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WEAK HARDY SPACES Hp,∞ ON SPACES OF HOMOGENEOUS TYPE
AND THEIR APPLICATIONS

Xinfeng Wu and Xiaohua Wu

Abstract. In this paper, we introduce weak Hardy spaces Hp,∞ on spaces of
homogeneous type. We establish an atomic decomposition characterization of
these spaces, show the boundedness of fractional integral operators and provide
anHp,∞ interpolation theorem. Applications to the Nagel-Stein’s singular integral
operators and fractional integral operators are also discussed.

1. INTRODUCTION AND MAIN RESULTS

The theory of weak Hardy spaces is very important in harmonic analysis since it
can sharpen the endpoint weak type estimate for variant important operators (see, for
example, [9]). The weak Hardy spaces were first studies in [8] as special Hardy-Lorentz
spaces which are the intermediate spaces between two Hardy spaces. R. Fefferman and
Soria [9] established an atomic decomposition of the weak Hardy space H1,∞(Rn).
The atomic decompositions of the weak Hardy spaces Hp,∞ on homogeneous groups
were given by Liu in [15]. Ding and Lan [5] developed the theory of weak Hardy spaces
associated to expansive dilations on Rn. The weak Hardy space H1,∞ on spaces of
homogeneous type was recently studied in [6].
In this paper, we shall study the theory of weak Hardy spaces Hp,∞ on the homo-

geneous space having some reverse doubling property (see Definition 1.1 below). More
precisely, we will first give an atomic decomposition characterization of Hp,∞. Then
we use this characterization to derive the (Hp,∞, Lq,∞) and (Hp,∞, Hq,∞) bounded-
ness of fractional integral operators and prove an Hp,∞ interpolation theorem. Finally,
applications to the boundedness of Nagel-Stein’s singular integral operators and frac-
tional integral operators in Hp,∞ are discussed. We remark that our theory is so general
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that it covers the results in [5, 6, 15] as special cases and can be applied to more vari-
ant different settings such as Euclidean spaces with A∞-weights, Ahlfors n-regular
metric measure spaces (see, for example, [12]), Lie groups of polynomial growth (see,
for instance, [1, 24, 25]) and Carnot-Carathéodory spaces with doubling measure (see
[18, 19, 20, 21]).
Before giving the main results, let us recall some definitions and notions first. The

following notion of spaces of homogeneous type was introduced by Coifman and Weiss
in [3], see also [4].

Definition 1.1. Let (X , d) be a metric space with a regular Borel measure μ such
that all balls defined by d have finite and positive measures. The quasi-metric satisfies
the following triangle inequality,

d(x, z) ≤ τ(d(x, y) + d(y, z)).(1.1)

For any x ∈ X and r > 0, set B(x, r) = {y ∈ X : d(x, y) < r}. (X, d, μ) is called a
space of homogeneous type (or a homogenous space) if there exists a constant C1 ≥ 1
such that for all x ∈ X and r > 0,

μ(B(x, 2r)) ≤ C1μ(B(x, r)).(1.2)

We also assume throughout that μ satisfies the following reverse doubling condition
that there exist constants 1 < κ ≤ n < ∞, 0 < C2 ≤ 1 and C3 > 1 such that for all
x ∈ X , 0 < r < diam(X )/2 and 1 ≤ s < diam(X )/(2r),

C2s
κμ(B(x, r)) ≤ μ(B(x, sr)) ≤ C3s

nμ(B(x, r)),(1.3)

where diam(X ) = supx,y∈X d(x, y). The least possible value of n in (1.3) is called the
dimension of X , which is still denoted by n. We use dx to denote dμ(x) for simplicity.
Throughout this paper, we always assume that X is a homogeneous space with the

reverse doubling condition (1.3) and μ(X ) = ∞. We remark that all the examples
mentioned above fall under the scope of the current setting.
Denote by C a positive constant independent of main parameters involved, which

may vary at different occurrences. Constants with subscripts do not change through
the whole paper. Let A � B denote A ≤ CB and let A ≈ B mean A � B and
B � A. Denote V (x, y) = μ(B(x, d(x, y))) and V2j(x) = μ(B(x, 2j)). It is easy to
see V (x, y) ≈ V (y, x).
Now we briefly recall the notions that we need to define the weak Hardy spaces

Hp,∞(X ) (see [6] and the references therein).

Definition 1.2. Let ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0. A sequence {Sk}k∈Z of bounded
linear integral operators on L2(X ) is said to be an approximation of the identity of
order (ε1, ε2, ε3) (in short, (ε1, ε2, ε3)- AOTI), if there exists a constant C4 > 0 such
that for all k ∈ Z and all x, x′, y and y′ ∈ X , Sk(x, y), the integral kernel of Sk is a
function from X ×X into C satisfying
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(i) |Sk(x, y)| ≤ C4
1

V
2−k (x)+V

2−k(y)+V (x,y)
2−kε2

(2−k+d(x,y))ε2
;

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C4
d(x,x′)ε1

(2−k+d(x,y))ε1

1
V

2−k (x)+V
2−k (y)+V (x,y)

2−kε2

(2−k+d(x,y))ε2

for d(x, x′) ≤ (2−k + d(x, y))/2

(iii) Property (ii) holds with x and y interchanged;

(iv) |[Sk(x, y)−Sk(x, y′)]−[Sk(x′, y)−Sk(x′, y′)]| ≤ C4
d(x,x′)ε1

(2−k+d(x,y))ε1

d(y,y′)ε1

(2−k+d(x,y))ε1

× 1
V

2−k (x)+V
2−k (y)+V (x,y)

2−kε3

(2−k+d(x,y))ε3
for d(x, x′) ≤ (2−k + d(x, y))/3 and

d(y, y′) ≤ (2−k + d(x, y))/3;
(v)

∫
X Sk(x, y)dy =

∫
X Sk(x, y)dx= 1.

