6= f1(y) for any neighbour y of x, then we partition H−x into
n independent subsets V1, V2, · · · , Vn and define a coloring f of H as follows:

f(x) = f1(x), f(y) = fi(y) if y ∈ Vi.

Then f is a proper n-coloring of H, contrary to our assumption that χ(H) =
n + 1. From this we deduce that fi(x) 6= fj(x) for any x and any i 6= j. It
follows then that fi(x) = fi(y) for any edge xy of H. Thus fi are constant
mappings on H, and since G is connected, we conclude that fi are constant
mappings on G.

Using this fact, the proofs of the following results of Duffus, Sands and
Woodrow [13], of Welzl [48], and of Burr, Erdös and Lovász [11] can be sim-
plified.
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Theorem 5 ([13, 48]). Let G and H be connected graphs with χ(G) > n
and χ(H) > n. If each of G and H contains a clique of size n, then χ(G×H) >
n.

Proof. Assume to the contrary that G × H is n-colorable, and that f is
an n-coloring of G×H. Suppose x1, · · · , xn are the vertices of a clique of G,
and that y1, · · · yn are the vertices of a clique of H. Then fx1 , · · · , fxn induces
a complete subgraph of KH

n , and fy1 , · · · , fyn induces a complete subgraph of
KG
n . Therefore f(xi, y) is independent of y, and f(x, yi) is independent of x,

which is an obvious contradiction.

Theorem 6 ([11]). If χ(G) > n and every vertex of G is contained in a
clique of size n, then for any graph H with χ(H) > n, the product G×H has
chromatic number greater than n.

Proof. Assume to the contrary that G × H is n-colorable, and that f
is an n-coloring of G × H. Then α : G → KH

n defined as α(x) = fx is a
homomorphism from G to KH

n . Therefore fx are constant mappings. Then
c(x) = fx(y) is a proper n-coloring of G, contrary to our assumption that
χ(G) > n.

3. Hajós’ Construction

Another approach to Hedetniemi’s conjecture, first used by Duffus, Sands
and Woodrow [13], is by using a theorem of Hajós concerning the construction
of graphs with chromatic number greater than n.

Suppose that G and H are simple graphs, ab ∈ E(G) and uv ∈ E(H). The
Hajós sum of G and H (with respect to ab and uv), denoted by G⊕H, is the
graph obtained from the disjoint union of G and H by contracting a and u
into a single vertex, deleting the edges ab and uv and adding the edge bv.

If G and H are graphs of chromatic number greater than n, then it is easy
to see that G⊕H is also of chromatic number greater than n. Adding vertices
and edges to a graph G or contracting two non-adjacent vertices of G will
not decrease its chromatic number. Hajós [18] proved that all graphs with
chromatic number at least n + 1 can be constructed from copies of Kn+1, by
these operations.

Theorem 7. Let Gn be the set of graphs which contains Kn+1 and which
is closed under the following operations:

1. adding edges and vertices;

2. contracting non-adjacent vertices;
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3. Hajós sums.

Then Gn contains all graphs of chromatic number greater than n.

Fix an integer n, a graph G of chromatic number greater than n is called
persistent if for all (n + 1)-chromatic graphs H we have χ(G × H) = n + 1.
By Theorern 1, a graph G is persistent if and only if KG

n is n-colorable.
Then statement C(n) is equivalent to say that all graphs G with χ(G) > n

are persistent. Since every graph G with χ(G) > n can be constructcd from
copies of Kn+1 by the three operations above, it suffices to prove that Kn+1
is persistent, and that all the three operations preserve persistency, in order
to establish Hedetniemi’s conjecture.

It is trivial that Kn+1 is persistent, and that the operation of adding edges
and vertices preserves persistency, and the operation of contraction also pre-
serve persistency. However it is unknown whether or not the operation of
Hajós sum preserves persistency.

To overcome this difficulty, some properties that are stronger than persis-
tency were studied. Usually such stronger properties are preserved by Hajós
sum. However, such properties may not be preserved by contraction. By using
such an approach, Duffus, Sands and Woodrow [13] proved that if a graph G
is constructed from copies of Kn+1 by performing the three operations in such
a way that all contractions are performed after all the Hajós sums then G is
persistent. This result was generalized by Sauer and Zhu in [44], where the
class of known persistent graphs is considerably extended.

