ON SIMILARITY DEGREES OF FINITE VON NEUMANN ALGEBRAS

Jinsong Wu, Wenming Wu and Liguang Wang

Abstract

In this paper, we showed some results of similarity degrees of von Neumann algebras satisfying co-amenability. We also obtain some results of Christensen's property D_{k} for such von Neumann algebras.

1. Introduction

In 1955, Kadison [9] asked whether every bounded homomorphism ϕ from a unital C^{*} algebra \mathfrak{A} into the algebra $\mathcal{B}(\mathcal{H})$ of all bounded operators on the Hilbert space \mathcal{H} is similar to a ${ }^{*}$-homomorphism π of \mathfrak{A}; i.e. there exist an invertible operator S in $\mathcal{B}(\mathcal{H})$ such that $\pi(X)=S \phi(X) S^{-1}$ for any X in \mathfrak{A}. This is the Kadison's similarity problem. When the homomorphism ϕ admits a cyclic vector η in \mathcal{H}, Haagerup [7] and Christensen [5] proved that ϕ is similar to a *-homomorphism. More generally when ϕ admits a finite cyclic set $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$, the conjecture is still true. In 1999, G. Pisier $[10,11,12]$ introduced the similarity length $l(\mathfrak{A})$ of an operator algebra \mathfrak{A} and the similarity degree $d(\mathfrak{A})$ of \mathfrak{A}. Moreover he proved that $l(\mathfrak{A})=d(\mathfrak{A})$.

Currently, some partial results of the Kadison's similarity problem and corresponding similarity degree are known in the following cases:
(1) \mathfrak{A} is finite dimensional and $d(\mathfrak{A})=1$;
(2) \mathfrak{A} is nuclear and infinite-dimensional, such as infinite-dimensional abelian C^{*} algebra, and \mathcal{K}, the algebra of all compact operators on an infinite-dimensional separable Hilbert space (see [2]) and $d(\mathfrak{A})=2$;
(3) \mathfrak{A} has no tracial state, such as $\mathcal{B}(\mathcal{H})$ (see [7]) and $d(\mathfrak{A})=3$;
(4) $\mathfrak{A}=\mathcal{K} \otimes \mathfrak{B}$, where \mathfrak{B} is a unital C^{*} algebra and $2 \leq d(\mathfrak{A}) \leq 3$;

[^0](5) $\mathfrak{A}=\mathfrak{N} \otimes \mathfrak{B}$, where \mathfrak{N} is a unital nuclear C^{*} algebra containing unital matrices of any order and \mathfrak{B} is a unital C^{*} algebra and $d(\mathfrak{A}) \leq 5$ (see [16]);
(6) \mathcal{M} is a property Γ factor of type II_{1}, such as the hyperfinite II_{1} factor \mathcal{R}, McDuff factor $\mathcal{M} \simeq \mathcal{M} \bar{\otimes} \mathcal{R}$ and in this case the similarity degree $d(\mathcal{M})=3$.

In addition to the result (2), G. Pisier [13] showed that an infinite-dimensional C* algebra is nuclear if and only if its similarity degree is equal to 2 . The result (6) was first proved by Christensen [1] that property Γ factors have similarity degree ≤ 44. In [12], Pisier improved his result to show that property Γ factors have similarity degree less than or equal to 5 . Finally, Christensen [4] proved that the similarity degree of a property Γ factor is equal to 3 .

In this paper, we will explore the similarity degrees of some constructions for finite von Neumann algebras. Let G be a discrete group, $\left(\mathcal{B}_{0}, \tau_{0}\right)$ a finite von Neumann algebra with a normal faithful tracial state and $\sigma: G \mapsto \operatorname{Aut}\left(\mathcal{B}_{0}, \tau_{0}\right)$ a trace preserving cocycle action of G on $\left(\mathcal{B}_{0}, \tau_{0}\right)$. Let $\mathcal{N}=\mathcal{B}_{0} \rtimes_{\sigma} G$ be the corresponding crossed product von Neumann algebra with its normal faithful tracial state given by $\tau\left(\sum_{g \in G} B_{g} U_{g}\right)=$ $\tau_{0}\left(B_{e}\right)$. Let H be a subgroup of G co-amenable in G and $\mathcal{B}=\mathcal{B}_{0} \rtimes_{\sigma} H$. We show that if \mathcal{N} is a factor and \mathcal{B} has similarity degree d, then \mathcal{N} has similarity degree of at most $9 d+8$. In particular, we also obtain some more results on similarity degrees for Jones basic construction when its Jones index is finite. In [1], Christensen introduced property D_{k} for C^{*} algebras. We will investigate Christensen's property D_{k} for certain finite von Neumann algebras.

2. Preliminaries

In this section, we will recall some notations and properties for the similarity degrees and similarity length for C^{*} algebras and co-amenability of von Neumann subalgebras.

Let \mathfrak{A} be a unital C ${ }^{*}$ algebra and \mathcal{H} be a Hilbert space. Suppose that $\phi: \mathfrak{A} \mapsto \mathcal{B}(\mathcal{H})$ is a unital homomorphism; i.e. $\phi(I)=I$ and $\phi\left(X_{1} X_{2}\right)=\phi\left(X_{1}\right) \phi\left(X_{2}\right)$ for all X_{1}, X_{2} in \mathfrak{A}. The Kadison's similarity problem is whether the condition that ϕ is bounded implies that ϕ is similar to a *-homomorphism, i.e. there exists an invertible operator S in $\mathcal{B}(\mathcal{H})$ such that $\phi_{S}: X \mapsto S^{-1} \phi(X) S$ is a *-homomorphism. In [7], Haagerup proved that ϕ is similar to a *-homomorphism if and only if ϕ is completely bounded and

$$
\|\phi\|_{c b}=\inf \left\{\left\|S^{-1}\right\| \cdot\|S\|: \phi_{S} \text { is a *-homomorphism. }\right\}
$$

An operator algebra \mathfrak{A} has similarity property if any bounded homomorphism $\phi: \mathfrak{A} \rightarrow$ $\mathcal{B}(\mathcal{H})$ is completely bounded.