Using the size condition (i), it is not hard to show

(1.4)
∫
X
|Sk(x, y)|dy ≤ C,

∫
X
|Sk(x, y)|dx≤ C.

The test functions are defined as follows.

Definition 1.3. Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function ϕ
on X is said to be a test function of type (x1, r, β, γ) if

(i) |ϕ(x)| ≤ C 1
μ(B(x,r+d(x,x1)))

(
r

r+d(x1,x)

)γ
for all x ∈ X ;

(ii) |ϕ(x)− ϕ(y)| ≤ C
(

d(x,y)
r+d(x1,x)

)β
1

μ(B(x,r+d(x,x1)))

(
r

r+d(x1,x)

)γ
for all x, y ∈ X

satisfying d(x, y) ≤ (r + d(x1, x))/2.

We denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈
G(x1, r, β, γ) we define its norm by ‖ϕ‖G(x1,r,β,γ) := inf{C : (i) and (ii) hold}.
The space G(x1, r, β, γ) is called to be the space of test functions.

Throughout the whole paper, we fix x1 ∈ X . Let G(β, γ) = G(x1, 1, β, γ). It is
easy to see that for any x2 ∈ X and r > 0, we have G(x2, r, β, γ) with equivalent
norms. For any given ε ∈ (0, 1], let Gε

0(β, γ) be the completion of the space G(ε, ε)
in G(β, γ) when β, γ ∈ (0, ε]. Moreover, ϕ ∈ Gε

0(β, γ) if and only if ϕ ∈ G(β, γ)
and there exists {φi}i∈N such that ‖ϕ − φi‖G(β,γ) → 0 as i → ∞. If ϕ ∈ Gε

0(β, γ),
define ‖ϕ‖Gε

0(β,γ) = ‖ϕ‖G(β,γ). Obviously, Gε
0(β, γ) is a Banach space. The notation

(Gε
0(β, γ))′ denotes the dual space of Gε

0(β, γ).
Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and 0 < ε < min{ε1, ε2} and {Sk}k∈Z be an

(ε1, ε2, ε3)-AOTI. For f ∈ (Gε
0(β, γ))′ and β, γ ∈ (0, ε), the non-tangential maximal

operatorMσ is defined by

Mσ(f)(x) := sup
k∈Z

sup
d(x,y)≤σ2−k

|Sk(f)(y)|.
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The grand maximal function is defined by

f∗(x) := sup
{|〈f, ϕ〉| : ϕ ∈ Gε

0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r > 0
}
.

The radial maximal operator M0 is defined by

M0f(x) := sup
k∈Z

|Sk(f)(x)|.

For more details and results about harmonic analysis on spaces of homogeneous type,
we refer the readers to [3, 4, 11].
Now we introduce the weak Hardy spaces Hp,∞ on the spaces of homogeneous

type.

Definition 1.4. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0,min{ε1, ε2}) and {Sk}k∈Z

be an (ε1, ε2, ε3)− AOTI. Let p ∈ (n/(n + 1), 1], σ ∈ (0,∞) and f ∈ (Gε
0(β, γ))′

with some β, γ ∈ (0, ε). The weak Hardy spaces Hp,∞ on homogeneous spaces X is
defined by

Hp,∞(X ) = {f ∈ (Gε
0(β, γ))′ : Mσf ∈ Lp,∞(X )}.

The Hp,∞(X ) quasi-norm of f is defined by

‖f‖Hp,∞(X ) := ‖Mσf‖Lp,∞(X ).

Remark 1.1. (i) For any p ∈ (n/(n+ 1), 1], we always assume that ε ∈ (n(1/p−
1), 1) so that p ∈ (n/(n + ε), 1) and the weak Hardy spaces are defined via some
(Gε

0(β, γ))′ with n(1/p − 1) < β, γ < ε and some (ε1, ε2, ε3)-AOTI {Sk}k∈Z with
min{ε1, ε2} > ε, ε1 ≤ 1 and ε3 > 0.
(ii) Both the Hardy spaces Hp(X ) and the weak Hardy spaces Hp,∞(X ) can equiv-
alently be defined via Littlewood-Paley functions, radial maximal functions, non-
tangential maximal functions and grand maximal functions (see [6] and the references
therein).
Our first result is the following

Theorem 1.1. Let p ∈ (n/(n+1), 1]. Given f ∈ Hp,∞(X ), there exists a sequence
of bounded functions {fk}∞k=−∞ with the following properties:
(a) f −∑|k|≤N fk → 0 in (Gε

0(β, γ))′ and ‖fk‖L∞(X ) ≤ C2k .

(b) Each fk may be further decomposed as fk =
∑∞

i=1 h
k
i in (Gε

0(β, γ))′, where the
hk

i satisfies:
(i) hk

i is supported in a ball Bk
i with {Bk

i } having bounded overlap for each
k;

(ii)
∫
Bk

i
hk

i (x)dx = 0;
(iii) ‖hk

i ‖L∞≤C2k and
∑

iμ(Bk
i )≤C02−kp with the constantC0≈‖f‖p

Hp,∞(X )
.
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Conversely, if f is a distribution satisfying (a) and (b) (i)-(iii), then f ∈ Hp,∞(X )
and ‖f‖p

Hp,∞(X ) ≤ cC0 (where c is some absolute constant).