A graph G is called strongly persistent if G is persistent and the Hajós sum
of G with any other persistent graph H is still persistent. It was proved in [44]
that if G is constructed from copies of Kn+1 by Hajós sums, adding vertices
and edges and at most one contraction then G is strongly persistent.

Theorem 8. Suppose G is obtained from copies of Kn+1 by means of
Hajós sums, adding vertices and edges and at most one contraction then G is
strongly persistent. Moreover, the Hajós sum of two strongly persistent graphs
is a strongly persistent graph.

Theorem 8 was proved by considering some properties of graphs that are
stronger than persistency. For a graph H, let L(KH

n ) be the graph obtained
from KH

n by deleting the loops.
Let G be a graph of chromatic number greater than n and let a be a vertex

of G. We denote by G−a the subgraph of G induced by V (G)\{a}. A vertex
a is said to have property (∗) if (1)∗ and (2)∗ hold.

(1)∗ The graph L(KG−a
n ) is n-colorable.

9
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(2)∗ If f f and f g are edges of KG−a
n , then f = g.

A graph G is said to have property (∗) if every vertex of G has property
(∗).

For an edge ab of G, we denote by G−ab the subgraph of G obtained from
G by removing the edge ab. An edge ab of G is said to have property (∗∗) if
(1)∗∗ and (2)∗∗ hold.

(1)∗∗ The graph L(KG−ab
n ) is n-colorable.

(2)∗∗ If f f and f g are edges of KG−ab
n , then f = g.

The graph G is said to have property (∗∗) if every edge of G has property
(∗∗).

It turns out that each of the properties (∗) and (∗∗) are “stronger” than
that of being strongly persistent.

Lemma 3. Suppose χ(G) > n. If G has property (∗) or property (∗∗),
then G is strongly persistent.

Moreover, it was shown in [44] that both property (∗) and property (∗∗)
are preserved by Hajós sum.

Lemma 4. If both G and H have property (∗) (resp., (∗∗)), then the Hajós
sum G⊕H also has property (∗) (resp., (∗∗)).

As it is straightforward to verify that the complete graph Kn+1 has prop-
erty (∗), it follows that if G is constructed from copies of Kn+1 by Hajós sums
then G has property (∗).

The property (∗) is not preserved by contraction of non-adjacent vertices.
However, if there is only one contraction, then the resulting graph is not very
bad. It may not have property (∗), but it was shown that such a graph has
property (∗∗). This was proved by observing the following relation between
(∗) and (∗∗):

Lemma 5. If G is a graph of chromatic number greater than n and a is a
vertex of G with property (∗), then for any other vertex b of G with ab ∈ E(G),
the edge ab has property (∗∗).

It is easy to see that if G has property (∗), then after one contraction,
for each edge ab of G, at least one of the vertices a and b have property
(∗). Therefore the resulting graph has property (∗∗). It is trivial that the
addition of edges and vertices preserve property (∗) as well as property (∗∗).
This shows that graphs obtained from copies of Kn+1 by means of Hajós
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sums, adding vertices and edges and at most one contraction are strongly
persistent. As Hajós sum is associative, it follows that the Hajós sum of two
strongly persistent graphs is still strongly persistent. This completes the proof
of Theorem 8

We note that there are examples that shows that properties (∗) and (∗∗)
are not preserved by contraction.

4. Multiplicativity

A proper n-coloring of a graph G is equivalent to a homomorphism from
G to the complete graph Kn. In this language, Hedetniemi’s conjecture says
that if both G and H do not admit homomorphism to Kn then their product
does not admit a homomorphism to Kn.

It is natural that we may replace Kn by an arbitrary graph M and ask
whether or not the same statement is true. We say a graph G is M -colorable
if G admits a homomorphism to M . We say a graph M is multiplicative if
for any graphs G and H both not M -colorable, their product G × H is also
not M -colorable. In other words, the property of being not M -colorable is
preserved by production. Hedetniemi’s conjecture says that complete graphs
are multiplicative.