An operator algebra $\mathfrak{A} \subset \mathcal{B}(\mathcal{H})$ is said to be of length $\leq d$ if there is a constant K such that, for any n and any X in $M_{n}(\mathfrak{A})$, there is a positive integer $N=N(n, X)$ and scalar matrices $\alpha_{0} \in M_{n, N}(\mathbb{C}), \alpha_{1} \in M_{N}(\mathbb{C}), \ldots, \alpha_{d-1} \in M_{N}(\mathbb{C}), \alpha_{d} \in M_{N, n}(\mathbb{C})$
together with diagonal matrices D_{1}, \ldots, D_{d} in $M_{N}(\mathfrak{A})$ satisfying

$$
\left\{\begin{array}{l}
X=\alpha_{0} D_{1} \alpha_{1} D_{2} \cdots D_{d} \alpha_{d} \\
\prod_{0}^{d}\left\|\alpha_{i}\right\| \prod_{1}^{d}\left\|D_{i}\right\| \leq K\|X\| .
\end{array}\right.
$$

Denote by $\ell(\mathfrak{A})$ the length of \mathfrak{A}; i.e the smallest d for which the two equations above holds. We say the least K satisfying the above condition as length constant for \mathfrak{A}.

Let

$$
d(\mathfrak{A})=\inf \left\{\alpha \geq 0 \mid \exists K, \forall \phi,\|\phi\|_{c b} \leq K\|\phi\|^{\alpha}\right\}
$$

where ϕ denotes an arbitrary unital homomorphism from \mathfrak{A} to $\mathcal{B}(\mathcal{H})$. G. Pisier [10, 11, 12] showed that $d(\mathfrak{A})=\ell(\mathfrak{A})$ for any operator algebra \mathfrak{A} and that \mathfrak{A} has similarity property if and only if $d(\mathfrak{A})<\infty$. Let \mathfrak{A} be weakly dense C^{*} subalgebra in a factor \mathcal{M} of type II_{1}. Then Pisier showed [12] that $d(\mathcal{M})=\max \{d(\mathfrak{A}), 3\}$ derived from Remark 7 and Theorem 9. In [6], E. Christensen, A. Sinclair, R. Smith, and S. White showed that similarity property is preserved under perturbation of C^{*}-algebras.

Let ω be a free ultrafilter on \mathbb{N} and \mathcal{M} be a factor of type I_{1}. It is known that the ultrapower \mathcal{M}^{ω} of \mathcal{M} is a factor of type I_{1}. By [11, 12], we have that $d\left(\mathcal{M}^{\omega}\right) \leq d(\mathcal{M})$.

A C* ${ }^{*}$ algebra \mathfrak{A} is said to have property D_{k} for some positive real k if for each non degenerate *-representation π of \mathfrak{A} on a Hilbert space we have for any $X \in \mathcal{B}(\mathcal{H})$:

$$
\inf \left\{\|X-Z\| \mid Z \in \pi(\mathfrak{A})^{\prime}\right\} \leq k \sup \{\|X \pi(A)-\pi(A) X\| \mid A \in \mathfrak{A},\|A\| \leq 1\} .
$$

In [6], E. Christensen, A. Sinclair, R. Smith, and S. White showed the following relations between the property D_{k} and the similarity degree (length) for a C^{*} algebra.

Proposition 2.1. Let \mathcal{M} have property D_{k} for some k. The the length of \mathcal{M} is $\lfloor 2 k\rfloor$, where $\lfloor a\rfloor$ is the integral part of a.

Proposition 2.2. Let \mathcal{M} be a C^{*} algebra with length at most ℓ and the length constant at most K. Then \mathcal{M} has property D_{k} for $k=K \ell / 2$.

Now let us recall the co-amenability of groups and von Neumann algebras. A subgroup H of a group G is called co-amenable in G if there exists a G-invariant mean on the space $\ell^{\infty}(G / H)$.

Let \mathcal{N} be a finite von Neumann algebra with a faithful normal tracial state τ and $\mathcal{B} \subset \mathcal{N}$ a von Neumann subalgebra. We assume that \mathcal{N} has a separable predual. Let $\mathcal{B} \subset \mathcal{N} \stackrel{e_{\mathcal{B}}}{\subset}\langle\mathcal{N}, \mathcal{B}\rangle$ be the Jones basic construction for $\mathcal{B} \subset \mathcal{N}$; i.e. $\langle\mathcal{N}, \mathcal{B}\rangle=J \mathcal{B}^{\prime} J \cap$ $\mathcal{B}\left(L^{2}(\mathcal{N}, \tau)\right)$ with J the canonical conjugation on $L^{2}(\mathcal{N}, \tau)$ and $e_{\mathcal{B}}$ the canonical projection of $L^{2}(\mathcal{N}, \tau)$ onto $L^{2}(\mathcal{B}, \tau)$. The subalgebra \mathcal{B} is co-amenable in \mathcal{N} if there exists a norm one projection Ψ of $\langle\mathcal{N}, \mathcal{B}\rangle$ onto \mathcal{N}. One also says that \mathcal{N} is amenable relative to \mathcal{B}. In particular, if an inclusion $\mathcal{N} \subset \mathcal{M}$ of factors of type I_{1} has finite Jones index, then \mathcal{N} is co-amenable in \mathcal{M}.

3. Basic Construction with Finite Jones Index

In this section we will study similarity degrees for Jones basic construction with finite Jones index.

Lemma 3.1. Let \mathcal{M} be a factor of type $I I_{1}$ with similarity property and P be a non zero projection in \mathcal{M}. Then $d(P \mathcal{M} P) \leq d(\mathcal{M})$.

Proof. Let τ be the trace on $\mathcal{M}, d=d(\mathcal{M})$ and $\frac{1}{k} \leq \tau(P)<\frac{1}{k-1}$ for some integer $k \geq 2$. We have that there is a constant K such that for any $n \in \mathbb{N}$ and any X in $M_{n}(P \mathcal{M} P)$, there is an integer $N=N(n, X)$ and scalar matrices $\alpha_{0} \in M_{n, N}(\mathbb{C})$, $\alpha_{1} \in M_{N}(\mathbb{C}), \ldots, \alpha_{d-1} \in M_{N}(\mathbb{C}), \alpha_{d} \in M_{N, n}(\mathbb{C})$ together with diagonal matrices D_{1}, \ldots, D_{d} in $M_{N}(\mathcal{M})$ satisfying

$$
\left\{\begin{array}{l}
X=\alpha_{0} D_{1} \alpha_{1} D_{2} \cdots D_{d} \alpha_{d} \\
\prod_{0}^{d}\left\|\alpha_{i}\right\| \prod_{1}^{d}\left\|D_{i}\right\| \leq K\|X\| .
\end{array}\right.
$$