As an application of Theorem 1.1, we shall prove the following interpolation the-
orem.

Theorem 1.2. Let n/(n+1) < q < p ≤ 1 < p0 <∞. Suppose T is a subadditive
operator, and T is bounded both on Lp0(X ) and the Hardy space Hq(X ). Then T is
bounded on Hp,∞(X ).

For the (Hp,∞(X ), Lq,∞(X )) boundedness of fractional integral operators, we have

Theorem 1.3. Let Tαf(x) =
∫
X Kα(x, y)f(y)dy be an bounded operator from

Lp0(X ) to Lq0(X ) for some 1 < p0 < q0 <∞ satisfying 1
p0

− 1
q0

= α and 0 < α < 1.
If K has the following regularity in the second variable: there exists constants C, ε >
0 such that for all x, y, y′ ∈ X with d(y, y′) ≤ d(x, y)/2 and x �= y,

|Kα(x, y)−Kα(x, y′)| ≤ C
d(y, y′)ε

V (x, y)1−αd(x, y)ε
.(1.5)

Then for 0 < α < min{ε, ε1}/n and for all p, q with n/(n + 1) < p < q ≤ 1 and
1/p− 1/q = α, Tα is bounded from Hp,∞(X ) to Lq,∞(X ). Moreover, there exists a
constant C, independent of f and λ, such that for each λ > 0,

μ({x : |Tαf(x)| > λ}) ≤ C

(‖f‖Hp,∞(X )

λ

)q

.

The (Hp,∞, Hq,∞) boundedness of fractional integrals is given below.

Theorem 1.4. Under the same hypothesis as in Theorem 1.3, if Tα further satisfies
the following cancellation condition: for any function φ ∈ Lp0(X ) with compact
support satisfying

∫
X φ = 0, we have

(1.6)
∫
X

(Tαφ)(x)dx = 0.

Then for 0 < α < min{ε, ε1}/n and for all p, q with n/(n + 1) < p < q ≤ 1 and
1/p− 1/q = α, Tα is bounded from Hp,∞(X ) to Hq,∞(X ). Moreover, there exists a
constant C, independent of f and λ, such that for each λ > 0,

μ({x : |(M0Tαf)(x)| > λ}) ≤ C

(‖f‖Hp,∞(X )

λ

)q

.

Remark 1.2. (i) The condition (1.6) is a natural condition to guarantee the (Hp(X ),
Hq(X )) boundedness of fractional integral operator Tα. Indeed, if φ is an (p, p0) atom,
then (1.6) is just the required cancelation condition for T (φ) to be a “molecule”. In
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the classical case when X = Rn, the condition (1.6) is satisfied for the Riesz potential
operator (see, for instance, [16, Chapter 3]).
(ii) In Theorems 1.3 and 1.4, if d(y, y′) ≤ d(x, y)/c for some c > 1, (1.5) holds, then
the conclusions of Theorems 1.3 and 1.4 remain true.
(iii) When p = 1, the result of Theorem 1.3 was obtained in [6]. Thus Theorem 1.3
can be regarded as an extension of the result in [6]. The conclusion of Theorem 1.4 is
new.

The following of the paper is arranged as follows. Section 2 is devoted to some
preliminary lemmas. The proofs of the theorems are presented in Section 3. Finally,
in Section 4, we give applications to the Nagel-Stein’s singular integrals and fractional
integrals.

2. SOME LEMMAS

In this section, we give some lemmas that will be used to prove the theorems.
The following result was independently founded by Stein-Taibleson-Weiss [23] and

by Kalton [13].

Lemma 2.1. Let gk be a sequence of measurable functions and let 0 < r < 1.
Assume that |{|gk| > λ}| ≤ C/λr with C independent of k and λ. Then, for every
numerical sequence {ck} in lr we have∣∣∣∣∣

{
x :
∣∣∑

k

ckgk(x)
∣∣ > λ

}∣∣∣∣∣ ≤ 2− r

1− r

C

λr

∑
k

|ck|r.

The following lemma is theWhitney decomposition theorem in homogeneous spaces
X ([22]).

Lemma 2.2. Let Ω be an open proper subset of X and let d(x) = inf{d(x, y) :
y /∈ Ω}. Let r(x) = d(x)/30. Then there exist a positive number L depending on
C3, τ, n, but independent of Ω, and a sequence {xk}k such that if we denote r(xk) by
rk, then

(i) B(xk, rk/4) are pairwise disjoint;
(ii) ∪kB(xk, rk) = Ω;
(iii) for every given k, B(xk, 15rk) ⊂ Ω;
(iv) for every given k, x ∈ B(xk, 15rk) implies that 15rk < d(x) < 45rk;
(v) for every given k, there exists a yk /∈ Ω such that d(xk, yk) < 45rk;
(vi) {B(xk, 13τ2rk)}∞k=1 have bounded overlap, that is, for every given k, the num-

ber of balls B(xi, 13τ2ri) whose intersections with the ball B(xk, 13τ2rk) are
non-empty is at most L.
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From Lemma 2.2, we can construct the following partition of unity in homogenous
spaces X .
Lemma 2.3. Let Ω be an open subset of X with finite measure. Consider the

sequence {xk}k and {rk}k given in Lemma 2.2. Then there exist non-negative functions
{ϕk}k satisfying:

(i) for any given k, 0 ≤ ϕk ≤ 1, supp ϕk ⊂ B(xk, 2rk) and
∑

k ϕk = χΩ;
(ii) for any given k and x ∈ B(xk, rk), ϕk(x) ≥ 1/C, where C is a positive constant

depending only on C3, but independent of Ω;
(iii) there exists a positive constant C independent of Ω such that for all k and all

ε ∈ (0, 1],
‖ϕk‖G(xk,rk,ε,ε) ≤ Cμ(B(xk , rk)).