The concept of multiplicativity of general graphs and digraphs were first
studied in [42], where the term “productivity” was used. The name “multi-
plicativity” was first used in [19]. It is hoped that in studying the multiplica-
tivity, and non-multiplicativity, of other graphs, we will gain insights relevant
for Hedetniemi’s conjecture. Whether or not such a hope will turn into reality
remains to be seen. However, the problem of multiplicativity of general graphs
and digraphs seems to be an interesting problem by itself and has been studied
extensively. Indeed, many results suggest that homomorphism of graphs is the
proper way of viewing coloring problems.

Theorem 2 in Section 2 is equivalent to the statement that K3 is multi-
plicative. This result was generalized by Häggkvist, Hell, Miller and Neumann
Lara. It was proved in [19] that odd cycles are multiplicative.

Theorem 9. Let C be an odd cycle. If neither G nor H admits a homo-
morphism to C, then G×H does not admit a homomorphism to C.

The proof of Theorem 9 is closely parallel to the proof of Theorem 2.
We remark that the odd cycles, the complete graphs K3,K2,K1 are the

only known graphs which are multiplicative, and which are cores (i.e., does
not admit a homomorphism to any of its proper subgraphs).

It is easy to construct non-multiplicative graphs. Take two graphs G and
H such that none of which admits a homomorphism to the other (such graphs

11
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are abundant, for example, the Grötzsch graph and K3). Then the product
G×H is non-multiplicative. Indeed, neither G nor H admits a homomorphism
to G ×H, and yet G ×H admits a homomorphism to G ×H. However, we
do not know other non-multiplicative graphs. There are not many useful tools
for testing which graph is multiplicative.

The multiplicativity and non-multiplicativity of digraphs were investigated
by many authors. It was proved by Poljak and Rödl [41] that the complete di-
graphs of order at least 3 are not multiplicative. In other word, the “directed”
version of Hedetniemi’s conjecture is false.

Theorem 10. For any integer n ≥ 3, there are digruphs G and H, neither
of which is n-colorable, and yet their product is n-colorable.

The proof is by construction. For n = 3, we may take G the transitive
tournament of order 4, and take H the digraph obtained from G by reversing
the orientation of the edge from the top to the bottom, i.e., V (H) = {1, 2, 3, 4}
and E(H) = {(i, j), i < j and (i, j) 6= (1, 4)} ∪ {(4, 1)}. Neither G nor H is
3-colorable, however G×H is 3-colorable. For n ≥ 4, the digraphs G and H
with χ(G) = χ(H) > n and χ(G×H) = n are constructed similarly.

For oriented paths P (i.e., P is obtained from an undirected path by as-
signing an orientation to each edge) which are cores, it was shown in [50, 58]
that P is multiplicative if and only if P is a directed path (i.e., all the edges
have the same orientation).

The multiplicativity of directed cycles was first studied in [42], where it
was proved that directed cycles of prime length is multiplicative, and directed
cycles of length which is not a prime power is non-multiplicative. It was
conjectured in [42] that directed cycles of prime power length is multiplicative.

This conjecture was confirmed in [19], where deep theorems from homology
were used. A simple combinatorial proof of this conjecture was given in [57].

For general oriented cycles (i.e., digraphs obtained from an undirected
cycle by assigning an orientation to each edge), the problem turned out to be
more difficult. A complete classification of multiplicative oriented cycles was
given in [32]. To state the classification, we need some technical definitions.

Let Bn, Sn and Tn be the digraphs in Figure 2. We now inductively define
the class of C-cycles:

1. Each Bn is a C-cycle.

2. Let C be a C-cycle and let v be a vertex of out-degree 2 (respectively in-
degree 2). Then there are two maximal directed paths P and P ′ starting
(respectively, ending) at v, say of lengths l ≤ l′. Let m ≤ l be an integer.
Replace v by Sm (respectively, by Tm), identifying a with the beginning
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of P and b with the beginning of P ′. The resulting digraph C ′ is also a
C-cycle.