Let E be a subprojection of P in \mathcal{M} with $\tau(E)=\frac{1}{k}$ and $\left\{E_{i j}\right\}_{i, j=1}^{k}$ be the system of matrix units in \mathcal{M} such that $E=E_{11}$. We write $X=\left[X_{i j}\right]_{i, j=1}^{n}$, where $X_{i j} \in$ $P \mathcal{M} P$. Then $\widetilde{P} X \widetilde{P}=X$, where \widetilde{P} is the $n \times n$ diagonal matrix $\operatorname{diag}(P, \ldots, P)$. For convenience, we denote $n \times n$ or $N \times N$ diagonal matrix $\operatorname{diag}(T, \ldots, T)$ by \widetilde{T}. Hence

$$
\begin{aligned}
X=\widetilde{P} X \widetilde{P}= & \alpha_{0} \widetilde{P} D_{1} \alpha_{1} \cdots D_{d} \widetilde{P} \alpha_{d} \\
= & \sum_{j_{1}, \ldots, j_{d-1}=1}^{k} \alpha_{0} \widetilde{P} D_{1} \widetilde{E}_{j_{1} j_{1}} \alpha_{1} \widetilde{E}_{j_{1} j_{1}} D_{2} \widetilde{E}_{j_{2} j_{2}} \alpha_{2} \\
& \cdots \widetilde{E}_{j_{d-2} j_{d-2}} D_{d-1} \widetilde{E}_{j_{d-1} j_{d-1}} \alpha_{d-1} \widetilde{E}_{j_{d-1} j_{d-1}} D_{d} \widetilde{P} \alpha_{d} \\
= & \sum_{j_{1}, \ldots, j_{d-1}=1}^{k} \alpha_{0} \widetilde{P} D_{1} \widetilde{E}_{j_{1} 1} \alpha_{1} \widetilde{E}_{1 j_{1}} D_{2} \widetilde{E}_{j_{2} 1} \alpha_{2} \\
& \cdots \widetilde{E}_{1 j_{d-2}} D_{d-1} \widetilde{E}_{j_{d-1} 1} \alpha_{d-1} \widetilde{E}_{1 j_{d-1}} D_{d} \widetilde{P} \alpha_{d}
\end{aligned}
$$

Let β be $n \times\left(n k^{d-1}\right)$ matrix $\left(I_{n} \cdots I_{n}\right)$, where I_{n} is the $n \times n$ identity matrix. Let

$$
\bar{D}=\left(\begin{array}{cccc}
\widetilde{P} D_{1} \widetilde{E}_{11} & \widetilde{E}_{11} D_{2} \widetilde{E}_{11} & \cdots & \widetilde{E}_{11} D_{d} \widetilde{P} \\
\vdots & \vdots & \cdots & \vdots \\
\widetilde{P} D_{1} \widetilde{E}_{j_{1} 1} & \widetilde{E}_{1 j_{1}} D_{2} \widetilde{E}_{j_{2} 1} & \cdots & \widetilde{E}_{1 j_{d-1}} D_{d} \widetilde{P} \\
\vdots & \vdots & \cdots & \vdots \\
\widetilde{P} D_{1} \widetilde{E}_{n 1} & \widetilde{E}_{1 k} D_{2} \widetilde{E}_{k 1} & \cdots & \widetilde{E}_{1 k} D_{d} \widetilde{P}
\end{array}\right),
$$

where j_{1}, \ldots, j_{d-1} run through $\{1, \ldots, k\}$ and \bar{D} has k^{d-1} rows. Let \bar{D}_{j} be the diagonal matrix with diagonal obtained from the j-th column in \bar{D}. Then

$$
X=\beta \widetilde{\alpha_{0}} \bar{D}_{1} \widetilde{\alpha_{1}} \cdots \widetilde{\alpha_{d-1}} \bar{D}_{d} \widetilde{\alpha_{d}} \beta^{t}
$$

where $\widetilde{\alpha_{j}}$ is block matrix with block diagonal α_{j} for $j=0, \ldots, d$. Moreover,

$$
\begin{aligned}
\left\|\beta \widetilde{\alpha_{0}}\right\|\left\|\bar{D}_{1}\right\| \cdots\left\|\bar{D}_{d}\right\|\left\|\widetilde{\alpha_{d}} \beta^{t}\right\| & \leq\|\beta\|\left\|\alpha_{0}\right\|\left\|D_{1}\right\| \cdots\left\|D_{d}\right\|\left\|\alpha_{d}\right\|\left\|\beta^{t}\right\| \\
& \leq\|\beta\|^{2} K\|X\|=k^{d-1} K\|X\| .
\end{aligned}
$$

Therefore $P \mathcal{M} P$ has similarity degree at most d.
Proposition 3.2. Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of factors of type $I I_{1}$ and its Jones index $[\mathcal{M}: \mathcal{N}]<\infty$. Suppose that \mathcal{N} has similarity property. Then $d(\mathcal{M}) \leq d(\mathcal{N})+1$.

Proof. Let $\lambda=[\mathcal{M}: \mathcal{N}], d=d(\mathcal{N})$, and $E_{\mathcal{N}}$ be the trace preserving conditional expectation of \mathcal{M} onto \mathcal{N}. By [17], Proposition 1.3, there exists a family $\left\{V_{j}\right\}_{1 \leq j \leq l+1}$ of elements in \mathcal{M} with l equal to the integer part of λ (i.e. $l=\lfloor\lambda\rfloor$) such that

$$
T=\sum_{j=1}^{l+1} V_{j} E_{\mathcal{N}}\left(V_{j}^{*} T\right)
$$

for all T in \mathcal{M}.
For any $n \in \mathbb{N}$ and any X in $M_{n}(\mathcal{M})$, we write $X=\left[X_{i j}\right]_{i, j=1}^{n}$, where $X_{i j} \in \mathcal{M}$. For each $X_{i j}$, we have decomposition

$$
X_{i j}=\sum_{k=1}^{l+1} V_{k} E_{\mathcal{N}}\left(V_{k}^{*} X_{i j}\right)=\sum_{k=1}^{l+1} V_{k} X_{i j}^{(k)},
$$

where $X_{i j}^{(k)}=E_{\mathcal{N}}\left(V_{k}^{*} X_{i j}\right) \in \mathcal{N}$.
Let $X^{(k)}=\left[X_{i j}^{(k)}\right]_{i, j=1}^{n}$. Then for n and $X^{(k)} \in M_{n}(\mathcal{N})$, there is a constant K_{k} such that there is an integer $N\left(n, X^{(k)}\right)\left(=N_{k}\right)$ and scalar matrices $\alpha_{0}^{(k)} \in M_{n, N_{k}}(\mathbb{C})$, $\alpha_{1}^{(k)} \in M_{N_{k}}(\mathbb{C}), \ldots, \alpha_{d-1}^{(k)} \in M_{N_{k}}(\mathbb{C}), \alpha_{d}^{(k)} \in M_{N_{k}, n}(\mathbb{C})$ together with diagonal matrices $D_{1}^{(k)}, \ldots, D_{d}^{(k)}$ in $M_{N_{k}}(\mathcal{N})$ satisfying

$$
\left\{\begin{array}{l}
X^{(k)}=\alpha_{0}^{(k)} D_{1}^{(k)} \alpha_{1}^{(k)} D_{2}^{(k)} \cdots D_{d}^{(k)} \alpha_{d}^{(k)} \\
\prod_{0}^{d}\left\|\alpha_{i}^{(k)}\right\| \prod_{1}^{d}\left\|D_{i}^{(k)}\right\| \leq K_{k}\left\|X^{(k)}\right\| .
\end{array}\right.
$$

We may assume that $\left\|\alpha_{i}^{(k)}\right\|=1$ for $i=0, \ldots, d-1$ and $\left\|D_{i}^{(k)}\right\|=1$ for $i=1, \ldots, d$. Then $\left\|\alpha_{d}^{(k)}\right\| \leq K_{k}\left\|X^{(k)}\right\|$.