In this case, we say that {ϕk}k are “bump functions” associated with {B(xk, rk)}k.

Lemma 2.4. Let δ > 0, 0 < a ≤ 1, 0 < α < a/n, then there is a constant C
depending only on C1 and C3 such that∫

d(x,y)≥δ

1
V (x, y)1−αd(x, y)a

dy ≤ Cμ(B(x, δ))αδ−a.

Indeed, by (1.1) and (1.3),∫
d(x,y)≥δ

1
V (x, y)1−αd(x, y)a

dy

=
∞∑

j=0

∫
2jδ≤d(x,y)<2j+1δ

1
V (x, y)1−αd(x, y)a

dy

≤
∞∑

j=0

1
[μ(B(x, 2jδ))]1−α (2jδ)a

· μ(B(x, 2j+1δ))

≤C1C3

∞∑
j=0

2−j(a−αn)(μ(B(x, δ)))αδ−a

≤C(μ(B(x, δ)))αδ−a.

3. PROOF OF THE THEOREMS

This section is devoted to the proofs of the theorems.

3.1. Proof of Theorems 1.1

For k ∈ Z, we set Ωk = {x ∈ X : f∗(x) > 2k}. Then for any k ∈ Z,
Ωk is a proper open subset of X with μ(Ωk) ≤ C2−kp‖f‖p

Hp,∞(X ) < ∞. Let
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{Bk
i }∞i=1 = {B(xk

i , r
k
i )}∞i=1 be the Whitney decomposition of Ωk, and let ϕk

i be the
“bump functions” associated to Bk

i in the sense of Lemmas 2.2 and 2.3. For each
k ∈ Z, define dk(x) = inf{d(x, y) : y /∈ Ωk}. Denote

mk
i =

1∫
X ϕ

k
i

∫
X
fϕk

i .

We decompose f as

f(x) =

(
f(x)χΩc

k
(x) +

∞∑
i=1

mk
i ϕ

k
i (x)

)
+

∞∑
i=1

(f(x) −mk
i )ϕ

k
i (x),

where and in what follows, we use Ac to denote the complement of the set A in X .
Denote

gk(x) :=

(
f(x)χΩc

k
(x) +

∞∑
i=1

mk
i ϕ

k
i (x)

)
.

Clearly,

(3.1) |f(x)χΩc
k
(x)| ≤ Cf∗(x)χΩc

k
(x) ≤ C2k.

By (v) in Lemma 2.2, there exist yk ∈ Ωc
k

(3.2) |mk
i | ≤ Cf∗(yk) ≤ C2k.

Thus |gk(x)| ≤ C2k for all x ∈ X . Therefore, we have the uniform convergence,

(3.3) lim
k→−∞

gk(x) = 0.

On the other hand, noticing that μ(Ωk) = O(2−kp) → 0, as k → ∞, we obtain

(3.4) lim
k→∞

gk(x) = f(x), a.e..

By (3.3) and (3.4), we can write

f =
∞∑

k=−∞
gk+1 − gk :=

∞∑
k=−∞

fk, a.e..

One can check

fk =
∞∑
i=1

[
(f −mk

i )ϕ
k
i −

∞∑
j=1

(f −mk+1
ij )ϕk

i ϕ
k+1
j

]
+

∞∑
j=1

[ ∞∑
i=1

(f −mk+1
ij )ϕk

i ϕ
k+1
j − (f −mk+1

j )ϕk+1
j

]
,
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where all the series converges in (Gε
0(β, γ))′ and

mk+1
ij =

1∫
ϕk

i ϕ
k+1
j

∫
fϕk

i ϕ
k+1
j .

Let βk
i = (f−mk

i )ϕ
k
i −
∑∞

j=1(f−mk+1
ij )ϕk

i ϕ
k+1
j and γk+1

j =
∑∞

i=1(f−mk+1
ij )ϕk

i ϕ
k+1
j

−(f −mk+1
j )ϕk+1

j . Denote B̃k
i := B(xk

i , 13τ2rk
i ), where τ is the constant appearing

in the triangle inequality (1.1). Then by Lemma 2.2 (vi), we know that, for each k ∈ Z,
{B̃k

i }i has bounded overlap. Clearly, suppβk
i ⊂ B(xk

i , 2r
k
i ) ⊂ B̃k

i . Now we claim that
for each j ∈ Z, there exists an i ∈ Z such that suppγk

j ⊂ B̃k
i . Indeed,

B(xk+1
j , 2rk+1

j ) ⊂ Ωk+1 ⊂ Ωk =
∞⋃

k=1

B(xk
i , r

k
i ).

Thus there exists B(xk
i , r

k
i ) = B(xk

ij
, rk

ij
) such that B(xk

i , r
k
i ) ∩B(xk+1

j , 2rk+1
j ) �= ∅.

Then for any x ∈ B(xk+1
j , 2rk+1

j ) and any y ∈ B(xk
i , r

k
i )∩B(xk+1

j , 2rk+1
j ), by Lemma

2.2 (iv) and dk+1(y) ≤ dk(y),

d(x, xk
i ) ≤ τ2[d(x, xk+1

j ) + d(xk+1
j , y) + d(y, xk

i )] ≤ τ2[4rk+1
j + rk

i ]

≤ τ2[(4/15)dk(y) + rk
i ] ≤ 13τ2rk

i .