3. There are no other C-cycles.

Theorem 11. Let C be an oriented cycle which is a core. Then C is
multiplicative if and only if either C is a directed cycle of prime power length
or C is a C-cycle.

The proof of Theorem 11 is very long and complicated. It relies on char-
acterizations of digraphs which admit homomorphism to the oriented cycles,
and these characterizations are simply stated and easily verified. Indeed, based
on a generalization of these characterizations, it was shown in [34] that the
H-coloring problem is polynomial time decidable for any unbalanced oriented
cycle H. Here an oriented cycle is unbalanced if the number of forward edges
is not equal to the number of backward edges along an arbitrary traversal of
the cycle. The H-coloring problem is the decision problem with an arbitrary
digraph (or undirected graph when H is undirected) G as an instance, and
the question is whether or not G is H-colorable. The Kn-coloring problem is
just to decide whether a given instance is n-colorable or not.

FIG. 2. The digraphs Bn, Sn and Tn.

FIG. 3. Examples of C-cycles

13
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There are some other digraphs which are known to be multiplicative, in-
cluding transitive tournaments [2], a transitive tournament followed by a di-
rected path [55]. There are also other digraphs which are known to be non-
multiplicative, including all those digraphs obtained from a transitive tourna-
ment by deleting edges which is neither a transitive tournament nor a transitive
tournament followed by a directed path [55].

All the present known proofs of multiplicativity of a digraph H relies on
good characterizations of those digraphs G which admit homomorphisms to
H. Such characterizations usually provide easy polynomial algorithms for
the H-coloring problem. We must say that it is unlikely that such method
can be applied to many digraphs, and is perhaps not appliable to any non-
bipartite undirected graphs, as the H-coloring problem is NP-complete for
any non-bipartite undirected graph H [25]. For most digraphs H, it seems
unlikely that there are simple characterizations of those digraphs which admit
a homomorphism to H. Therefore, it would be more interesting if we can
prove the multiplicativity of a digraph (resp., undirected graph) H, for which
the H-coloring problem is NP-complete.

At present time, the only known undirected graph H which are multi-
plicative and for which that H-coloring problems are NP-complete are the
odd cycles. We do not know any directed graph H (except those symmetric
digraphs equivalent to odd cycles) which is multiplicative, and for which the
H-coloring problem is NP-complete.

This makes the following two digraphs D and D′ very interesting, and also
seems challenging.

Both D and D′ have three vertices {1, 2, 3}, D has arcs {12, 23, 31, 13} and
D′ has arcs {12, 23, 32, 31, 13}. Thus D and D′ have 4 and 5 arcs, respectively.
The digraph with 3 vertices and 6 arcs is the complete digraph of order 3. As
we discussed earlier, this digraph is non-multiplicative. All digraphs with 3
vertices and at most 3 arcs are known to be multiplicative. Also we know that
both D-coloring problem and D′-coloring problem are NP-complete [1].

Another interesting digraph is the one obtained by identifying a vertex of
a directed triangle with a digon. To be precise, this directed graph has vertex
set {1, 2, 3, 4} and edge set {12, 23, 31, 34, 43}. We also know that for this
digraph H, the H-coloring problem is NP-complete. This suggests that it is
unlikely that there is a simple characterization of those digraphs G which are
H-colorable.

For non-multiplicative graphs or digraphs H, Duffus and Sauer [14] in-
troduced a parameter that “measures” the “degree” to which H fails to be
multiplicative. We say two graphs (or digraphs) G and G′ are homomorphi-
cally equivalent, denoted by G ∼ G′, if G admits a homomorphism to G′ and
G′ admits a homomorphism to G. Obviously ∼ is an equivalence relation. De-
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note by FG the set of equivalence classes of finite graphs (or digraphs) under
the equivalence relation ∼. We shall use any member of an equivalence class
in FG to denote that class, and do not distinguish a graph and an equivalence
class of graphs in FG. For two classes G,H ∈ FG, we write G � H if G
admits a homomorphism to H. Then it is straightforward to verify that FG
together with the relation � form a distributive lattice, with the product as
the meet, and the disjoint union as the join.