Let α_{i} be the $(l+1) \times(l+1)$ block diagonal matrix with block diagonal $\alpha_{i}^{(1)}, \ldots$, $\alpha_{i}^{(l+1)}$ and D_{i} be the $(l+1) \times(l+1)$ block diagonal matrix with block diagonal $D_{i}^{(1)}, \ldots, D_{i}^{(l+1)}$. Then $\left\|\alpha_{i}\right\|=\max _{k}\left\|\alpha_{i}^{(k)}\right\|=1$ and $\left\|D_{i}\right\|=\max _{k}\left\|D_{i}^{(k)}\right\|=1$. Let
\tilde{V}_{k} be the $n \times n$ diagonal matrix with diagonal V_{k}, \ldots, V_{k} and V be the $(l+1) \times(l+1)$ block diagonal matrix with block diagonal $\widetilde{V}_{1}, \ldots, \widetilde{V}_{l+1}$. Let β be $n \times(n(l+1))$ matrix $\left(I_{n} \cdots I_{n}\right)$, where I_{n} is the $n \times n$ identity matrix. Then

$$
\begin{aligned}
X & =\left[X_{i j}\right]_{i, j=1}^{n}=\left[\sum_{k=1}^{l+1} V_{k} X_{i j}^{(k)}\right]_{i, j=1}^{n} \\
& =\sum_{k=1}^{l+1}\left[V_{k} X_{i j}^{(k)}\right]_{i, j=1}^{n}=\sum_{k=1}^{l+1} \widetilde{V}_{k} X^{(k)} \\
& =\sum_{k=1}^{l+1} \widetilde{V}_{k} \alpha_{0}^{(k)} D_{1}^{(k)} \alpha_{1}^{(k)} D_{2}^{(k)} \cdots D_{d}^{(k)} \alpha_{d}^{(k)} \\
& =\beta V \alpha_{0} D_{1} \alpha_{1} D_{2} \cdots D_{d} \alpha_{d} \beta^{t} .
\end{aligned}
$$

Since $\sum_{k=1}^{l+1} V_{k} V_{k}^{*}=\lambda$, we obtain $\left\|V_{k}\right\| \leq \lambda^{1 / 2}$ and $\|V\|=\max _{k}\left\|V_{k}\right\| \leq \lambda^{1 / 2}$. On the other hand, we have

$$
\begin{aligned}
\left\|X^{(k)}\right\| & =\left\|\left[X_{i j}^{(k)}\right]_{i, j=1}^{n}\right\|=\left\|\left[X_{i j}^{(k)}\right]_{i, j=1}^{n}\right\| \\
& =\left\|\left[E_{\mathcal{N}}\left(V_{k} X_{i j}\right)\right]_{i, j=1}^{n}\right\| \leq\left\|\left[V_{k} X_{i j}\right]_{i, j=1}^{n}\right\| \\
& \leq\left\|\widetilde{V}_{k}\right\|\|X\| \leq \lambda^{1 / 2}\|X\| .
\end{aligned}
$$

Let $K=\max \left\{K_{1}, \ldots, K_{l+1}\right\}$. Then

$$
\begin{aligned}
& \|\beta\|\|V\|\left\|\alpha_{0}\right\|\left\|D_{1}\right\| \cdots\left\|D_{d}\right\|\left\|\alpha_{d} \beta^{t}\right\| \\
& =\|\beta\|\|V\|\left\|\alpha_{d} \beta^{t}\right\| \\
& \leq(l+1)^{1 / 2} \lambda^{1 / 2}\left\|\alpha_{d}\right\|\left\|\beta^{t}\right\| \\
& \leq(l+1) \lambda^{1 / 2} \max \left\{K_{1}\left\|X^{(1)}\right\|, \ldots, K_{l+1}\left\|X^{(l+1)}\right\|\right\} \\
& \leq(l+1) \lambda^{1 / 2} K \lambda^{1 / 2}\|X\| \leq(l+1) \lambda K\|X\| .
\end{aligned}
$$

Therefore $d(\mathcal{M}) \leq d+1=d(\mathcal{N})+1$.
Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of factors of type II_{1} with finite Jones index; i.e $[\mathcal{M}: \mathcal{N}]<\infty$. If \mathcal{N} has property Γ, then by [17] we have that \mathcal{M} has property Γ. In this case, the similarity degree of the factors are equal; i.e. $d(\mathcal{M})=d(\mathcal{N})=3$. In general, \mathcal{M} preserves most properties of \mathcal{N}. Thus, it is natural to ask the question whether it is true that $d(\mathcal{M})=d(\mathcal{N})$ for the inclusion $\mathcal{N} \subset \mathcal{M}$ of factors of type II_{1} with Jones index $[\mathcal{M}: \mathcal{N}]<\infty$.

Corollary 3.3. Let \mathcal{M} be a factor of type I_{1}. Suppose that \mathcal{M} has similarity property. Then $\mathcal{M} \otimes M_{n}(\mathbb{C})$ has similarity property and $d\left(\mathcal{M} \otimes M_{n}(\mathbb{C})\right) \leq d(\mathcal{M})+1$.

Proof. \quad Since $\left[\mathcal{M} \otimes M_{n}(\mathbb{C}): \mathcal{M}\right]=n^{2}$ and \mathcal{M} has similarity property, by Proposition 3.2, we have that $d\left(\mathcal{M} \otimes M_{n}(\mathbb{C})\right) \leq d(\mathcal{M})+1$.