Therefore
suppγk

j ⊂ B(xk+1
j , 2rk+1

j ) ⊂ B̃k
i ,

which verifies the claim. Denote γ̃k
i = γk

j so that suppγ̃k
i ⊂ B̃k

i .

Next, by (3.1), (3.2) and noticing that {B̃k+1
j }∞j=1 have bounded overlap, we have

|βk
i | = |(f −mk

i )ϕ
k
i −

∞∑
j=1

(f −mk+1
ij )ϕk

iϕ
k+1
j |

≤ |fϕk
i χΩc

k+1
| + |mk

i |ϕk
i +

∞∑
j=1

|mk+1
ij |ϕk

iϕ
k+1
j

≤ C2k.

Similarly, |γ̃k
j | ≤ C2k. Obviously,∫

X
βk

i (x)dx = 0 =
∫
X
γ̃k

i (x)dx.

Define hk
i = βk

i + γ̃k
i , then fk =

∑∞
i=1 h

k
i and the convergence in (Gε

0(β, γ))′ can be
verified as in [5]. Thus, conclusions (a), (i) and (ii) of (b) in Theorem 1.1 have been
proved to hold.
Finally, since f ∈ Hp,∞ and {Bk

i } have the bounded overlap, by (1.2),
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∞∑
i=1

μ(B̃k
i ) �

∞∑
i=1

μ(Bk
i ) � μ(Ωk) � 2−kp‖f‖p

Hp,∞(X )
,

which verifies (iii) of (b). Thus we finish the construction of the atomic decomposition.
For the converse, we fix α > 0, and choose k0 so that 2k0 ≤ α < 2k0+1. Write

f =
k0−1∑

k=−∞
fk +

∞∑
k=k0

fk = F1 + F2.

Now since

M0(F1)(x) ≤
k0−1∑

k=−∞
M0(fk)(x) ≤ C

k0−1∑
k=−∞

2k ≤ C3α,

and μ({x ∈ X ) : M0(F1)(x) > C3α}) = 0, we have

μ({x ∈ X : M0(f)(x) > (C3 + 1)α}) ≤ μ({x ∈ X : M0(F2)(x) > α}).
Set

Ak0 =
∞⋃

k=k0

⋃
i≥1

3τBk
i ,

where 3τBk
i denotes the ball with radii of 3rk

i centered at xk
i . By (1.3),

μ(Ak0) ≤ (3τ)nC02−k0 ≤ C/αp.

Therefore it suffices to verify

(3.5) I = μ({x /∈ Ak0 : M0(F2)(x) > α}) ≤ C/αp.

Note that for x /∈ 3τBk
i and y ∈ Bk

i , we have

d(x, y) ≥ 1
τ
d(x, xk

i )− d(y, xk
i ) ≥ 2d(y, xk

i ).

Thus
|Sj(x, y)− Sj(x, xk

i )| � d(y, xk
i )

ε1

d(x, y)ε1V (x, y)
.

Hence by the cancellation condition of hik ,

M0(hk
i )(x) =sup

j

∣∣∣∣∫ [Sj(x, y)− Sj(x, xk
i )]h

k
i (y)dy

∣∣∣∣
≤C2k μ(Bk

i )d(y, xk
i )

ε1

V (x, y)d(x, y)ε1

≤C2k μ(Bk
i )(rk

i )
ε1

μ(B(xk
i , d(x, x

k
i )))d(x, x

k
i )ε1

.
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By (1.4)

μ(B(xk
i , d(x, x

k
i ))) ≤

(
d(x, xk

i )
rk
i

)n

μ(Bk
i ).

Therefore,

M0(hk
i )(x) ≤C2k μ(Bk

i )1+
ε1
n

V (x, xk
i )

1+
ε1
n

.

Now applying lemma 2.1 with gki = V (x, xk
i )

−1− ε1
n , r = (1 + ε1

n )−1, and cki =
2kμ(Bk

i )1+
ε1
n , we obtain

I ≤ Cε1,n

αr

∑
k≥k0

∑
i

2krμ(Bk
i ) ≤ C0

Cε1,n

αr

∑
k≥k0

2kr2−kp.

Now since p > n/(n+ ε) > r (see Remark 1.1), the last series converges and bounded
by

C0
Cε1,n

αq
2−k0(p−r) = C/αp,

where C is independent of α. This complete the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2

For every f ∈ Hp,∞(X ), and λ > 0, we need to prove that

μ({x ∈ X : (Tf)∗(x) > λ}) ≤ Cλ−p‖f‖p
Hp,∞(X ),

with constant C independent of f and λ.
Pick k0 ∈ Z, such that 2k0 ≤ λ < 2k0+1. By the atomic decomposition of

Hp,∞(X ), write f as f =
∑k0

k=−∞ fk +
∑∞

k=k0+1 fk := F1 + F2. Noticing that
p0 > 1, we have

‖F1‖Lp0(X ) ≤ C

k0∑
k=−∞

‖fk‖Lp0(X )

≤ C

k0∑
k=−∞

2k

(∑
i

μ(Bk
i )

)1/p0

≤ C‖f‖p/p0

Hp,∞(X )

k0∑
k=−∞

2k(1−p/p0)

≤ C‖f‖p/p0

Hp,∞(X )
2k0(1−p/p0).