It is straightforward to verify that for any graph (or digraph) M , the set
{MH : H ∈ FG} contains at least two elements, one is a single vertex with a
loop, and the other is M . It follows easily from Theorem 1 that a graph (or
digraph) M is multiplicative if and only if the set {MH : H ∈ FG} contains
no other elements. Therefore, the size of the set {MH : H ∈ FG} maybe
taken as the measure of “degree” to which H fails to be multiplicative.

We do not know any graph or digraph M for which the set {MH : H ∈
FG} is infinite. On the other hand, we do not know whether or not the set
{KH

n : H ∈ FG} is finite, while Hedetniemi’s conjecture says that this set
contains exactly two elements.

5. The Function f(n) and g(n)

In the study of Hedetniemi’s conjecture, Poljak and Rödl defined the func-
tions f(n) and g(n) as follows:

f(n) = min{χ(G×H) : G and H are undirected graphs with χ(G) = χ(H) = n},

g(n) = min{χ(G×H) : G and H are digraphs with χ(G) = χ(H) = n}.

Inequality (1) shows that f(n) ≤ n and Hedetniemi’s conjecture says that
f(n) = n. It is straightforward to verify that g(n) ≤ f(n), and Theorem 10
shows that g(n) < n for all n ≥ 4. We also know that f(1) = g(1) = 1, f(2) =
g(2) = 2, f(3) = g(3) = 3. Besides these, we know very little about the
functions. A very annoying fact is that we do not know whether the functions
f(n) and g(n) are bounded, or go to infinity when n goes to infinity. However
we have the following interesting result:

Theorem 12. The function g(n) is either bounded by 3 or goes to infinity;
the function f(n) is either bounded by 9 or goes to infinity.

This theorem is a generalization of a similar result of Poljak and Rödl
[41], where the corresponding numbers are 4 and 16 instead of 3 and 9. The
generalization is straightforward. I obtained this generalization in 1990, and
learned afterwards from Duffus that the generalization was obtained earlier

15
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by Schelp, and learned from Hell that it was also obtained independently by
Poljak [40], although at that time none of them published it.

We shall first prove that g(n) is either bounded by 4 or goes to infinity.
We need a few definitions. For a digraph D, two arcs x and y of D are

called consecutive arcs if the terminal vertex of x is the initial vertex of y.
We shall denote by ∂(D) the digraph which has vertices all the arcs of D
and two arcs x and y of D are connected by an arc in ∂(D) if x and y are
consecutive arcs. Let c(D) be the arc-chromatic number of D, which is the
minimum integer n such that the arcs of D can be colored by n colors in such
a way that consecutive arcs receive distinct colors. In other words, c(D) is the
chromatic number of ∂(D). We denote by D−1 the digraph obtained from D
by reversing the directions of all the arcs.

It follows easily from the definition that

(1) c(D) = χ(∂(D)),

(2) ∂(D1 ×D2) = ∂(D1)× (D2),

(3) ∂(D−1) = (∂(D))−1.
Furthermore, it was proved in [21] that for any digraph D, we have

(4) min
{
k|2k ≥ χ(D)} ≤ c(D) ≤ min{k|χ(D) ≤

(
k
bk/2c

)}
Suppose g(n) is bounded. Let c be the smallest upper bound. Since g(n)

is non-decreasing, we conclude that there is an integer n0 such that fro all
n ≥ n0, g(n) = c.

Let n1 = 2n0 , and let D1 and D2 be digraphs with χ(D1) = χ(D2) = n1
and that χ(D1 ×D2) = c. Then by (4), we have

χ(∂(D1)) ≥ n0 and χ(∂(D2)) ≥ n0.

Hence χ((∂(D1))× (∂(D2))) = χ(∂(D1 ×D2)) ≥ c.
Then by (4), we have

χ(D1 ×D2) >

(
c− 1

b(c− 1)/2c

)
.

Therefore we have

c >

(
c− 1

b(c− 1)/2c

)
,

which implies that c ≤ 4.
Now we shall prove that c 6= 4. Otherwise suppose g(n) = 4 for all n ≥ n0.