Let \mathcal{M} be a factor of type II_{1} with the trace τ and \mathcal{H} be an infinite-dimensional Hilbert space. Denote the standard tracial weight on $\mathcal{B}(\mathcal{H})$ by $T r$. Suppose that P is a finite projection in $\mathcal{M} \bar{\otimes} \mathcal{B}(\mathcal{H})$; i.e. $(\tau \otimes \operatorname{Tr})(P)=t<\infty$ for some $t \in \mathbb{R}_{+}$, where \mathbb{R}_{+}is the group of all positive real numbers. Then \mathcal{M}_{t} which is defined to be the von Neumann algebra isomorphic to $P \mathcal{M} \bar{\otimes} \mathcal{B}(\mathcal{H}) P$ is a t-amplification (contraction) of \mathcal{M}. By " \simeq " we mean the *-isomorphism between two C^{*} algebras, for instance, $\mathcal{M}_{t} \simeq P \mathcal{M} \bar{\otimes} \mathcal{B}(\mathcal{H}) P$.

Proposition 3.4. Let \mathcal{M} be a factor of type $I I_{1}$. Then $d\left(\mathcal{M}_{t_{1}}\right) \leq d\left(\mathcal{M}_{t_{2}}\right) \leq$ $d(\mathcal{M})+1$ when $t_{1} \leq t_{2}, t_{1}, t_{2} \in \mathbb{R}_{+}$.

Proof. By Lemma 3.1 and Corollary 3.3, we have that \mathcal{M}_{t} has similarity property for any $t \in \mathbb{R}_{+}$if \mathcal{M} has similarity property. Therefore $\mathcal{M}_{t_{1}}$ has similarity property if and only $\mathcal{M}_{t_{2}}$ has similarity property when $t_{1}, t_{2} \in \mathbb{R}_{+}$, since $\mathcal{M}_{t_{2}}=\left(\mathcal{M}_{t_{1}}\right)_{t_{2} / t_{1}}$ and $\mathcal{M}_{t_{1}}=\left(\mathcal{M}_{t_{2}}\right)_{t_{1} / t_{2}}$. Hence if \mathcal{M} does not have similarity property then $d\left(\mathcal{M}_{t_{1}}\right)=\infty$ for all $t \in \mathbb{R}_{+}$and the inequality $d\left(\mathcal{M}_{t_{1}}\right) \leq d\left(\mathcal{M}_{t_{2}}\right) \leq d(\mathcal{M})+1$ holds. If \mathcal{M} has similarity property, then by Lemma 3.1 and Corollary 3.3 we have $d\left(\mathcal{M}_{t_{1}}\right) \leq$ $d\left(\mathcal{M}_{t_{2}}\right) \leq d(\mathcal{M})+1$ again.

Corollary 3.5. Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of factors of type I_{1} and its Jones index $[\mathcal{M}: \mathcal{N}]<\infty$. Then $\max \{d(\mathcal{N})-1,3\} \leq d(\mathcal{M}) \leq d(\mathcal{N})+1$. In particular, \mathcal{N} does not have similarity property if and only if \mathcal{M} does not have similarity property.

Proof. Let τ be the trace on \mathcal{M}. Suppose that \mathcal{M} acts on the Hilbert space $L^{2}(\mathcal{M}, \tau)$. Let $e_{\mathcal{N}}$ be the projection of $L^{2}(\mathcal{M}, \tau)$ onto $L^{2}(\mathcal{N}, \tau)$. Then $\langle\mathcal{M}, \mathcal{N}\rangle=$ $J \mathcal{N}^{\prime} J$ and $[\langle\mathcal{M}, \mathcal{N}\rangle: \mathcal{M}]=[\mathcal{M}: \mathcal{N}](=\lambda)$. Suppose \mathcal{N} has similarity property. By Proposition 3.2, we have $d(\langle\mathcal{M}, \mathcal{N}\rangle) \leq d(\mathcal{M})+1$. On the other hand $\langle\mathcal{M}, \mathcal{N}\rangle \simeq \mathcal{N}_{\lambda}$ and $d(\mathcal{N}) \leq d\left(\mathcal{N}_{\lambda}\right)$ since $[\mathcal{M}: \mathcal{N}]=\lambda \geq 1$ by Lemma 3.1. Then

$$
d(\mathcal{N}) \leq d\left(\mathcal{N}_{\lambda}\right)=d(\langle\mathcal{M}, \mathcal{N}\rangle) \leq d(\mathcal{M})+1
$$

Thus combining the equation $d(\mathcal{M}) \leq d(\mathcal{N})+1$ followed by Proposition 3.2, we have that \mathcal{M} does not have similarity property if and only if \mathcal{N} does not have similarity property. Therefore $d(\mathcal{N})-1 \leq d(\mathcal{M}) \leq d(\mathcal{N})+1$. By [12], we have that $d(\mathcal{M}) \geq 3$. Hence $\max \{d(\mathcal{N})-1,3\} \leq d(\mathcal{M}) \leq d(\mathcal{N})+1$.

Let \mathcal{M} be a factor of type II_{1}. The subgroup $\mathcal{F}(\mathcal{M})=\left\{t \in \mathbb{R}_{+} \mid \mathcal{M}_{t} \simeq \mathcal{M}\right\}$ of \mathbb{R}_{+} is called the fundamental group of \mathcal{M}.

Corollary 3.6. Let \mathcal{M} be a factor of type I_{1}. Suppose that the fundamental group $\mathcal{F}(\mathcal{M})$ of \mathcal{M} is non trivial. Then $d\left(\mathcal{M}_{t}\right)=d(\mathcal{M})$ for any $t \in \mathbb{R}_{+}$.

Proof. Since the fundamental group $\mathcal{F}(\mathcal{M})$ is non trivial, there exists a positive number $t_{0} \neq 1$ such that $\mathcal{M}_{t_{0}} \simeq \mathcal{M}$. Without loss of generality, we assume that $t_{0}>1$. Then $\mathcal{M}_{t_{0}^{k}} \simeq \mathcal{M}$ for any $k \in \mathbb{Z}$. For any $t \in \mathbb{R}_{+}$, there exists an integer k such that $t_{0}^{k-1} \leq t \leq t_{0}^{k}$. By Corollary 3.4, we have that

$$
d(\mathcal{M})=d\left(\mathcal{M}_{t_{0}^{k-1}}\right) \leq d\left(\mathcal{M}_{t}\right) \leq d\left(\mathcal{M}_{t_{0}^{k}}\right)=d(\mathcal{M})
$$

Therefore $d\left(\mathcal{M}_{t}\right)=d(\mathcal{M})$ for $t \in \mathbb{R}_{+}$.

4. Crossed Product by Amenable Group

In section 3, we have result of similarity degree for inclusion of factors of type II_{1} with finite Jones index. In general, for the case, we might not have similar result for the inclusion of factors of type II_{1} with infinite Jones index. But for the following case when the Jones index is infinite, we have affirmative answer to Kadison's similarity problem.