Then
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μ({x ∈ X : (TF1)∗(x) > λ}) ≤ λ−p0‖(TF1)∗‖p0

Lp0(X )

≤ Cλ−p0‖TF1‖p0

Lp0(X )

≤ Cλ−p0‖F1‖p0

Lp0(X )

≤ Cλ−p0‖f‖p
Hp,∞(X )2

k0(p0−p)

≤ Cλ−p0‖f‖p
Hp,∞(X )λ

p0−p

= Cλ−p‖f‖p
Hp,∞(X ).

Thus, to finish the proof of Theorem 1.2, it suffices to show that

(3.6) μ({x ∈ X : (TF2)∗(x) > λ}) ≤ Cλ−p‖f‖p
Hp,∞.

It is easy to see that for some constant C, C−12−kμ(Bk
i )−1/qhk

i is an Hq,∞ atom.
Then fk ∈ Hq(X ), and

‖fk‖q
Hq(X ) ≤ C

∑
i

2kqμ(Bk
i ) ≤ C2k(q−p)‖f‖p

Hp,∞(X ).

Since T is bounded on Hq(X ), by the grand maximal function characterization of
Hq(X ) (see Remark 1.1),

μ({x ∈ X : (Tfk)∗(x) > λ}) ≤ Cλ−q‖Tfk‖q
Hq(X ) ≤ Cλ−q‖fk‖q

Hq(X ).

Consequently,

μ({x ∈ X :
[
T (fk/‖fk‖Hq(X ))

]∗ (x) > λ}) ≤ Cλ−q.

Noting that (TF2)∗(x) ≤
∑∞

k=k0
(Tfk)∗(x). Then applying Lemma 2.1, we obtain

μ({x ∈ X : (TF2)∗(x) > λ})

≤ μ({x ∈ X :
∞∑

k=k0+1

‖fk‖Hq(X ) · [T (fk/‖fk‖Hq(X ))]
∗(x) > λ})

≤ 2 − q

1 − q

1
λq

∞∑
k=k0+1

‖fk‖q
Hq(X )

≤
C‖f‖p

Hp,∞(X )

λq

∞∑
k=k0

2k(q−p)

≤ C2k0(q−p)‖f‖p
Hp,∞(X )

/λq

≤ Cλ−p‖f‖p
Hp,∞(X )

,

which verifies (3.6). This completes the proof of Theorem 1.2.
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3.3. Proof of Theorem 1.3

Fix λ. Set η = λq/p‖f‖1−q/p
Hp,∞(X ). Take k̄0 ∈ Z such that 2k̄0 ≤ η < 2k̄0+1. Split f

into two parts

f =
k̄0∑

k=−∞
fk +

∞∑
k=k̄0+1

fk := F3 + F4.

From the atomic decomposition of f , it follows that

‖F3‖Lp0(X ) ≤
k̄0∑

k=−∞
‖fk‖Lp0(X )

≤C
k̄0∑

k=−∞
2k

(∑
i

μ(Bk
i )

)1/p0

≤C‖f‖p/p0

Hp,∞(X )

k̄0∑
k=−∞

2k(1−p/p0)

≤C‖f‖p/p0

Hp,∞(X )
η1−p/p0

=Cλ1−q/q0‖f‖q/q0

Hp,∞(X )
.

(3.7)

By the Lp0(X )− Lq0(X ) boundedness of Tα and (3.7),

μ({x ∈ X : |TαF3(x)| > λ})
≤ cλ−q0‖TαF3‖q0

Lq0(X )

≤ cλ−q0‖F3‖q0

Lp0(X )

≤ cλ−q0

(
λ1−q/q0‖f‖q/q0

Hp,∞(X )

)q0

= C

(‖f‖Hp,∞

λ

)q

.

Let B̂k
i = 3τBk

i and Ek̄0
=
⋃∞

k=k̄0+1

⋃
i B̂

k
i . By Theorem 1.1,

μ(Ek̄0
) ≤ C

∞∑
k=k̄0+1

∑
i

μ(Bk
i ) ≤ C‖f‖p

Hp,∞(X )

∞∑
k=k̄0+1

2−kp

≤ C‖f‖p
Hp,∞(X )η

−p ≤ C

(‖f‖p
Hp,∞

λ

)q

.

(3.8)

Thus, to finish the proof, it suffices to show

μ({x ∈ Ec
k̄0

: |TαF4(x)| > λ}) ≤ C

(‖f‖Hp,∞

λ

)q

.(3.9)



2252 Xinfeng Wu and Xiaohua Wu

By the use of cancellation condition of hk
i , Minkowski’s inequality and (1.5),

μ({x ∈ Ec
k̄0

: |TαF4(x)| > λ})

≤ λ−1

∫
Ec

k̄0

|TαF4(x)|dx

≤ λ−1
∞∑

k=k̄0+1

∞∑
i=0

∫
Bk

i

|hk
i (y)|

∫
Ec

k̄0

|K(x, y)−K(x, xk
i )|dxdy.

Note that if x ∈ Ec
k̄0
and y ∈ Bk

i , then by (1.1),

d(x, y) ≥ 1
τ
d(x, xk

i )− d(xk
i , y) ≥ 2d(xk

i , y).