Let n1 = 2n0 and n2 = 2n1 . Let D1 and D2 be digraphs with χ(D1) = χ(D2) =
n2 and that χ(D1 ×D2) = 4. The same argument as above shows that

χ(∂(∂(D1 ×D2))) ≥ 4.
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However, we shall prove that for any digraph D, if χ(D) ≤ 4, then χ(∂(∂(D)))
≤ 3. Let ~K4 be the complete digraph of order 4, i.e., ~K4 has vertex set
{1, 2, 3, 4} and edge set {ij : i 6= j, 1 ≤ i, j ≤ 4}. If D is 4-colorable, then D
admits a homomorphism to ~K4. Hence ∂(∂(D)) admits a homomorphism to
∂(∂( ~K4)). Therefore χ(∂(∂(D))) ≤ χ(∂(∂( ~K4))). So it suffices to prove that
∂(∂( ~K4)) is 3-colorable.

The following elegant coloring was given by Schelp, which I learned from
Duffus.

Each element of ∂(∂( ~K4)) is a pair of consecutive arcs of ~K4, which can
be represented by a triple ijk : i 6= j, j 6= k, 1 ≤ i, j, k ≤ 4. Two such triples
ijk, i′j′k′ are adjacent if and only if i′ = j and j′ = k. It is then straightforward
to verify that the coloring c defined below is a proper 3-coloring of ∂(∂( ~K4)):

c(ijk) =

{
j if j 6= 4,
s if j = 4 and s ∈ {1, 2, 3} − {i, k}.

This completes the proof of the statement that g(n) is either bounded by
3 or goes to infinity.

Now we shall prove that. f(n) is either bounded by 9 or goes to infinity.
Let h(D1, D2) = max {χ(D1 × D2), χ(D1 × D−1

2 )} and let h(n) =
min{h(D1, D2) : χ(D1) = χ(D2) = n}.

The proof of the statement that g(n) is either bounded by 3 or goes to
infinity applies to h(n) as well. In other words, the function h(n) is either
bounded by 3, or goes to infinity. To show that f(n) is either bounded by 9
or goes to infinity, it suffices to observe that

h(n) ≤ f(n) ≤ (h(n))2.

Indeed, if we let D̃ denote the symmetric digraph which is obtained by replace
each arc of D by two opposite arcs. Then we have the following inequality:

f(n) ≤ χ(D̃1 × D̃2) ≤ χ(D1 ×D2)χ(D1 ×D−1
2 ) ≤ (h(n))2.

The inequality h(n) ≤ f(n) is trivial. This completes the proof of Theorem
12.

Finally we remark that f(n) is bounded if and only if the set {KH
m : H ∈

FG} is infinite for any integer m ≥ 10 (cf. the definition and comments at
the end of the previous section). Similarly, g(n) is bounded if and only if the
set { ~KH

m : H ∈ FG} is infinite for any integer m ≥ 4.

17
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6. General Multiplicative Structures and Variations of

Hedetniemi’s Conjecture

Since multiplicativity involves only homomorphisms, we can define multi-
plicative element in an arbitrary category. Different aspects of this categorical
setting of Hedetniemi’s conjecture are well known, and are explicitly Studied
in [14, 58].

Let L be a relational language, and let A and B be models of L. A mapping
h from A to B is a homomorphism if it preserves all the relations, i.e., for any
n-ary relation R ∈ L and for each sequence a1, a2, · · · , an of A,R(a1, a2, · · · , an)
implies R(h(a1), h(a2), · · · , h(an)). We write A � B if there is a homomor-
phism from A to B. Then � defines a partial order on the set of all L models,
as the relation of homomorphism is transitive.

Denote byML the category of L models under homomorphisms of L struc-
tures. Two structures A and B are homomorphically equivalent, written as
A ∼ B, if A admits a homomorphism to B and B admits a homomorphism to
A. Obviously the relation “∼” is an equivalence relation. We shall denote by
Sim(A) the equivalent class of ML / ∼ that contains A, i.e., all the models
B for which A ∼ B.