Theorem 4.1. Let G be a discrete group, $\left(\mathcal{B}_{0}, \tau_{0}\right)$ a finite von Neumann algebra with a normal faithful tracial state and $\sigma: G \mapsto \operatorname{Aut}\left(\mathcal{B}_{0}, \tau_{0}\right)$ a trace preserving cocycle action of G on $\left(\mathcal{B}_{0}, \tau_{0}\right)$. Let $\mathcal{N}=\mathcal{B}_{0} \rtimes_{\sigma} G$ be the corresponding crossed product von Neumann algebra with its normal faithful tracial state given by $\tau\left(\sum_{g \in G} B_{g} U_{g}\right)=$ $\tau_{0}\left(B_{e}\right)$. Let H be a subgroup of G co-amenable in G and $\mathcal{B}=\mathcal{B}_{0} \rtimes_{\sigma} H$. If \mathcal{N} is a factor and \mathcal{B} has similarity degree d, then \mathcal{N} has similarity degree of at most $9 d+8$.

Proof. Suppose ϕ is a unital bounded representation of \mathcal{N} on a Hilbert space \mathcal{H} such that $\overline{\operatorname{sp}} \phi(\mathcal{N}) \mathcal{H}=\mathcal{H}$. Then $\left.\phi\right|_{\mathcal{B}}$ is a bounded representation of \mathcal{B}, and so there is an invertible operator S_{0} on \mathcal{H} such that $\left.S_{0} \phi\right|_{\mathcal{B}} S_{0}^{-1}$ is a *-representation of \mathcal{B} and $\left\|S_{0}^{-1}\right\|\left\|S_{0}\right\| \leq K\left\|\left.\phi\right|_{\mathcal{B}}\right\|^{d}$. Let $\phi_{0}=S_{0} \phi S_{0}^{-1}$. Then ϕ_{0} is a bounded representation of \mathcal{N}.

We have to estimate the complete bounded norm of ϕ_{0}. To do this, we may and will assume that the representation has an at most countable cyclic set. In this case [2] there is a *-representation π of \mathcal{N} on \mathcal{H} such that for any vector ξ in \mathcal{H}, there exists a bounded injective operator X with dense range and a vector η satisfying

$$
\forall Y \in \mathcal{N}: \phi_{0}(Y) X=X \pi(Y) ;\|X\| \leq 2\left\|\phi_{0}\right\|^{2} ; X \eta=\xi ;\|\eta\| \leq\|\xi\| .
$$

The first property admits a homomorphism ψ of $\pi(\mathcal{N})$ into $\mathcal{B}(\mathcal{H})$ by $A \mapsto \overline{X A X^{-1}}$ and $\|\psi\|=\left\|\phi_{0}\right\|$, whereas the second shows that ψ is ultrastrongly continuous since $\psi(A) \xi=X A \eta$. We will denote by ψ again the extension of ψ to the von Neumann algebra generated by $\pi(\mathcal{N})$. In this algebra we will let F denote the maximal finite central projection and let \mathcal{D} be a copy of the compact operators placed inside ($I-$ $F) \pi(\mathcal{N})$, such that $I-F$ belongs to the weak closure of \mathcal{D}. Then $\mathcal{D}+\mathbb{C} F$ is a nuclear
C^{*} algebra, by [2], we can perturb ψ with a Z in $G L(\mathcal{H})$ such that $\operatorname{Ad}(Z) \circ \psi$ is trivial on $\mathcal{D} \oplus \mathbb{C} F$ and $\left\|Z^{-1}\right\|\|Z\| \leq\left\|\phi_{0}\right\|^{2}$. The new homomorphism $\operatorname{Ad}(Z) \circ \psi$ decomposes naturally into an orthogonal direct sum. The restriction to the properly infinite part is by construction completely bounded with complete bounded norm less than $\left\|\phi_{0}\right\|^{3}$. The restriction to the finite part yields homomorphisms π_{F} and Δ of the finite von Neumann algebra \mathcal{N} into $\mathcal{B}(F \mathcal{H})$ given by

$$
\pi_{F}(Y)=\left.\pi(Y)\right|_{F \mathcal{H}} \text { and } \Delta(Y)=\left.(Z X) F \pi_{F}(Y)(Z X)^{-1}\right|_{F \mathcal{H}} .
$$

Since a finite representation of a finite representation of a finite factor is ultrastrongly continuous because of the uniqueness of the trace, we see that Δ is ultrastrongly continuous.

Let $F_{n} \nearrow G / H$ be a net of finite Følner sets, which we identify with some sets of representatives $F_{n} \subset G$. Since Δ is unital bounded, the set $\left|F_{n}\right|^{-1} \sum_{s \in F_{n}} \Delta\left(U_{s}\right)^{*} \Delta\left(U_{s}\right)$ in the von Neumann algebra generated by $\Delta(\mathcal{N})$ has a strong-operator accumulation point. The accumulation point is positive. So let S be the square root of it. We have

$$
\|S \xi\|^{2}=\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}}\left\|\Delta\left(U_{s}\right) \xi\right\|^{2}
$$

and hence, $\|\Delta\|^{-1} \leq S \leq\|\Delta\|$. For any unitary element U in \mathcal{B}_{0}, let $V_{s}=U_{s} U U_{s}^{*}$ in \mathcal{B}_{0}. Then

$$
\begin{aligned}
S^{2} \Delta(U) \xi & =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}} \Delta\left(U_{s}\right)^{*} \Delta\left(U_{s}\right) \Delta(U) \xi \\
& =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}} \Delta\left(U_{s}\right)^{*} \Delta\left(V_{s} U_{s}\right) \xi \\
& =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}} \Delta(U) \Delta\left(U_{s}\right)^{*} \Delta\left(U_{s}\right) \xi \\
& =\Delta(U) S^{2} \xi .
\end{aligned}
$$

For any unitary element $U_{g}, g \in G$ in \mathcal{N}, let $h_{s} s^{\prime}=s g$ if $s g$ is in F_{n}. Since F_{n} is a Følner set and $\Delta\left(U_{h_{s}}\right)$ is a unitary, we have that

$$
\begin{aligned}
S^{2} \Delta\left(U_{g}\right) \xi & =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}} \Delta\left(U_{s}\right)^{*} \Delta\left(U_{s}\right) \Delta\left(U_{g}\right) \xi \\
& =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s \in F_{n}} \Delta\left(U_{s}\right)^{*} \Delta\left(U_{s g}\right) \xi \\
& =\lim _{n} \frac{1}{\left|F_{n}\right|} \sum_{s^{\prime} \in F_{n} g} \Delta\left(U_{g}\right) \Delta\left(U_{s^{\prime}}\right)^{*} \Delta\left(U_{s^{\prime}}\right) \xi \\
& =\Delta\left(U_{g}\right) S^{2} \xi .
\end{aligned}
$$

Let \mathcal{N}_{0} be the ${ }^{*}$-subalgebra in \mathcal{N} generated by \mathcal{B}_{0} and $U_{g}, g \in G$. For any element A_{0} in \mathcal{N}_{0}, we have $S^{2} \Delta\left(A_{0}\right) \xi=\Delta\left(A_{0}\right) S^{2} \xi$, for all $\xi \in \mathcal{H}$. By the Kaplansky density theorem, for any A in the unit ball of \mathcal{N}, there is a net of $\left\{A_{\alpha}\right\}$ in the unit ball of \mathcal{N}_{0} convergent to A in the strong-operator topology.