Thus by Lemma 2.4, we have

μ({x ∈ Ec
k̄0

: |TαF4(x)| > λ})

≤Cλ−1
∞∑

k=k̄0+1

∞∑
i=0

∫
Bk

i

|hk
i (y)|

∫
Ec

k̄0

d(y, xk
i )

ε

V (x, y)1−αd(x, y)ε
dxdy

≤Cλ−1
∞∑

k=k̄0+1

2k
∞∑
i=0

μ(Bk
i )1+α

≤Cλ−1
∞∑

k=k̄0+1

2k

( ∞∑
i=0

μ(Bk
i )

)1+α

≤Cλ−1‖f‖p(1+α)
Hp,∞

∞∑
k=k̄0+1

2k[1−p(1+α)]

≤Cλ−1‖f‖p(1+α)
Hp,∞ η1−p(1+α)

=Cλ−1‖f‖p(1+α)
Hp,∞

(
λθ‖f‖1−θ

Hp,∞

)1−p(1+α)

=C
(‖f‖Hp,∞

λ

)q

,

which gives (3.9). Thus the proof of Theorem 1.3 is completed.

3.4. Proof of Theorem 1.4

Since f ∈ Hp,∞(X ), M0(f) ∈ Lp,∞(X ). To prove the theorem, it suffices to
show

(3.10) μ({x ∈ X : M0(Tαf)(x) > λ}) ≤ C(‖f‖Hp,∞(X )/λ)q, for any λ > 0.
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Let k0, η, F3 and F4 be defined as in the proof of Theorem 1.3. For any λ > 0,
applying the same argument as in the proof of (3.7), we can get

‖F3‖Lp0(X ) � λ
1− q

q0 ‖f‖
q
q0

Hp,∞(X ).

By the Lq0(X ) boundedness of M0, and the (Lp0, Lq0) boundedness of Tα, we have

μ({x ∈ X : M0(TαF3)(x) > λ}) ≤ C(‖M0(TαF3)‖Lq0/λ)q0

≤ C(‖F3‖Lp0/λ)q0 ≤ C(‖f‖Hp,∞/λ)q.

Denote Bk
i = B(xk

i , 4r
k
i ) and E = ∪∞

k=k0
∪i B

k
i , then similar argument as in the

proof of (3.8) yields, μ(E) ≤ C(‖f‖Hp,∞/λ)q. Thus, to finish the proof, it remains to
be verified that

(3.11) μ({x ∈ Ec : M0(TαF4)(x) > λ}) ≤ C(‖f‖Hp,∞(X )/λ)q.

Since hk
i ∈ Lp0(X ) has compact support with

∫
X h

k
i (x)dx = 0, by the cancellation

condition (1.6),

(3.12)
∫
X
Tα(hk

i )(x)dx = 0.

Thus, for any m ∈ Z and for any x ∈ Ec, by the cancellation condition for hk
i and

(3.12), we have

|Sm(Tαh
k
i )(x)|

=
∣∣∣∣∫X (Tαh

k
i )(y)[Sm(x, y)− Sm(x, xk

i )]dy
∣∣∣∣

≤
∫

B̃k
i

|(Tαh
k
i )(y)| · |Sm(x, y)− Sm(x, xk

i )|dy

+
∫

2rk
i ≤d(y,xk

i )<d(x,xk
i )/2

(∫
Bk

i

|hk
i (v)||Kα(y, v)−Kα(y, xk

i )|dv
)

· |Sm(x, y)− Sm(x, xk
i )|dy

+
∫

d(y,xk
i )≥d(x,xk

i )/2

(∫
Bk

i

|hk
i (v)||Kα(y, v)−Kα(y, xk

i )|dv
)

(|Sm(x, y)|+ |Sm(x, xk
i )|)dy

:=J1 + J2 + J3.

We first give the estimate for J1. By the definition of Sm,
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J1 ≤ C

V (x, xk
i )d(x, x

k
i )ε1

∫
B̃k

i

(Tαh
k
i )(y)d(y, x

k
i )

ε1dy

≤ C(rk
i )ε1

V (x, xk
i )d(x, x

k
i )ε1

‖Tαh
k
i ‖Lq1 (X )μ(Bk

i )1−
1
q1

≤ C2kμ(Bk
i )1+α (rk

i )ε1

V (x, xk
i )d(x, x

k
i )ε1

.

(3.13)

Next, we estimate J2. Since d(y, xk
i ) ≥ 2rk

i > 2d(v, xk
i ), by (1.5) and Definition

1.2,

J2 ≤ C2kμ(Bk
i )
∫

2rk
i ≤d(y,xk

i )<d(x,xk
i )/2

1
V (y, xk

i )1−α
· (rk

i )ε1

V (x, xk
i )d(x, x

k
i )ε1

dy

≤ C2kμ(Bk
i )(rk

i )ε1

V (x, xk
i )1−αd(x, xk

i )ε1
.

(3.14)

As for J3, noting that x ∈ Ec and v ∈ Bk
i imply d(y, xk

i ) > d(x, xk
i )/2 ≥

2d(v, xk
i ). By (1.5),

J3 ≤C
∫

d(y,xk
i )≥d(x,xk

i )/2

(∫
Bk

i

|hk
i (v)|d(v, xk

i )
ε

V (y, xk
i )1−αd(y, xk

i )ε
dv

)

·
(
|Sm(x, y)|+ 1

V (x, xk
i )

)
dy

≤ C2kμ(Bk
i )(rk

i )ε

V (x, xk
i )1−αd(x, xk

i )ε
‖Sm(x, ·)‖L1(X )

+
C2kμ(Bk

i )(rk
i )ε

V (x, xk
i )

∫
d(y,xk

i )≥d(x,xk
i )/2

1
V (y, xk

i )1−αd(y, xk
i )ε

dy

≤ C2kμ(Bk
i )(rk

i )ε

V (x, xk
i )1−αd(x, xk

i )ε
,

(3.15)

where in the last inequality, we use (1.4) and Lemma 2.4.
Combining the estimates in (3.13), (3.14) and (3.15) yields

|Sm(Tαh
k
i )(x)| ≤

C2kμ(Bk
i )(rk

i )
ε′

V (x, xk
i )1−αd(x, xk

i )ε′ ≤
C2kμ(Bk

i )1+ ε′
n

V (x, xk
i )