The product A × B of two structures is defined similarly as the (categor-
ical) product of graphs. Namely for a sequence (a1, b1), (a2, b2), · · · , (an, bn),
we have R((a1, b1), (a2, b2), · · · , (an, bn)) if and only if R(a1, a2, · · · , an) and
R(b1, b2, · · · , bn). Let A+B be the disjoint union of A and B. It is clear that
if A ∼ A′ and B ∼ B′, then A×B ∼ A′ ×B′ and A+B ∼ A′ +B′.

It is straightforward to verify that ML with the relation “�” form a dis-
tributive lattice, with A~B = A+B and A ∧B = A×B.

Given two models A and B of L, the exponential AB is the L-model defined
on all the mappings from B to A and for a sequence f1, f2, · · · , fn of map-
pings from B to A, we have R(f1, f2, · · · , fn) if and only if for any sequence
b1, b2, · · · , bn of elements of B,R(b1, b2, · · · , bn) implies R(f1(b1), f2(b2), · · · ,
fn(bn)).

Let C be a subcategory of ML which is closed under product, sum and
exponential. An element A of C is called multiplicative if for all elements G
and H in C, G 6� A and H 6� A implies that G×H 6� A. In other words, A
is meet irreducible in C.

Some of the results concerning multiplicativity of graphs and digraphs
remains valid for general structures. For example, we have the following gen-
eralization of Theorem 1:

Theorem 13. A structure A is multiplicative in category C if and only if
for any B ∈ C such that B 6� A, we have AB � A.
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The general categorical setting of Hedetniemi’s conjecture provides a wide
range view of the problem. By choosing special categories, one may discuss
some special multiplicative structures. For example, multiplicative partial or-
ders was discussed in [45], where the “homomorphism” of two partially ordered
sets A and B is a mapping h from A to B which preserves the strict order
relation, i.e., x < y implies that h(x) < h(y). The following result was proved
in [45]:

Theorem 14. Suppose A is a well-founded partially ordered set (i.e.,
A contains no infinite decreasing chains), and that for any x ∈ A, the set
{y ∈ A : y < x} forms a chain. If the supremum of the length of an increasing
chain is at most ω, then A is multiplicative, in the category of partially ordered
set (with homomorphisms defined as above).

The multiplicativity of hypergraphs was studied in [59]. Hedetniemi’s con-
jecture was generalized to hypergraphs in [59].

The chromatic number of a hypergraph H = (V,E) is the minimum integer
n such that there is an n-coloring of the vertices of H such that there are no
monochromatic hyper-edges. The product of two hypergraphs G and H are
defined as follows:

The product G × H has vertex set V (G) × V (H), and a subset e =
{(x1, y1), · · · , (xk, yk)} of V (G × H) is a hyper-edge if and only if the set
{x1, · · · , xk} is a hyper-edge of G, and that {y1, · · · , yk} is a hyper-edge of
H. Here the xi’s and yi’s need not be distinct. The following conjecture was
proposed in [59]:

Conjecture 5. Suppose G and H are hypergraphs. Then

χ(G×H) = min{χ(G), χ(H)}.

Conjecture 5 was confirmed in a few special cases. The results, as well as
the proofs, in [59] are parallel to Theorems 4 and 5 of Section 2.

Another generalization of Hedetniemi’s conjecture, which is perhaps more
interesting, is the following one concerning the circular chromatic numbers.

The circular chromatic number χc(G) of a graph G, introduced by Vince
in 1988 (under the name “the star chromatic number”), is a natural general-
ization of the chromatic number of a graph.

For a pair of positive integers k and d, a (k, d)-coloring of a graph G is
a mapping c of V (G) to the set {0, 1, · · · , k − 1} such that for any adjacent
vertices x and y of G, d ≤ |c(x) − c(y)| ≤ k − d. The circular chromatic
number χc(G) of a graph G is the infimum of the ratios k/d for which there
exists a (k, d)-coloring of G.