Since Δ is strong-operator continuous, $\Delta\left(A_{\alpha}\right)$ converges to $\Delta(A)$, then $\| A d(S) \circ$ $\Delta \| \leq 1$ and Δ is completely bounded with completely bounded norm $\|\Delta\|_{c b} \leq$ $\|S\|\left\|S^{-1}\right\| \leq\|\Delta\|^{2}$. Thus

$$
\begin{aligned}
\|\phi\|_{c b} & \leq\left\|S_{0}^{-1}\right\|\left\|S_{0}\right\|\left\|\phi_{0}\right\|_{c b} \\
& \leq K\|\phi\|^{d}\|Z\|\left\|Z^{-1}\right\|\|\Delta\|_{c b} \\
& \leq K\|\phi\|^{d}\left\|\phi_{0}\right\|^{2}\left\|\phi_{0}\right\|^{6} \\
& \leq K^{9}\|\phi\|^{9 d+8},
\end{aligned}
$$

since $\left\|S_{0}^{-1}\right\|\left\|S_{0}\right\| \leq K\left\|\left.\phi\right|_{\mathcal{B}}\right\|^{d} \leq K\|\phi\|^{d},\|Z\|\left\|Z^{-1}\right\| \leq\left\|\phi_{0}\right\|^{2} \leq\left(K\|\phi\|^{d+1}\right)^{2}$ and $\|\Delta\| \leq\|Z\|\left\|Z^{-1}\right\|\left\|\phi_{0}\right\| \leq\left\|\phi_{0}\right\|^{3}$.

Corollary 4.2. Let G be a discrete group, $\left(\mathcal{B}_{0}, \tau_{0}\right)$ a finite von Neumann algebra with a normal faithful tracial state and $\sigma: G \mapsto \operatorname{Aut}\left(\mathcal{B}_{0}, \tau_{0}\right)$ a trace preserving cocycle action of G on $\left(\mathcal{B}_{0}, \tau_{0}\right)$. Let $\mathcal{N}=\mathcal{B}_{0} \rtimes_{\sigma} G$ be the corresponding crossed product von Neumann algebra with its normal faithful tracial state given by $\tau\left(\sum_{g \in G} B_{g} U_{g}\right)=$ $\tau_{0}\left(B_{e}\right)$. If \mathcal{N} is a factor and \mathcal{B}_{0} has similarity degree d, then \mathcal{N} has similarity degree of at most $9 d+8$.

Remark. It is known [4] that the similarity degree of a property Γ factor of type II_{1} is 3 . Hence if the crossed product $\mathcal{M}=\mathcal{B} \rtimes_{\sigma} G$ of a property Γ factor \mathcal{B} by an amenable group G is a factor, then \mathcal{M} has similarity degree of at most 35 . Here we would like to point out that it is open whether the crossed product of a property Γ factor of type II_{1} by an amenable group has property Γ.

In Theorem 4.1 and Proposition 2.1, we obtain partial results for similarity problem for von Neumann algebras satisfying co-amenability. The first named author showed that the co-amenability of von Neumann algebra preserves Connes's embedding property [18]. Suppose that \mathcal{N} has similarity property and \mathcal{N} is co-amenable in \mathcal{M}. We do not known whether \mathcal{M} have similarity property and what the similarity degree of \mathcal{M} is.

5. Christensen's Property D_{k}

In this section we will obtain some results on the Christensen's property $D_{k}[1,2$, 3, 4] for some finite von Neumann algebras.

Lemma 5.1. Let \mathcal{M} be a factor of type $I I_{1}$ with similarity degree $d<\infty$. Then \mathcal{M} has property $D_{\text {ed } / 2}$ or $D_{3 d / 2}$, where e is the Euler's number $2.718 \cdots$.

Proof. Let $\pi: \mathcal{M} \rightarrow \mathcal{B}(\mathcal{H})$ be a non degenerate *-representation and let X be in $\mathcal{B}(\mathcal{H})$, then we get for any $t \in \mathbb{R}_{+}$a homomorphism $\Phi_{t}: \mathcal{M} \rightarrow \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ by

$$
\Phi_{t}(Y)=\left(\begin{array}{cc}
\pi(Y) & t[X, \pi(Y)] \\
0 & \pi(Y)
\end{array}\right)
$$

Let $\alpha=\sup \{\|[X, \pi(Y)]\|: Y \in \mathcal{M},\|Y\| \leq 1\}$ and let $\delta: \mathcal{M} \rightarrow \mathcal{B}(\mathcal{H})$ be given by $\delta(Y)=[X, \pi(Y)]$. It is clear that δ is completely bounded, $\|\delta\|=\alpha$, and

$$
t\|\delta\|_{c b} \leq\left\|\Phi_{t}\right\|_{c b} \leq\left\|\Phi_{t}\right\|^{d} \leq(1+t\|\delta\|)^{d}
$$

Then

$$
\begin{aligned}
\|\delta\|_{c b} & \leq \inf \left\{t^{-1}(1+t\|\delta\|)^{d} \mid t \in \mathbb{R}_{+}\right\} \\
& \leq \inf \left\{s^{-1}(1+s)^{d}\|\delta\| \mid s \in \mathbb{R}_{+}\right\} \quad(s=t\|\delta\|)
\end{aligned}
$$

Let $f(s)=\frac{(1+s)^{d}}{s}$. Then $f^{\prime}(s)=\frac{d(1+s)^{d-1} s-(1+s)^{d}}{s^{2}}=0$ implies $s=\frac{1}{d-1}$. Hence

$$
\begin{aligned}
\|\delta\|_{c b} & \leq(d-1)\left(1+\frac{1}{d-1}\right)^{d}\|\delta\| \\
& =d\left(1+\frac{1}{d-1}\right)^{d-1}\|\delta\| \\
& \leq d e\|\delta\|<3 d\|\delta\|
\end{aligned}
$$

An application of Corollary 2.2 of [3] yields $\inf \left\{\|X-Z\|: Z \in \pi(\mathcal{M})^{\prime}\right\}=(1 / 2)\|\delta\|_{c b}$ $\leq(d e / 2)\|\delta\|<(3 d / 2)\|\delta\|$ and the Lemma follows.