1+ ε′
n
−α
, for any x ∈ Ec,

where ε′ = min{ε1, ε}. Thus,

M0(Tαh
k
i )(x) ≤ C2kμ(Bk

i )1+ ε′
n

V (x, xk
i )

1+ ε′
n
−α
, for any x ∈ Ec.
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Denote Ck
i = C2kμ(Bk

i )1+ ε′
n and gk

i (x) = V (x, xk
i )

−(1+ ε′
n
−α). Then

μ({x ∈ Ec : gk
i (x) > λ}) = μ({x ∈ Ec : V (x, xk

i )
−(1+ ε′

n
−α) > λ}) � λ

− 1

1+ ε′
n −α .

Since α < ε′/n, applying Lemma 2.1 with r = 1/(1 + ε′
n − α), we obtain

μ({x ∈ Ec : Mσ(TαF4)(x) > λ}) ≤ μ({x ∈ Ec :
∞∑

k=k0

∑
i

Ck
i g

k
i (x) > λ})

≤ Cλ−r
∞∑

k=k0

∑
i

(2kμ(Bk
i )1+ ε′

n )r

≤ Cλ−r
∞∑

k=k0

2kr

[∑
i

μ(Bk
i )

]1+ ε′
n

r

≤ C(‖f‖Hp,∞(X )/λ)q.

This complete the proof of Theorem 1.4.

4. APPLICATIONS TO THE NAGEL-STEIN SINGULAR INTEGRALS AND FRACTIONAL INTEGRALS

In this section, we give applications of the theorems. Let M be a boundary of
an unbounded model domain of polynomial type in C

2, which appears in estimates
for solutions of the Kohn-Laplacian; see [2, 17, 14, 19, 20]. More precisely, let
Ω = {(z, w) ∈ C

2 : Im[w] > P (z)}, where P is a real, subharmonic, non-harmonic
polynomial of degree m. Then M = ∂Ω can be identified with C ×R. There are real
vector fields {X1, X2} and their commutators of orders ≤ m span the tangent space at
each point. If we endow M with the control distance d and the Lebesgue measure μ,
then M is a space of homogenous type and μ satisfy (1.3) with n = m+ 2 and κ = 4
(see [18]).
In [19], Nagel and Stein considered a singular integral operator T̃ on M . The

operator T̃ initially is given as a map from C∞
0 (M) to C∞(M), whose distribution

kernel K̃(x, y) is C∞ away from the diagonal of M × M and the following four
properties are supposed to hold:
(I-1) If ϕ , ψ ∈ C∞

c (M) have disjoint supports, then

〈T̃ϕ, ψ〉 =
∫

M×M
K̃(x, y)ϕ(y)ψ(x) dx dy.

(I-2) If ϕ is a normalized bump function associated to a ball of radius r, then
|∂a

X T̃ϕ| � r−a. More precisely, for each integer a ≥ 0, there is another integer b ≥ 0
and a constantMa,b so that whenever ϕ is a C∞ function supported in a ball B(x0, r),
then
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sup
x∈M

ra|(∂a
XT̃ϕ)(x)| ≤Ma,b sup

c≤b
sup

x∈B(x0,r)

rc|∂c
X(ϕ)|.

(I-3) If x �= y, then for every a ≥ 0,

|∂a
X,Y K̃(x, y)| � d(x, y)−aV (x, y)−1.

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is,
these properties also hold for the adjoint operator T̃ t defined by

〈T̃ tϕ, ψ〉 = 〈T̃ ψ, ϕ〉.
Nagel and Stein [19] proved the Lp(M) (1 < p < ∞) boundedness of T̃ . The

boundedness of T̃ in Hardy spaces Hq (n/(n + ε1) < q ≤ 1) was given in [10].
Recently, Ding and the second author [6] proved (H1,∞(M), L1,∞(M)) boundedness
of T̃ .
By the results of [19] and [10], applying Theorem 1.3, we obtain

Theorem 4.1. The Nagel-Stein singular integral operators T̃ are bounded from
Hp,∞(M) to itself for p ∈ (n/(n+ ε1), 1].

For 0 < α < 1, we also consider corresponding fractional integral operator T̃α,
which is given by

T̃α(f)(x) =
∫

M
K̃α(x, y)f(y)dy,

where the kernel K̃α(x, y) satisfies

(4.1) |∂a
X,Y K̃α(x, y)| � d(x, y)−aV (x, y)−1+α.

Note that the smoothness condition (4.1) implies that condition (1.5) holds for K̃α with
ε = 1. Thus by theorems 1.3 and 1.4, we have

Theorem 4.2. Let 0 < α < ε1/n. For all p, q with n/(1 + n) ≤ p ≤ 1 and
1/p− 1/q = α, T̃α is bounded from Hp,∞(M) to Lq,∞(M). If K̃α further satisfies
the cancelation condition (3.12), then T̃α is also bounded fromHp,∞(M) toHq,∞(M).

Remark 4.3. The (Lp, Lq) boundedness of T̃α can be obtained from a more general
result in [7], where the kernel of the fractional integral operator only assumed to satis-
fies some weak size condition. The (H1(X ), L

1
1−α (X )) and (H1,∞(X ), L

1
1−α

,∞(X ))
boundedness of T̃α were given in [6]. When p < 1, the conclusion of Theorem 4.2 is
new.
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