19
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It is easy to see that a (k, 1)-coloring of a graph G is just the ordinary k-
coloring of G. Tllerefore, χc(G) ≤ χ(G) for any G. On the other hand, it was
proved in [49] that χc(G) > χ(G)− 1. Thus if we know the circular chromatic
number of a graph G then χ(G) is just the ceiling of χc(G). However, two
graphs of the same chromatic number may have different circular chromatic
number. In this sense, χc(G) is a refinement of χ(G), and it contains more
information about the structure of the graph than χ(G) does.

It was shown in [49] that for any finite graph G, χc(G) is rational, and
conversely for any rational r ≥ 2, there is a graph G with χc(G) = r. It
seems that all the problems concerning the chromatic number remains inter-
esting for the circular chromatic number. Similar to the chromatic number,
it is straightforward to verify that χc(G × H) ≤ min{χc(G), χc(H)}. It was
conjectured in [60] that the equality holds for all graphs G and H.

Conjecture 6. For any rational number r and any graphs G and H, if
χc(G) > r and χc(H) > r, then χc(G×H) > r.

This conjecture is stronger than Hedetniemi’s conjecture. An interesting
observation in [60] is that this conjecture is true for infinitely many rationals
r, namely we have the following result:

Theorem 15. For any integer k, if χc(G) > 2+1/k and χc(H) > 2+1/k
then χc(G×H) > 2 + 1/k.

Proof. A graph G has circular chromatic number χc(G) > 2 + 1/k if and
only if G does not admit a homomorphism to the odd cycle C2k+1. Since the
odd cycles are multiplicative (Theorem 9), the conclusion follows.

Note that the equivalence of Hedetniemi’s conjecture, Statement C(n), is
only verified for n = 1, 2, 3.

The version of Hedetniemi’s conjecture for infinite graphs was studied by
Hajnal [17], who proved that the chromatic number of the product of two
ℵ1-chromatic graphs can be countable.

Instead of discussing the product of two graphs, we can also discuss the
product of many graphs (note that the product is associative). Of course, it
does not make any difference if Hedetniemi’s conjecture is generalized to the
product of finitely many graphs. However, for the product of infinitely many
graphs, we note that the product of odd cycles C2k+1 (k = 1, 2, · · ·) contains
no odd cycles, and hence is 2-colorable.

Finally we mention a relation between uniquely n-colorable graphs and
Hedetniemi’s conjecture, which was first studied by Duffus, Sands and Woodrow
[13].
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A graph G is uniquely n-colorable if there is a unique partition of V (G)
into n independent sets. The following result was proved in [16]:

Theorem 16. If G is a connected graph with χ(G) > n, then Kn ×G is
uniquely n-colorable.

Duffus, Sands and Woodrow proposed the following two conjectures con-
cerning unique colorability, which are generalizations of Theorem 16, and each
of which implies Hedetniemi’s conjecture.

Conjecture 7. For all uniquely n-colorable graphs G and H, each proper
n-coloring of G × H is induced by G or by H, i.e., if φ : V (G × H) 7→
{1, 2, · · · , n} is a proper n-coloring of G×H, then either φ((g, h)) = φ((g, h′))
for all g ∈ V (G) or φ((g, h)) = φ((g′, h)) for all h ∈ V (H).

Conjecture 8. For all uniquely n-colorable graphs G and all connected
graphs H with χ(H) > n, G×H is uniquely n-colorable.

It was proved in [13] that Conjecture 7 implies Conjecture 8, and Con-
jecture 8 implies Statement C(n). Hence each of the Conjectures 7 and 8 is
stronger than Hedetniemi’s conjecture.

The following conjecture was proposed in [58]:

Conjecture 9. For all uniquely n-colorable graphs G, L(KG
n ) is n-colorable.

The graph L(KG
n ) was defined in Section 3. It was shown in [58] that

Conjecture 9 is weaker than Conjecture 8, but stronger than Hedetniemi’s
conjecture.

It was also shown in [58] that Conjecture 7 holds for integer n if and
only if for any uniquely n-colorable graphs G, the graph L(KG

n ) is n-colorable
and that L(KG

n ) contains no uniquely n-colorable subgraphs other than the
complete graph of order n induced by the constant mappings.
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