Corollary 5.2. Let \mathcal{M} be a factor of type $I I_{1}$ with property D_{k}. Then \mathcal{M}_{t} has property $D_{3 k+1.5}$ when $t>1$; has property $D_{3 k}$ when $t<1$.

Proof. By the stated hypothesis and Proposition 2.1, we have that \mathcal{M} has similarity degree $\lfloor 2 k\rfloor$. Then by Proposition 3.4 , we have \mathcal{M}_{t} has similarity degree at most $\lfloor 2 k\rfloor$ when $t<1$ and \mathcal{M}_{t} has similarity degree at most $\lfloor 2 k\rfloor+1$ when $t>1$. Hence by Lemma 5.1, \mathcal{M}_{t} has property $D_{3 k}$ when $t<1$ and \mathcal{M}_{t} has property $D_{3 k+1.5}$ when $t>1$.

Corollary 5.3. Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of factors of type $I I_{1}$ with Jones index $[\mathcal{M}: \mathcal{N}]<\infty$. Suppose that \mathcal{N} has property D_{k}. Then \mathcal{M} has property $D_{3 k}$.

Proof. It is similar to the proof of Corollary 5.2.
Proposition 5.4. Let \mathcal{M} be a factor of type $I I_{1}$ with similarity length $\ell<\infty$ and length constant K. Then \mathcal{M} has property $D_{\min \{K, 3\} \ell / 2}$.

Proof. Directly from Proposition 2.2 and Lemma 5.1.
Proposition 5.5. Let G be a discrete group, $\left(\mathcal{B}_{0}, \tau_{0}\right)$ a finite von Neumann algebra with a normal faithful tracial state and $\sigma: G \mapsto A u t\left(\mathcal{B}_{0}, \tau_{0}\right)$ a trace preserving cocycle action of G on $\left(\mathcal{B}_{0}, \tau_{0}\right)$. Let $\mathcal{N}=\mathcal{B}_{0} \rtimes_{\sigma} G$ be the corresponding crossed product von Neumann algebra with its normal faithful tracial state given by $\tau\left(\sum_{g \in G} B_{g} U_{g}\right)=$ $\tau_{0}\left(B_{e}\right)$. Let H be a subgroup of G co-amenable in G and $\mathcal{B}=\mathcal{B}_{0} \rtimes_{\sigma} H$. If \mathcal{N} is a factor and \mathcal{B} has property D_{k}, then \mathcal{N} has similarity degree of at most $D_{25 k+11}$.

Proof. Since \mathcal{B} has property D_{k}, \mathcal{B} has similarity degree $\lfloor 2 k\rfloor$ by Proposition 2.1. By Theorem 4.1, we have \mathcal{M} has similarity degree $9\lfloor 2 k\rfloor+8$. Then by Lemma 5.1, we obtain that \mathcal{M} has property $D_{25 k+11}$.

Remark. By the remark in section 4 and Lemma 5.1, we have that if the crossed product $\mathcal{M}=\mathcal{B} \rtimes_{\sigma} G$ of a property Γ factor \mathcal{B} by an amenable group G is a factor, then \mathcal{M} has property D_{49}.

References

1. E. Christensen, Similarities of II_{1} factors with property Γ, J. Oper. Theory, 15 (1986), 281-288.
2. E. Christensen, Extensions of derivations II, Math. Scand, 50 (1982), 111-122.
3. E. Christensen, Perturbations of operator algebras, II, Indiana Univ. Math. J., 26 (1977), 891-904.
4. E. Christensen, Finite von Neumann algebra factors with property Γ, ArXiv:/0010139v2, 2000.
5. E. Christensen, On non self-adjoint representations of C* algebras, Amer. J. Math., 103 (1981), 817-833.
6. E. Christensen, A. Sinclair, R. Smith and S. White, Perturbations of C^{*} Algebraic Invariants, ArXiv:/0910.1368v1, 2009.
7. U. Haagerup, Solution of the similarity problem for cyclic representations of C^{*} algebras, Ann. Math., 118 (1983), 215-240.
8. V. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
9. R. Kadison, On the orthogonalization of operator representations, Amer. J. Math., 77 (1955), 600-620.
10. G. Pisier, The similarity degree of an operator algebra, St. Petersburg Math. J., 10 (1999), 103-146.
11. G. Pisier, The similarity degree of an operator algebra II, Math. Zeit., 234(1) (2000), 53-81,
12. G. Pisier, Remarks on the similarity degree of an operator algebra, Preprint.
13. G. Pisier, A similarity degree characterization of nuclear C^{*} algebras, ArXiv math/0409091v3, 2005.
14. N. Monod and S. Popa, On co-amenable for groups and von Neumann algebras, Arxiv math/0301348, 2003.
15. N. Ozawa, An invitation to the similarity problems (After Pisier), RIMS workshop "Operator Space Theory and its application", 2006.
16. F. Pop, The similarity problem for tensor products of certain C* algebras, Bull. Austral. Math. Soc., 70 (2004), 385-389.
17. S. Popa and M. Pimsner, Entropy and index for subfactors, Ann. scient. Ec. Norm. Sup. 4 serie, tome 19(1) (1986), 57-106.
18. J. Wu, Co-amenability and Connes's Embedding Problem, preprint, 2011.

Wu Jinsong
University of Science and Technology of China
Hefei, Anhui 230026
P. R. China

E-mail: wjsl@ustc.edu.cn

Wu Wenming
College of Mathematical Sciences
Chongqing Normal University
Chongqing 401331
P. R. China

E-mail: wuwm@amss.ac.cn
Wang Liguang
Qufu Normal University
Qufu, Shandong 273165
P. R. China

E-mail: wlgqfnu@hotmail.com

[^0]: Received December 28, 2011, accepted April 30, 2012.
 Communicated by Ngai-Ching Wong.
 2010 Mathematics Subject Classification: 46L10.
 Key words and phrases: Co-amenability, Similarity degree, von Neumann algebra.
 Wu Wenming was partially supported by Natural Science Foundation Project of CQ CSTC (No. CSTC, 2010BB9318) and Chongqing Normal University (No. 10XLZ001).
 Wang Liguang was partially supported by the NSF of China (No. 10971117) and the Scientific Research Fund of the Shandong Provincial Education Department (No. J08LI15).

